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Abstract
An Expression for the expected value of the intersection of a sure sphere and a random sphere has been
derived by Laurent (1974). In the present paper we derive the expression for the expected intersection
volume of a sure ellipsoid and a random ellipsoid.
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1. Introduction
We follow the notation and terminology of Laurent (1974). Let S be a fixed n-
dimensional ellipsoid with the equationx ∆x ≤ r , where n × n ∆ is positive definite
symmetric and r is known. Let the center C, with coordinates ξ, of an n-dimensional
ellipsoid S follow an elliptically symmetric distribution about the fixed center A, with
coordinates η, i.e., the density of ξ is of the type (y′Δy), y = (ξ − η). We wish to
obtain an expression for µ = E[V(S ∩ S)], the expected intersection volume contained
in S and S, where S denotes the volume y Δy ≤ R , R known.

Let m be the coordinates of a random point M inside this intersection. Then from Laurent
(1974, p. 183, equation (4)) we haveµ = (y Δy)dy( ) ∆( ) dm∆= I I (y Δy)dy dm , (1)
where the integral inside the square brackets represents P{(ξ − m) ∆(ξ − m) ≤ R }. I
denotes the indicator function of the set I (m; ξ, R ), and I is the indicator function of
the set I (m, r ). Note that y Δy ≤ R implies (ξ − m) ∆(ξ − m) ≤ R . For a fixed m,
and normal ξ, we know that ρ = (ξ − m) ∆(ξ − m) follows a noncentral distribution
with n degrees of freedom and noncontrality parameter δ = (m − η) ∆(m − η)
(Muirhead, 2005). This noncentral distribution can be expressed in terms of a Bessel
function of first kind and order (n − 2)/2. (Abramowitz and Stegun, 1972). Obviously,P{(ξ − m) ∆(ξ − m) ≤ R } depends on M only through δ . Let us denote the distribution
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function of ρ . i.e. P{ρ ≤ R } by Q (R ; δ ) and its density function by q (ρ ; δ ).
Thus the equation (1) now becomesµ = Q (R ; δ )I dm = Q (R ; δ )dm∆ . (2)
We proceed to evaluate (2) in the next section. We first note that the random variable(ξ − m) ∆(ξ − m), for a fixed m, has a noncentral type density. This density is
necessary to evaluate the first integral in (1). Next the random variable m ∆m also has
anoncentral type density with noncentrality parameter η ∆η. Thus the final result
depends only on r, R, η ∆η, and ∆. The final result involves three Bessel functions of the
first kind. The first Bessel function appears in the noncentral type density of(ξ − µ) ∆(ξ − m). The second Bessel function appears because the integration involves
integration over a certain angle. The third Bessel function appears in the noncentral
type density of m ∆m.

2. The squared noncentral radical error distribution

As in Laurent (1974), we get (y − η) ∆(y − η) = |y| , |y| = [(y − η) ∆(y − η)] ⁄ ,δ = (m − η) ∆(m − η), δ = [(m − η) ∆(m − η)] ⁄ , |y| > 0, δ > 0, andρ = |y| + δ − 2(m − η) ∆(m − η) = |y| + δ − 2|y| δ cos φ , (3)
where cos φ = (m − η) ∆(m − η)/|y|δ .
The characteristic function of an elliptically symmetric distribution (Gupta and Varga,
1993) is given by

exp{it ∆y}f(y ∆y) dy = K|∆| f(u)u exp i√u√t ∆tv (1 − v ) dv
= K|∆| f(u)u exp i√u√t ∆t cos φ sin φdφ

= K|∆| f(u)u J √u√t ∆t (4)
where cos φ = t ∆y/(t ∆t) / (y ∆y) / ,J (x) = 1Γ(n + 1) x2 F n + 1, − 14 x ,
and K denotes constant terms. Here J (x) is the Bessel function of the first kind defined
in terms of the confluent hypergeometric function (∙).Thus the integral (4) depends
on only one angle φ.
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Now Laurent (1974) shows that the evaluation of Q (R , δ ; |y| ), i.e., the conditional
distribution function of the noncentral radial error ρ depends on only one angle φ, and is
given by

Q (R , δ ; |y| ) = sin φdφ B n − 12 , 12 , (5)
where cos φ = (|y| + δ − R )/2|y|δ. Further (see Laurent (1974, p. 184, equation
(8))) we find (5) to be

Q (R , δ ; |y| ) = Γ n2 2R|y|δ R u ( )J (|y|u)J (Ru)J (δu)du . (6)
The noncentral density of the squared radial error ρ is

q (ρ ; δ ; |y| ) = 12 Γ n2 2ρ|y|δ u ( )J (|y|u)J (δu)J (ρu)du . (7)
The result (7) follows by noting that the density of the angle φ, measured in radians, is
given by (φ) = 1B , (1 − cos φ) , − π < < , (8)
and that cos φ = |y| + δ − ρ2|y|δ , (|y| − δ) ≤ ρ ≤ (|y| + δ) . (9)
Hence from (8) and (9), we get the density of ρ , given |y| , as

q (ρ , δ ; |y| ) = (2|y|δ) ( )[ρ − (δ − |y|) ] [(δ + |y|) − ρ ]B , . (10)
The result (10) is given by Laurent (1974, p. 185, equation (10)).

Again from Laurent (1974, p. 185, equation (11)), we have that

Q (R , δ ) = Q (R , δ ; |y| )h (|y| )d|y| , (11)
where

h (|y| ) = πΓ (|y| ) |∆| (|y| ) . (12)
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It follows that the equation (12) of Laurent (1974, p. 185), now reads as

Q (R , δ ) = |∆| Rδ R φ(u)J (δu)J (Ru)du , (13)
where from (4)

φ(|t|) = φ √t ∆t = K |∆| f(u)u J √u√t ∆t du . (14)
Thus from Laurent (1974, p. 188, equation (24)), we find that

µ = |∆| Rδ R φ(u)J (δu)J (Ru)du dm .
Now integrating out m over the range m ∆m ≤ r , in the same way as has been done to
integrate out ξ, we find that

µ = |∆| 2πR|η| φ(u)J (Ru)J (|η|u)J (ru)du,
where |η| = η ∆η.
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