Intersection of a Sure Ellipsoid and a Random Ellipsoid

Arjun K. Gupta
Department of Mathematics and Statistics
Bowling Green State University, Bowling Green, Ohio 43403, USA
gupta@bgsu.edu

Abstract

An Expression for the expected value of the intersection of a sure sphere and a random sphere has been derived by Laurent (1974). In the present paper we derive the expression for the expected intersection volume of a sure ellipsoid and a random ellipsoid.

Keywords and phrases: Expected value; Sure ellipsoid; Random field; Noncentral Chi square distribution; Bessel function

1. Introduction

We follow the notation and terminology of Laurent (1974). Let S_{0} be a fixed n dimensional ellipsoid with the equation $x^{\prime} \Delta x \leq r^{2}$, where $n \times n \Delta$ is positive definite symmetric and r is known. Let the center C, with coordinates ξ of an n-dimensional ellipsoid S follow an elliptically symmetric distribution about the fixed center A, with coordinates η, i.e., the density of ξ is of the type $g_{\mathrm{n}}\left(\mathrm{y}^{\prime} \Delta \mathrm{y}\right), \mathrm{y}=(\xi-\eta)$. We wish to obtain an expression for $\mu_{\mathrm{n}}=\mathrm{E}\left[\mathrm{V}\left(\mathrm{S}_{0} \cap \mathrm{~S}\right)\right]$, the expected intersection volume contained in S_{0} and S, where S denotes the volume $y^{\prime} \Delta y \leq R^{2}, R$ known.

Let m be the coordinates of a random point M inside this intersection. Then from Laurent (1974, p. 183, equation (4)) we have

$$
\begin{align*}
\mu_{\mathrm{n}}= & \int_{\mathrm{m}^{\prime} \Delta \mathrm{m} \leq \mathrm{r}^{2}}\left[\int_{(\xi-\mathrm{n})^{\prime} \Delta(\xi-\mathrm{nr}) \leq \mathrm{R}^{2}} g_{\mathrm{n}}\left(\mathrm{y}^{\prime} \Delta \mathrm{y}\right) \mathrm{dy}\right] \mathrm{dm} \\
& =\int \mathrm{I}_{\mathrm{S}_{0}}\left[\int \mathrm{I}_{\mathrm{S}_{0}} g_{\mathrm{n}}\left(\mathrm{y}^{\prime} \Delta \mathrm{y}\right) \mathrm{dy}\right] \mathrm{dm} \tag{1}
\end{align*}
$$

where the integral inside the square brackets represents $\mathrm{P}\left\{(\xi-\mathrm{m})^{\prime} \Delta(\xi-\mathrm{m}) \leq \mathrm{R}^{2}\right\}$. I_{S} denotes the indicator function of the set $\mathrm{I}_{S}\left(\mathrm{~m} ; \xi \mathrm{R}^{2}\right)$, and $\mathrm{I}_{\mathrm{S}_{0}}$ is the indicator function of the set $\mathrm{I}_{\mathrm{s}_{0}}\left(\mathrm{~m}, \mathrm{r}^{2}\right)$. Note that $\mathrm{y}^{\prime} \Delta \mathrm{y} \leq \mathrm{R}^{2}$ implies $(\xi-\mathrm{m})^{\prime} \Delta(\xi-\mathrm{m}) \leq \mathrm{R}^{2}$. For a fixed m , and normal ξ we know that $\rho^{2}=(\xi-\mathrm{m})^{\prime} \Delta(\xi-\mathrm{m})$ follows a noncentral χ^{2} distribution with n degrees of freedom and noncontrality parameter $\delta^{2}=(m-\eta)^{\prime} \Delta(\mathrm{m}-\eta)$ (Muirhead, 2005). This noncentral distribution can be expressed in terms of a Bessel function of first kind and order $(\mathrm{n}-2) / 2$. (Abramowitz and Stegun, 1972). Obviously, $\mathrm{P}\left\{(\xi-\mathrm{m})^{\prime} \Delta(\xi-\mathrm{m}) \leq \mathrm{R}^{2}\right\}$ depends on M only through δ^{2}. Let us denote the distribution
function of ρ^{2}. i.e. $P\left\{\rho^{2} \leq R^{2}\right\}$ by $\mathrm{Q}_{n}\left(\mathrm{R}^{2} ; \delta^{2}\right)$ and its density function by $\mathrm{q}_{\mathrm{n}}\left(\rho^{2} ; \delta^{2}\right)$. Thus the equation (1) now becomes

$$
\begin{equation*}
\mu_{\mathrm{n}}=\int \mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2} ; \delta^{2}\right) \mathrm{I}_{\mathrm{S}_{0}} \mathrm{dm}=\int_{\mathrm{n}^{\prime} \Delta \mathrm{n} \leq \mathrm{r}^{2}} \mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2} ; \delta^{2}\right) \mathrm{dm} \tag{2}
\end{equation*}
$$

We proceed to evaluate (2) in the next section. We first note that the random variable $(\xi-\mathrm{m})^{\prime} \Delta(\xi-\mathrm{m})$, for a fixed m , has a noncentral χ^{2} type density. This density is necessary to evaluate the first integral in (1). Next the andom variable $\mathrm{m}^{\prime} \Delta \mathrm{m}$ also has anoncentral χ^{2} type density with noncentrality parameter $\eta^{\prime} \Delta \eta$. Thus the final result depends only on $\mathrm{r}, \mathrm{R}, \eta^{\prime} \Delta \eta$, and Δ. The final result involves three Bessel functions of the first kind. The first Bessel function appears in the noncentral χ^{2} type density of $(\xi-\mu)^{\prime} \Delta(\xi-m)$. The second Bessel function appears because the integration involves integration over a certain angle. The third Bessel function appears in the noncentral χ^{2} type density of $\mathrm{m}^{\prime} \Delta \mathrm{m}$.

2. The squared noncentral radical error distribution

As in Laurent (1974), we get $(y-\eta)^{\prime} \Delta(y-\eta)=|y|^{2},|y|=\left[(y-\eta)^{\prime} \Delta(y-\eta)\right]^{1^{\prime 2}}$, $\delta^{2}=(m-\eta)^{\prime} \Delta(m-\eta), \delta=\left[(m-\eta)^{\prime} \Delta(m-\eta)\right]^{1^{\prime 2}},|y|>0, \delta>0$, and

$$
\begin{equation*}
\rho^{2}=|y|^{2}+\delta^{2}-2(m-\eta)^{\prime} \Delta(m-\eta)=|y|^{2}+\delta^{2}-2|y| \delta \cos \varphi, \tag{3}
\end{equation*}
$$

where $\cos \varphi=(m-\eta)^{\prime} \Delta(m-\eta) / \mid y l \delta$.
The characteristic function of an elliptically symmetric distribution (Gupta and Varga, 1993) is given by

$$
\begin{align*}
\int_{-\alpha}^{\alpha} \exp \left\{i t^{\prime} \Delta y\right\} f\left(y^{\prime} \Delta y\right) d y & =K|\Delta|^{-\frac{1}{2}} f(u) u^{\frac{\mathrm{n}-2}{2}} \int_{-1}^{1} \exp \left\{i \sqrt{\mathrm{u}} \sqrt{\mathrm{t}^{\prime} \Delta \mathrm{t} v}\right\}\left(1-\mathrm{v}^{2}\right)^{\frac{\mathrm{n}-3}{2}} d v \\
= & K|\Delta|^{-\frac{1}{2} f}(\mathrm{u}) u^{\frac{\mathrm{n}-2}{2}} \int_{-\pi}^{\pi} \exp \left\{i v \bar{u} \sqrt{\mathrm{t}^{\prime} \Delta \mathrm{t}} \cos \varphi\right\} \sin ^{\mathrm{n}-2} \varphi d \varphi \\
& =K|\Delta|^{-\frac{1}{2}} \mathrm{f}(\mathrm{u}) u^{\frac{\mathrm{n}-2}{2}} \frac{\mathrm{~J}_{\mathrm{n}-2}}{2}\left(\sqrt{\mathrm{u}} \sqrt{\mathrm{t}^{\prime} \Delta \mathrm{t}}\right) \tag{4}
\end{align*}
$$

where $\cos \varphi=\mathrm{t}^{\prime} \Delta \mathrm{y} /\left(\mathrm{t}^{\prime} \Delta \mathrm{t}\right)^{1 / 2}\left(\mathrm{y}^{\prime} \Delta \mathrm{y}\right)^{1 / 2}$,

$$
\mathrm{J}_{\mathrm{n}}(\mathrm{x})=\frac{1}{\Gamma(\mathrm{n}+1)}-\left(\frac{\mathrm{x}}{2}\right)^{\mathrm{n}}{ }_{0} \mathrm{~F}_{1}\left(\mathrm{n}-1,-\frac{1}{4} \mathrm{x}^{2}\right)
$$

and K denotes constant terms. Here $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is the Bessel function of the first kind defined in terms of the confluent hypergeometric function ${ }_{0} F_{1}(\cdot)$.Thus the integral (4) depends on only one angle φ.

Intersection of a Sure Ellipsoid and a Random Ellipsoid

Now Laurent (1974) shows that the evaluation of $\mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2} ;|y|^{2}\right)$, i.e., the conditional distribution function of the noncentral radial error ρ depends on only one angle φ, and is given by

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2} ;|\mathrm{y}|^{2}\right)=\int_{0}^{\varphi} \sin ^{\mathrm{n}-2} \varphi \mathrm{~d} \varphi / \mathrm{B}\left(\frac{\mathrm{n}-1}{2}, \frac{1}{2}\right), \tag{5}
\end{equation*}
$$

where $\cos \varphi=\left(|y|^{2}+\delta^{2}-R^{2}\right) / 2|y| \delta$. Further (see Laurent (1974, p. 184, equation (8))) we find (5) to be

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2} ;|\mathrm{y}|^{2}\right)=\Gamma\left(\frac{\mathrm{n}}{2}\right)\left(\frac{2 \mathrm{R}}{|\mathrm{y}| \delta}\right)^{\frac{\mathrm{n}-2}{2}} \mathrm{R} \int_{0}^{\alpha} \mathrm{u}^{\frac{-(\mathrm{n}-2)}{2}} \mathrm{~J}_{\frac{\mathrm{n}-2}{2}}(|y| u) \frac{\mathrm{Jn}}{2}(\mathrm{Ru}) \frac{\mathrm{J}_{\frac{\mathrm{n}-2}{2}}}{}(\delta u) \mathrm{du} . \tag{6}
\end{equation*}
$$

The noncentral density of the squared radial error ρ^{2} is

$$
\begin{equation*}
\mathrm{q}_{\mathrm{n}}\left(\rho^{2} ; \delta^{2} ;|\mathrm{y}|^{2}\right)=\frac{1}{2} \Gamma\left(\frac{\mathrm{n}}{2}\right)\left(\frac{2 \rho}{|\mathrm{y}| \delta}\right)^{\frac{\mathrm{n}-2}{2}} \int_{0}^{\mathrm{a}} \mathrm{u}^{\frac{-(\mathrm{n}-4)}{2}} \mathrm{Jn}_{\frac{\mathrm{n}}{2}}(|y| \mathrm{u}) \frac{\mathrm{J}_{\frac{\mathrm{n}-2}{2}}}{}(\delta u) \mathrm{J}_{\frac{\mathrm{n}-2}{2}}(\rho \mathrm{u}) \mathrm{du} . \tag{7}
\end{equation*}
$$

The result (7) follows by noting that the density of the angle φ, measured in radians, is given by

$$
\begin{equation*}
g(\varphi)=\frac{1}{\mathrm{~B}\left(\frac{\mathrm{n}-1}{2}, \frac{1}{2}\right)}\left(1-\cos ^{2} \varphi\right)^{\frac{\mathrm{n}-3}{2}},-\pi<\varphi<\pi, \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
\cos \varphi=\frac{|y|^{2}+\delta^{2}-\rho^{2}}{2|y| \delta}, \quad(|y|-\delta)^{2} \leq \rho^{2} \leq(|y|+\delta)^{2} . \tag{9}
\end{equation*}
$$

Hence from (8) and (9), we get the density of ρ^{2}, given $|y|^{2}$, as

$$
\begin{equation*}
\mathrm{q}_{\mathrm{n}}\left(\rho^{2}, \delta^{2} ;|\mathrm{y}|^{2}\right)=\frac{(2|y| \delta)^{-(\mathrm{n}-2)}\left[\rho^{2}-(\delta-|y|)^{2}\right]^{\frac{\mathrm{n}-3}{2}}\left[(\delta+|y|)^{2}-\rho^{2}\right]^{\frac{\mathrm{n}-3}{2}}}{B\left(\frac{\mathrm{n}-1}{2}, \frac{1}{2}\right)} \tag{10}
\end{equation*}
$$

The result (10) is given by Laurent (1974, p. 185, equation (10)).
Again from Laurent (1974, p. 185, equation (11)), we have that

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2}\right)=\int_{0}^{\alpha} \mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2} ;|y|^{2}\right) \mathrm{h}_{\mathrm{n}}\left(|\mathrm{y}|^{2}\right) \mathrm{d}|y|^{2}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}}\left(|y|^{2}\right)=\frac{\pi^{\frac{\mathrm{n}}{2}}}{\Gamma\left(\frac{\mathrm{n}}{2}\right)}\left(|y|^{2}\right)^{\frac{\mathrm{n}-2}{2}|\Delta|^{-\frac{1}{2}} g_{\mathrm{n}}\left(|y|^{2}\right)} \tag{12}
\end{equation*}
$$

It follows that the equation (12) of Laurent (1974, p. 185), now reads as

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{n}}\left(\mathrm{R}^{2}, \delta^{2}\right)=|\Delta|^{-\frac{1}{2}}\left(\frac{\mathrm{R}}{\delta}\right)^{\frac{\mathrm{n}-2}{2}} \mathrm{R} \int_{0}^{\alpha} \varphi(\mathrm{u}) \frac{\mathrm{J}_{\frac{\mathrm{n}-2}{2}}}{}(\delta \mathrm{u}) \mathrm{Jn}_{\frac{\mathrm{n}}{2}}(\mathrm{Ru}) \mathrm{du}, \tag{13}
\end{equation*}
$$

where from (4)

$$
\begin{equation*}
\varphi(|\mathrm{t}|)=\varphi\left(\sqrt{\mathrm{t}^{\prime} \Delta \mathrm{t}}\right)=\mathrm{K} \int_{0}^{\alpha}|\Delta|^{-\frac{1}{2} \mathrm{f}}(\mathrm{u}) \mathrm{u}^{\frac{\mathrm{n}-2}{2}} \frac{\mathrm{~J}_{\frac{\mathrm{n}-2}{2}}}{}\left(\sqrt{\mathrm{u}} \sqrt{\mathrm{t}^{\prime} \Delta \mathrm{t}}\right) \mathrm{du} . \tag{14}
\end{equation*}
$$

Thus from Laurent (1974, p. 188, equation (24)), we find that

$$
\mu_{\mathrm{n}}=|\Delta|^{-\frac{1}{2}} \int_{0}^{\alpha}\left(\frac{\mathrm{R}}{\delta}\right)^{\frac{\mathrm{n}-2}{2}} \mathrm{R} \int_{\mathrm{S}_{0}} \varphi(\mathrm{u}) \frac{\mathrm{Jn}_{\frac{\mathrm{n}}{2}}^{2}}{}(\delta \mathrm{u}) \frac{\mathrm{Jn}}{\frac{\mathrm{n}}{2}}(\mathrm{Ru}) \mathrm{du} d m .
$$

Now integrating out m over the range $m^{\prime} \Delta m \leq r^{2}$, in the same way as has been done to integrate out ξ we find that

$$
\mu_{\mathrm{n}}=|\Delta|^{-\frac{1}{2}}\left(\frac{2 \pi \mathrm{R}}{|\eta|}\right)^{\frac{\mathrm{n}}{2}} \int_{0}^{\alpha} \varphi(\mathrm{u}) \frac{\mathrm{J}_{\frac{\mathrm{n}}{2}}}{}(\mathrm{Ru}) \frac{\mathrm{J}_{\frac{\mathrm{n}-2}{2}}}{}(|\eta| \mathrm{u}) \frac{\mathrm{J}_{\frac{n}{2}}}{}(\mathrm{ru}) \mathrm{du}
$$

where $|\eta|^{2}=\eta^{\prime} \Delta \eta$.

Reference

1. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Function, Down, New York.
2. Gupta, A. K. and Varga, T. (1993). Elliptically Contoured Models in Statistics, Kluwer Academic Publisher, Dordrechet.
3. Laurent, Andre G. (1974). The intersection of random spheres and the noncentral radial error distribution for spherical models. Ann. Statist. 2, 182-189.
4. Muirhead, R.J. (2005). Aspects of Multivariate Statistical Theory, Wiley, New York.
