
Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp491-506

Statistics in the Twenty-First Century: Special Volume
In Honour of Distinguished Professor Dr. Mir Masoom Ali
On the Occasion of his 75th Birthday Anniversary
PJSOR, Vol. 8, No. 3,  pages 491-506,  July 2012

Linking Diversity and Disparity Measures

Sahadeb Sarkar
Operations Management Group
Indian Institute of Management Calcutta
Post Box 16757, Calcutta 700 027, India
sahadeb@iimcal.ac.in

Ayanendranath Basu
Bayesian and Interdisciplinary Research Unit
Indian Statistical Institute
203 B. T. Road, Calcutta 700 108, India
ayanbasu@isical.ac.in

Abstract
The purpose of this paper is to examine links between the diversity measures (Patil and Taillie 1982) and
the disparity measures (Lindsay 1994), quantities apparently developed for somewhat different purposes.
We demonstrate that numerous diversity measures satisfying all the desirable criteria mentioned by Patil
and Taillie can be defined by the generating functions of certain disparities and the associated residual
adjustment functions. This provides the statistician and the ecologist a wide class of flexible indices for the
statistical measurement of diversity.

Keywords and phrases: Divergence; Hellinger distance; Negative exponential disparity;
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1. Introduction
The statistical measurement of diversity is an extremely important practical problem.
Diversity, under various names, has been a very significant concept in ecological,
biological, economic, social, physical and management sciences. See Atkinson (1970),
Finkelstein and Friedberg (1967), Greenberg (1956), Hart (1971), Lieberson (1969), Nei
(1973), and Sen (1974), among others. There is a vast literature on diversity related
issues. Here we discuss only some of the important, relevant references.

Two widely used indices of diversity are Shannon's (1948) index and Simpson's (1949)
index. Good (1953) suggested a more general diversity measure which includes
Shannon's and Simpson's indices. Baczkowski et al. (1997, 1998, 2000) discussed a
further generalization of the Good's index.

In practice, diversity has been interpreted and measured in different ways. One approach
in measuring biological diversity is to consider joint dissimilarity of species in a
community. Using this approach based on an intrinsic notion of dissimilarity between
individuals of a population, Rao (1982a, b) developed the axiomatic theory for diversity.
However, this approach has a limited impact on the ecological practice of measuring bio-
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diversity (Solow and Polasky 1994; Champely and Chessel 2002). Rao (1982a, b)
extended the concept of analysis of variance (ANOVA) to the more general analysis of
diversity (ANODIV), which can be used for qualitative data as well. His work
generalized the work on the analysis of one-way classified categorical data, called
CATANOVA, of Light and Margolin (1971) and Anderson and Landis (1980). Nayak
(1986a) discussed generalization of the CATANOVA methods of these authors using
Rao's quadratic entropy. For a general class of diversity measures, Nayak (1986b)
discussed sampling distributions of quantities arising in ANODIV.

In this paper, however, we restrict our attention to the the widely accepted traditional
approach of measuring ecological diversity, in which one considers the relative
abundances in a community without regard to the differences between species. For this
approach, Patil and Taillie (1982) provided a formal definition and logical development
of diversity as a concept and worked out a related theory for the statistical measurement
of diversity. They defined diversity of a community as the average rarity of species
within the community, and proposed a family of measures called diversity indices of
degree  . Below we mention some recent works on the application of these diversity
indices.

For square contingency tables having nominal categories, Tomizawa (1994) proposed
two measures to represent the degree of departure from symmetry using the average of
the Shannon's index and the average of Simpson's index respectively. Tomizawa et al
(1998) gave a generalization of the two measures using the average of the diversity index
of Patil and Taillie (1982, Sec 3.2).

For a two-way contingency table with nominal explanatory and a nominal response
variable, Tomizawa et al (1997) defined measures which describe the proportional
reduction in variation from the marginal distribution to the conditional distributions of the
response using Patil and Taillie's (1982) diversity index. Tomizawa and Ebi (1998)
extended Tomizawa et al's work to multi-way contingency tables.

In the context of developing robust and fully efficient inference procedures under count
data models, Lindsay (1994) defined a class of density based divergences, called
disparities. A disparity is a measure of average discrepancy between two densities, which
in statistical inference are the model density and an appropriate nonparametric density
estimator obtained from the sample data. Lindsay's class of disparities includes the well
known and well studied Hellinger distance ( HD ), the more recent negative exponential
disparity ( NED ) which is an excellent competitor to the HD in generating robust
statistics (see Basu et al. 1997), the Pearson's chi-square, the likelihood disparity, and the
Kullback-Leibler divergence. This class of disparities contains some important
subclasses, namely the blended weight chi-squares, the blended weight Hellinger
distances (Lindsay 1994), and the celebrated power divergence family (Cressie and Read
1984).

The development of the class of disparities is the natural culmination of the study of
density based divergences. Beran (1977) first showed that the the robust minimum
Hellinger distance estimator attains full asymptotic efficiency at the model, something
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which the traditional robust estimators such as the M-estimators fail to do. Among others,
Tamura and Boos (1986) and Simpson (1987, 1989) further pursued Beran's work.
Lindsay (1994) presented a comprehensive approach, developed the class of disparities,
and extended the range of choice beyond the Hellinger distance. Many new members of
the class of disparities share and sometimes improve upon the desirable properties of the
Hellinger distance.

Several disparity based analogs (Simpson 1989, Bhandari et al 2000) of the likelihood
ratio test are excellent robust alternatives to the usually non-robust likelihood ratio test.
As another application of disparities, Basu and Sarkar (1994) investigated disparity based
goodness-of-fit tests for multinomial models under simple as well as composite
hypotheses thus generalizing the Cressie-Read power divergence approach. This line of
research is pursued by Shin et al (1995, 1996) and Jeong and Sarkar (2000) among
others. Thus a considerable amount of research are based on the disparities in the area of
robust inference and goodness-of-fit tests. For a comprehensive description see Basu et al
(2011).

The form of the diversity index of degree  defined by Patil and Taillie (1982) is
strikingly similar to that of the well-known power divergence of Cressie and Read
(1984). This makes one wonder about possible connections. More generally, since
diversity of a community is about measuring the average rarity of its species, and
disparity is about measuring the average discrepancy between suitable densities, the
question arises: Is there a link between diversity and disparity measures? For example,
can one generate diversity measures using the functions related to disparities? Such
enquiries motivated the work of the present paper and we hope that we have presented at
least a partial answer to the above questions.

The rest of the paper is organized as follows: A short review of diversity measures is
given in Section 2 whereas a brief discussion of disparities is provided in Section 3.
Section 4 presents the links between diversity and disparity measures. Finally, Section 5
contains some concluding remarks.

2. Diversities
We briefly review the diversity measures introduced by Patil and Taillie (1982). Suppose
a certain quantity is distributed among a countable set of categories, labeled = 1, 2, ,i 
with i as the proportionate share received by category i and = 1ii

 . This quantity
may be discrete (e.g. biological organisms, errors in a bank ledger) or continuous (e.g.
biomass, energy, income).

For concreteness of further discussion on the concept and measurement of diversity, Patil
and Taillie consider a community of biological organisms grouped into species and call
 = 1 2( , , )   the species (relative) abundance vector. A community may be identified
with the pair = ( ,C s  ), where s is the number of nonzero components of  . Thus s is
the number of species that are physically present in the community. Assume that s is
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finite. A community is called completely even when # # #
1 2= = = = 1/s s   , where

# #
1 2   are obtained by arranging the components of  in a decreasing order.

Given a community = ( ,C s  ), let ( ;R i  ) denote a numerical measure of rarity to be
associated with species i , = 1, 2,i  . Then a diversity measure of the community is an
average rarity of its species, and the diversity index associated with the measure of rarity
R is defined by = ( ) = (C    ) = ( ;ii

R i  ). Obviously, the diversity measure 
depend on the choice of the function R measuring rarity of species within the
community.

Assume that the rarity measure ( ;R i  ) depends only on the numerical value of i . This
phenomenon is called dichotomy, and the resulting diversity index ( )C is known as
dichotomous. We will write ( ;R i  ) simply as ( )iR  .

Note that the function R measuring rarity is defined on the interval (0,1] and (0)R is
inherently undefined and (1) = 0R is a natural normalizing requirement. Since rarer
species correspond to smaller values of  , ( )R  should be a decreasing function of  .
Since (1) = 0R , the function R should be nonnegative. Patil and Taillie (1982) listed
these conditions in their Criterion C1.

One obtains three widely used indices of ecological diversity
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using the measure of rarity, defined on (0,1],
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Note that 00 = lim   . The R functions in equation (1) correspond to = 1,0  and 1
respectively under this setup.

Patil and Taillie imposed another desirable condition on the diversity measures through
their Criterion C2: For two communities = ( ,C s  ) and = ( ,' 'C s  ' ), ( ) ( )'C C  
whenever C leads to 'C by introducing a species or by a transfer of abundance, which
are defined in the following.

Definition: The community = ( ,C s  ) is said to lead to = ( ,' 'C s  ' ) by introducing a
species if = 1's s  and if there are two distinct positive integers i and j such that
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where 0 < < .ih  On the other hand, the community C is said to lead to 'C by a
transfer of abundance if = 's s and if there are positive integers i and j such that

> > 0i j  and
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where 0 < < .i jh  

To state conditions under which a diversity index ( )C satisfies their Criteria C1 and
C2, Patil and Taillie defined an auxiliary function V by

0    = 0
( ) = ( )    0 < 1.

if
V R if


   


 



The function V may be discontinuous at 0 . Then, the Criteria C1-C2 are satisfied if the
auxiliary function V is concave on the closed interval [0,1] . Thus, the diversity index

 satisfies Criterion C1 for all  and satisfies Criteria C1-C2 if 1   .

Another desirable condition imposed on the diversity measures, stated in Patil and
Taillie's Criterion C3, is that (  ) be a concave function of  . The motivation for this
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condition comes from the consideration that the diversity in a mixture of populations
should not be smaller than the average of diversities within individual populations (Rao
1982b, Sec 2). Criterion C3 is satisfied by a diversity measure  if the corresponding
auxiliary function V is concave on the closed interval [0,1] , and, in particular, by  if

1   .

3. Disparities
We very briefly discuss the concept of disparity under count data models. For a detailed
discussion see Lindsay (1994) and Basu et al (2011). Let 1 2, , , nX X X represent a
random sample from a discrete distribution modelled by F having a countable support,

pIR  . Consider the empirical density estimate ( )nd x = the proportion of jX 's
having the value x . For a value x , Lindsay referred to the normalized deviation between

( )nd x and ( )f x , given by ( ) = ( ( ) ( )) / ( )nx d x f x f x   as the Pearson residual ( )x ,
the normalizing being done with respect to the model density. An x -value is called an
outlier if it has a large positive Pearson residual ( )x , and it is called an inlier if ( )x is
negative.

Let ( )G  be a real-valued, convex function on [ 1, )  with (0) = 0G . Then the disparity

G between nd and f is defined as
( , ) = ( ( )) ( ).G n

x
d f G x f x   (4)

The measure ( , )G nd f represents the average discrepancy between nd and f where
the discrepancy (( ( ) ( )) / ( ))nG d x f x f x  is nothing but a suitably modified normalized
deviation between ( )nd x and ( )f x , and the averaging is done with respect to the model
density .f The well-known Cressie-Read power divergence family, indexed by a real
parameter  , is defined by

 [ ( ) / ( )] 1
( , ) = ( )
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
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where for = 0, 1  , the disparity is defined by continuity, i.e., ( ) = ( 1) ( 1)logeG    
for = 0 and ( ) = ( 1)logeG    for = 1  .

The minimizer of (4) with respect to (w.r.t.)  is called the minimum disparity estimator
( MDE ) corresponding to the disparity G . The maximum likelihood estimator ( MLE )
of  minimizes the likelihood disparity
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n n n
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with ( ) = ( 1) log( 1)LDG       . The minimum Hellinger distance estimator
( MHDE ) minimizes

1/2 1/2 2( , ) = 2 ( ( ) ( )) ,n n
x

HD d f d x f x 
with 1/2 2( ) = 2[( 1) 1] .HDG     The minimum negative exponential disparity estimator
( MNEDE ) corresponds to ( ) = exp( ) 1NEDG      .

Let ( ), ( )a x a x  denote the first and second derivatives of a function ( )a x w.r.t. its
argument. Letting  denote the gradient w.r.t.  , the minimum disparity estimating
equation, under differentiability of the model, takes the form

= ( ( )) ( ) = 0,G
x

A x f x   (6)

where
( ) ( 1) ( ) ( )'A G G      (7)

is an increasing function on [ 1, )  . Without changing the estimating properties of the
disparity  , the function ( )G  can be redefined so that

(0) = 0, (0) = 0,   (0) = 1' ''G G and G
retaining its convexity on [ 1, )  , and the corresponding ( ) = ( 1) ( ) ( )'A G G    
satisfies (0) = 0A and (0) = 1'A in addition to A being increasing on [ 1, )  . When thus
standardized, the function ( )A  is called the residual adjustment function ( RAF ) of the
disparity.

For the power divergence family, the RAF on [ 1, )  is given by
1( 1) 1( ) = .

1
A







 


(8)

For the LD , HD , and the NED , the RAF s are given by
( ) = , ( ) = 2[ ( 1) 1], a  ( ) = 2 (2 ) .LD HD NEDA A nd A e          

The RAF plays a major role in determining the second order efficiency and robustness of
the MDEs . The RAF of a disparity controls the impact of large outliers much in the
same way as the  function of the M -estimation procedure. For an extensive discussion,
see Lindsay (1994), Basu and Lindsay (1994) and Basu et al (2011).

4. Links between diversities and disparities
The Criteria C1-C3 of Patil and Taillie (1982) for a diversity measure are satisfied if the
corresponding rarity function ( )R  defined on the interval (0,1] is:
(i) non-negative,
(ii) decreasing, and
(iii) have (1) = 0R ;
and the auxiliary function ( ) = ( )V R   on (0,1], with (0) = 0V , is
(iv) concave on the closed interval [0,1].
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To define either (a) ( )R  (and hence ( ) = ( )V R   ), or (b) ( )V  (and hence
( ) = ( ) /R V   ) satisfying the four properties (i)-(iv), one may use the disparity

generating function G or the associated residual adjustment function A on the interval
[ 1,0] or [0,1]. We present four cases depending on three factors, namely, whether the
function G or A is non-negative or non-positive, increasing or decreasing, and convex
or concave on the interval [ 1,0] or [0,1] . Assume that the first and second derivatives
of G and A are well defined on [ 1,0] or [0,1] .

Case 1. Suppose on the interval [ 1,0] an RAF ( )A  , which is non-positive and
increasing with (0) = 0A , is convex. That is, (0) = 0A , ( ) 0A   , ( ) 0'A   , ( ) 0''A  
for [ 1,0]   .

1a. For (0,1]  , define
( ) = ( 1).R A  

Then ( ) = ( 1) 0' 'R A    and ( ) = ( 1) 0.'' ''R A    Define ( ) = ( )V R   with
(0) = 0.V Then ( ) = 2 ( ) ( ) 0.'' ' ''V R R     Thus, properties (i)--(iv) are satisfied for
( ) = ( 1).R A  

1b. For (0,1]  , define
( ) = ( 1)V A  

with (0) = 0.V Then ( ) = ( 1) 0' 'V A    and ( ) = ( 1) 0.'' ''V A    Define
( )( ) = VR 


on (0,1] . Then

2

( ) ( )( ) = 0.
'

' V VR  
 


 

Thus, properties (i)--(iv) are satisfied for ( ) = ( 1) / .R A   

Application 1 of 1a: For the Hellinger distance
1/2 3/2( ) = 2[ ( 1) 1]  w   ( ) = ( 1) > 0,  ( ) = 0.5( 1) 0,' ''A ith A A           

which satisfy the conditions of Case 1. For (0,1]  , we then obtain the rarity function
( ) = ( 1) = 2[ 1]R A     .

Application 2 of 1a: The RAF of power divergence family is given by
1( 1) 1( ) = ,

1
A







 


(9)

with
1( ) = ( 1) ,  a   ( ) = ( 1) .' ''A nd A 

        (10)

On (0,1] , define
11( ) = ( 1) = .

1
R A




 



 


(11)
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Thus, Patil and Taillie's rarity function
1( ) = ,  (0,1],R

 





is the negative of a shift (by unity) of the RAF of Cressie and Read's (1984) power
divergence with = 1   .

Remark 1. Note that ( )A  is convex only for 0  (or 1  ). Thus, strictly speaking,
application of 1a only shows that properties (i)--(iv) are satisfied for R in
(Error! Reference source not found.) for 0  , but Patil and Taillie showed that
properties (i)--(iv) are satisfied for R in (Error! Reference source not found.) for

2   (or 1   ). In fact, for ( )V  defined as ( ) = ( )V R    with
( ) = ( 1)R A    and ( )A  as in (9), a direct calculation shows that
( ) = ( 2)V 
      0 for 2   , i.e., V is concave on [0,1] for 2   (or 1   ).

Therefore, properties (i)--(iv) are satisfied for R in (11) for 2   . Thus the convexity
condition imposed on the residual adjustment function A in Case 1 is sufficient, but not
necessary. This condition on A is assumed to make the resulting V concave.

Case 2. Suppose on the interval [ 1,0] the function ( )G  , which is convex with
(0) = 0G , is non-negative and decreasing. That is, (0) = 0G , ( ) 0G   , ( ) 0'G   ,
( ) 0''G   for [ 1,0]   .

2a. For (0,1]  , define
( ) = ( 1) ( ).R G G   

Then ( ) = ( ) 0' 'R G   and ( ) = ( ) 0.'' ''R G    Define ( ) = ( ).V R   Then
( ) = 2 ( ) ( ) 0.'' ' ''V R R     Thus, properties (i)--(iv) are satisfied for

( ) = ( 1) ( ).R G G   

2b. For (0,1]  , define
( ) = ( 1) ( )V G G   

with (0) = 0.V Then ( ) = ( ) 0' 'V G    and ( ) = ( ) 0.'' ''V G    Define
( )( ) = VR 


on (0,1]. Then

2

( ) ( )( ) = 0.
'

' V VR  
 


 

Thus, properties (i)--(iv) are satisfied for ( ) = [ ( 1) ( )] / .R G G    

Application 1 of 2a: For the Pearson's chi-square ( PCS ) its (convex) G function is
given by 2( ) = / 2G   , which is non-negative and decreasing on [ 1,0] since
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( ) = 0'G    on [ 1,0] . Thus, the Pearson's chi-square corresponds to Patil and
Taillie's diversity index of order 2.
Application 2 of 2a: For the blended weight chi-square ( BWCS ) family (Lindsay 1994),
its (convex) G function is given by

2

( ) = , 0 1.
2( 1)

G  


 


Note that G is non-negative and decreasing on [ 1,0] since
2

2

2 4( ) = 0 o  [ 1,0].
[2( 1)]

'G n 



 


Application 3 of 2a: For the blended weight Hellinger distance ( BWHD ) family
(Lindsay 1994), its (convex) G function is given by

2

( ) = 0.5 , 0 1
1 (1 )

G  
  
 

  
   

on [ 1,0] . Note that G is non-negative and decreasing on [ 1,0] since ( ) 0'G   on
[ 1,0] .

Case 3. Suppose on the interval [0,1] an RAF ( )A  , which is non-negative and
increasing with (0) = 0A , is concave. That is, (0) = 0A , ( ) 0A   , ( ) 0'A   , ( ) 0''A  
for [0,1]  .

3a. For (0,1]  , define

( ) = (1 ).R A 

Then ( ) 0R   , ( ) = (1 ) 0' 'R A    and ( ) = (1 ) 0.'' ''R A    Define
( ) = ( )V R   with (0) = 0.V Then ( ) = 2 ( ) ( ) 0.'' ' ''V R R     Thus, properties (i)--

(iv) are satisfied for ( ) = (1 ).R A 

3b. For (0,1]  , define

( ) = (1 )V A 

with (0) = 0.V Then ( ) = (1 ) 0' 'V A    and ( ) = (1 ) 0.'' ''V A   Define
( )( ) = VR 


on (0,1]. Then 2

( ) ( )( ) = 0.
'

' V VR  
 


  Thus, properties (i)--(iv) are

satisfied for ( ) = (1 ) / .R A  

Application 1 of 3a: For the negative exponential disparity
( ) = 2 (2 )   w   ( ) = ( 1) 0,  ( ) = 0.' ''A e ith A e A e             



Linking Diversity and Disparity Measures

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp491-506 501

For (0,1]  , define (1 )( ) = (1 ) = (3 ) 2.R A e        

Now consider the RAF of the generalized negative exponential disparity (Jeong and
Sarkar 2000)

( 1) [ ( 1) 1]( ) = eA



  



   

with ( ) = [ ( 1)] > 0'A e 
     , ( ) = [ ( 1) 1] 0''A e 

         , if 1  .

Application 2 of 3a: For the Hellinger distance
1/2 3/2( ) = 2[ ( 1) 1]  w   ( ) = ( 1) > 0,  ( ) = 0.5( 1) 0.' ''A ith A A           

For (0,1]  , define ( ) = (1 ) = 2[ (2 ) 1]R A     

In general, for (0,1]  , define ( ) = ( ) ( 1)R        , > 1 and 0 < <1 .

Case 4. Suppose on the interval [0,1] the function ( )G  , which is convex with
(0) = 0G , is non-negative and increasing. That is, (0) = 0G , ( ) 0G   , ( ) 0'G   ,
( ) 0''G   for [0,1]  .

4a. For (0,1]  , define
( ) = (1) ( ).R G G 

Then ( ) = ( ) 0' 'R G   and ( ) = ( ) 0.'' ''R G   Define ( ) = ( )V R   with (0) = 0.V
Then ( ) = 2 ( ) ( ) 0.'' ' ''V R R     Thus, properties (i)--(iv) are satisfied for

( ) = (1) ( ).R G G 

4b. For (0,1]  , define
( ) = (1) ( )V G G 

with (0) = 0.V Then ( ) = ( ) 0' 'V G   and ( ) = ( ) 0.'' ''V G   Define ( )( ) = VR 


on (0,1]. Then 2

( ) ( )( ) = 0.
'

' V VR  
 


  Thus, properties (i)--(iv) are satisfied for

( ) = [ (1) ( )] / .R G G  

Application 1 of 4a: For the BWCS-family
2

( ) = , 0 1.
2( 1)

G  


 


Then,
2

2

2 4( ) = > 0
[2( 1)]

'G  




and ''G must be 0 since ( )G  is convex. 1(1) =
2( 1)

G
 

. Now define
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2(1 ) (1 )( ) = (1) ( ) = .
2( 1)( 1)

R G G    
 
  


 

Application 2 of 4a: For the power divergence family
1( 1) 1( ) = .

( 1)
G


 

 


Then,
1( 1)( ) = > 0, i  > 0;  a   = ( 1) 0.' ''G f nd G


  




 

Now define
1 1(2) ( )( ) = (1) ( ) = .
( 1)

R G G
  
 

 




Application 3 of 4a: For the Pearson's chi-square
2( ) = / 2.G  

Define 2( ) = (1) ( ) = (1 ) / 2R G G    .

Application 4 of 4a: For the Kullback-Leibler divergence, ( ) = ( 1) ( 1)logeG     and
define ( ) = (1) ( ) = 2 (2) ( 1) ( 1).log loge eR G G      

Table 1: Generation of diversities (rarity functions) from various disparities

Disparity Case number Rarity function
1. Power divergence 1a 11( ) =

1
R







4a 1 1(2) ( )( ) =
( 1)

R
 
 

 


2. Pearson's chi-square 1a 2( ) = (1 ) / 2R  
3. BWCS 4a 2(1 ) (1 )( ) =

2( 1)( 1)
R   

 
  
 

4. Hellinger distance 1a ( ) = 2[1 ]R  
2a 2( ) = 2[1 ( 1 1) ]R    
3a ( ) = 2[ (2 ) 1]R   

5. NED 1a 1( ) = (1 ) 2R e    
2a ( ) = 1R e e     
3a (1 )( ) = (3 ) 2R e     

6. K-L divergence 4a ( ) = 2 (2) ( 1) ( 1)log loge eR     

In Table 1 we present several rarity functions (diversities) obtained from different well-
known disparities.
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Remark 2: Use of Case 1 and Case 2 (alternatively Case 3 and Case 4) may sometimes
lead to the development of the same diversity (i.e., the same rarity function R ) from the
same disparity. For example, using the RAF 2( ) = ( / 2)A    of the PCS in Case 1a
and G function 2( ) = / 2G   of PCS in Case 2a will result in the same rarity function

2( ) = (1 ) / 2R   . But this does not happen in general. For example, using the RAF
( ) = 2[ 1 1]A     of the HD in Case 1a we get the rarity function ( ) = 2[1 ]R   ,

whereas use of the G function 2( ) = 2[ 1 1]G     of the HD in Case 2a results in a
different rarity function 2( ) = 2[1 ( 1 1) ]R     . As a second example, one can see
that use of the RAF ( ) = 2 (2 )A e     of the NED in Case 1a gives the rarity
function 1( ) = (1 ) 2R e     , whereas use of the G function ( ) = ( 1 )G e     of
the NED in Case 2a produces a different rarity function ( ) = 1 .R e e     

5. Concluding remarks
Diversity measures have wide practical use for the measurement of ecological bio-
diversity. In the traditional approach of measuring ecological diversity, one considers the
relative abundances in a community without regard to the differences between species.
For this scenario, the work by Patil and Taillie (1982) developed the appropriate concepts
and provided a formal definition together with a logical framework. These authors
defined diversity of a community as the average rarity of species within the community,
and proposed a family of measures called diversity indices of degree  .

The diversity measures defined under this approach are characterized by certain basic
requirements. It turns out that a large and rich class of such measures satisfying these
basic requirements may be constructed following the structure of the estimating functions
in density-based minimum distance estimation. In this paper we demonstrate the
construction of several such disparity measures based on different minimum distance
procedures. The minimum disparity estimators considered here have show a great deal of
variation in their behavior and we expect that the corresponding class of diversity
measures will continue to show a responses leading to different interpretations.

Given the usefulness of measures of diversity, we expect that the link between the actual
diversities and the class of minimum distance processes will act as a major facilitator in
constructing useful diversity measures with the required properties. Clearly, more
detailed studies and investigations will be required to select and choose the more suitable
measures from within this class. But the availability of the class itself leads to useful
gains, and represents the basis of important future selections.
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