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Abstract
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1. Introduction

1.1 Dose-Response Models and Risk Estimates

Quantitative risk assessment for toxic and carcinogenic chemicals relies largely upon
fitting dose-response models to data from animal bioassays. A variety of models are in
use (Krewski and van Ryzin, 1980, Filipsson et al. 2003, U.S. EPA 2006) to represent
both quantal (dichotomous) and continuous responses. Toxicological experience and
principles indicate that the response will generally be bounded and non-decreasing (Eaton
and Klaassen 2001).

Quantal response models represent the probability P(d,f) of a quantal response, like

presence or absence of a particular type of cancer, in relation to dose (d). The
experimental data consist of counts of animals exposed to a chemical, the numbers
exhibiting the response, and the dose levels (e.g., n,x,,d,,i =0,1,...,m ), from a bioassay
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conducted with mice or rats, typically in 3--5 dose groups including the control, each
having 10--50 animals.

The maximum likelihood estimation for the parameters € employs the binomial
likelithood

L(e|x)=f[(”"]1°<di,9)xf (1-P@,0)™) (1)

‘xi

The benchmark dose method (Crump 1984, Filipsson et al. 2003, Parham and Portier
2005) consists of estimating a lower confidence limit for the dose associated with a
specified increase y in adverse response (i.e., increased risk) above the background level.

In practice, the specified increase is typically 1% to 10% for cancer quantal response
models (Filipsson et al. 2003, Parham and Portier 2005).

We will use "absolute risk" to refer to the probability P(d,f) modeled by a dose
response model for a quantal response. The increase in risk above background for a
quantal response is quantified as "extra risk" or "additional risk" (Filipsson et al. 2003).
These quantities are defined below.

Absolute Risk: AR = P(d,0) (2)
Additional Risk: ADR = P(d,8)— P(0,0) 3)
_ P(d,0)-P(0,0)

Extra Risk : ER 4)

1-P(0,0)

The benchmark dose may be determined for any of these risk types. For example, the
benchmark dose for extra risk of y is the solution of

_ P(d*,0)-P(0,0)
1-P(0,6)

Benchmark Dose (BMD): d*:y (%)

1.2 Statistical Inference

Statistical inference for chemical risk assessment has mainly emphasized finding
confidence limits for the dose associated with a specified risk and for the risk associated
with a specified dose. In this context, the profile likelihood method as applied in Crump
and Howe (1985) and in U.S. EPA's Benchmark Dose Software (U.S. EPA 2006)
assumes that —2log(L(€|x)) is distributed as y;. This is correct, asymptotically, under

certain regularity conditions (Rao 1973, Cox and Hinkley 1974), one of which is that the
true parameters are interior to the parameter space (for more details, see: Chernoff
(1954), Feder (1968) and Self and Liang (1987); see also Molenberghs and Verbeke
(2007) for a nice summary with applications). However, when one or more parameters
(those of interest, or nuisance parameters, or both) lie on the boundary of the parameter
space, the distribution of the likelihood ratio test statistic may not be > and may be

difficult to derive (Self and Liang 1987). Moreover, some older software found upper
confidence limits by the profile likelihood method using linear approximations to the risk
and benchmark dose that are functions of a single parameter (aka 'q*' method). This
method may be questionable if some parameters are on a boundary. Also, confidence

442 Pak.j.stat.oper.res. Vol.VIIl No.3 2012 pp441-478



Some New Aspects of Statistical Inference for Multistage Dose-Response Models with Applications

limits of model parameters are often approximated by Wald intervals, which are known
to be inaccurate (Bailer and Smith 1994, Moerbeek ef al. 2004, Nitcheva et al. 2007).
These problems were acknowledged long ago (Crump et al. 1984), but have not been
resolved clearly for the practitioners of dose-response modeling.

Research problems

Our primary goal in this paper is to develop appropriate asymptotic statistical methods in
a very general multi-parameter framework when some parameters may lie on their
boundaries. Our focus is mainly on the asymptotic properties of the MLEs and the LRTs.
The problem of their actual computation, which involves use of sophisticated computer
software and codes, is not discussed here. As an important application of the asymptotic
theory, we discuss in detail inference about the parameters ¢, in the multistage model (6)
and about the quantities of interest, namely, AR, ADR, ER and BMD, when some of the
basic parameters may lie on their boundaries. This is a significant point that has not been
properly addressed in the relevant literature dealing with such models.

In the sequel, we discuss one commonly used model for quantal responses, called the
multistage model:

P(d,0)=1- exp(—iﬁjdj) (6)

In applications, the coefficients @'s are often constrained to be non-negative so that the
dose-response function will be non-decreasing.

While AR, ADR and ER are direct and simple functions of &, the benchmark dose d *
(5) can obviously be a complicated function of &, especially when k& is large. To
circumvent this potential difficulty, we proceed in an alternative fashion. Note that
d*(0)=y (0) satisfies:

In(1/(1=y)) = 0,d *+6,d ** +---+ 0,d * (7)

We propose to test H, 1y, (0) =0 versus H,;:y (0)# 6 fora given 6>0.1If H; is
accepted, we include 6 in the confidence interval for y (8). Otherwise, we exclude it.

We carry out this procedure for all possible values of ¢, thus hopefully generating an
interval of accepted o6 -values, all belonging to the acceptance set, and thereby leading to
the lower and upper bounds of &, which is y (). Since () is linear in &, a test for

H, versus H, is easily carried out! In fact, since in(1/(1-y))=65+60,5" +---+0,6" is
equivalent to In(1/(1-y))/6=6,+60,6+---+0,5"", we can work with a re-
parametrization of the parameters (6,,6,,"--,6,) > (6,*=6,+60,6 +---+6,6"7,0,,---,6,)
with 6 * staying away from the boundary even if some of the 8's may lie on their
boundaries.

The organization of the paper is as follows. We develop at length in Section 2, the core

section of the paper, the necessary statistical inference in a very general multi-parameter
framework with some parameters possibly lying on their boundaries, borrowing ideas
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from a host of key papers on this topic, notably from Self and Liang (1987). We develop
both profile likelihood based inference (LRT) as well as Wald-type inference for a
variety of situations with respect to boundary parameters. These results can be applied to
a wide variety of models used in dose-response analysis. Applications to the specific
multistage models (6) are discussed in Section 3. Simulations for linear, quadratic and
cubic multistage models are reported in Section 4. These simulations clearly reveal that
the use of Self & Liang's procedure over the Wald procedure considerably improves the
expected lengths of the confidence intervals for all the relevant parameters. Some
concluding remarks and directions for future research are mentioned in Section 5. An
Appendix at the end contains a proof of a basic result of the paper.

2. New results on boundary value problems

Let us recall the general discussion mentioned in the previous section about the
asymptotic properties of the MLEs in multi-parameter problems and the asymptotic
distribution of the likelihood ratio test of a function of such parameters. Let X denote a
random data set which is typically a collection of N independent and identically or
independent but non-identically distributed random variables and let 6=(6,, --,0,)

denote a p -dimensional real parameter vector which governs the distribution of X
through a joint density f(X |#) or equivalently the likelihood function L(€]X). Let us

assume that 6 € Qe R’ and we write Q=Q, x---Q  where it is assumed that 6, € Q,,
i=1,-,p. We also assume that the p parameters &,---,6, are functionally

independent. Keeping the specific dose-response multistage Weibull models in mind, we
further assume that Q. =[6,,,0), a half-closed interval or 3, =(8,,,0) , an open interval,

where @, is specified. In the former case, 6, is referred to as a boundary point of 6, and
in the latter case, all points of & are interior points. In most dose-response models,
0,=0 or 1 for all i. The statistical problem in such a set-up is to estimate the

parameters @ and test suitable hypotheses about € or some functions thereof based on
the data set X . Since often the joint density or the likelithood function can be quite
complicated as in the case of dose-response multistage Weibull models, both estimation
of € and tests about @ are carried out using suitable asymptotic theory under the
assumption of a large sample size N .

It is well known that, under some very general conditions, the asymptotic theory of
estimation based on the maximum likelihood estimates (MLEs) and the asymptotic
theory of tests based on the likelihood ratio tests (LRTs) are valid and provide useful
tools for meaningful statistical inference. Typically, we conclude the asymptotic

normality of the MLE éN = (él N,---,épN) of @ and the asymptotic chi-square distribution

of —2/n(LRT) with a suitable df under a null hypothesis. However, it should be noted

that the validity of such results is based on a crucial assumption that the true state of
nature of the unknown parameter vector € is an interior point of Q. In many
applications, including multistage dose-response Weibull models, it can often hold that
some parameter spaces are half-closed and, in fact, some parameters may actually lie on
their respective boundaries, thus making the standard asymptotic results on MLEs and
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LRTs unjustified and incorrect. Fortunately, this point has indeed been seriously
addressed in the literature and a series of papers concerning this vital issue have
appeared, most notably by Self and Liang (1987).

Based on Chernoff (1954), Feder (1968), Moran (1971), Chant (1974), Fahrmeir and
Kaufman (1985), Self and Liang (1987), Geyer (1994), and Vu and Zhou (1997), the
following two general results can be stated under fairly standard regularity conditions on
the joint density of X and nature of #. The conditions are typical Cramer-type and are
satisfied in our applications to multistage dose-response models.

Let éN denote the MLE of 6 when the likelihood function L(€|X) is maximized wrt

0 € Q. Recalling the very general nature of Q, the maximization of the likelihood with
respect to (wrt) ¢ might mean unrestricted maximization in an open set (actually
product of open intervals) or a restricted maximization in a product of open and half-
closed intervals, depending on which parameters can assume their boundary values. We
will call these as natural restrictions on @ and reserve the use of the term restricted
maximization to the situation when the components of & are restricted by a null

hypothesis of the form H,:0e€Q,. Assume & = («91*,---,6’;) to be the true value of the
vector parameter & and let 7(@") be the Fisher information matrix evaluated at =6",
which is assumed to be positive definite with £(8)=[/(6")]"". For ready reference, we
also mention that the (i, j)th element of the information matrix /(£") is computed as
62
26006,
case of boundary points, the derivatives are computed from appropriate directions.

E[ InL(6| X)] where the expectation is evaluated at & . It is understood that in

Our first result is concerned with the asymptotic distribution of the MLE éN of @ under

the true value @ where & is either an interior point in € or a combination of both
interior and boundary points of Q.

Proposition 2.1. The asymptotic distribution (as N —> o) of the p-vector
\/ﬁ(éw —491*,---,91),\, —H;) is the same as the (exact) distribution of the MLE é(Z) of 6

based on a normal p -vector Z with mean 6 and dispersion matrix (6" under 6 =0 .

Here the MLE (Z) of @ based on Z is computed under the assumption that the mean

vector @ of Z lies either in an open set in R” including the point 0, corresponding to
the case when (01*,---,0;) is an interior point in Q with reference to the distribution of

X , or in a product of open and half-closed intervals of the type (—o,),[0,0), whose
nature depends on which true parameters & 's are the boundary points 8,'s of @ with
reference to the distribution of X . Thus, if 6 =6, for some i in the distribution of X,
we take @, €[0,) in the distribution of Z while maximizing its pdf wrt 6,. Otherwise,

we take —o0 <@ <.
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When in fact 6 >6,,, the maximization of the normal pdf of Z is carried out wrt 6,
taking @, > 0. Under these conditions, it is no longer true that Z is the MLE of & based

on Z, and hence the asymptotic normality of éN does not hold! Moran (1971), Chant

(1974) and, most importantly, Self and Liang (1987) have clearly spelled out the MLEs
of @ based on Z under various scenarios of boundary points. Once the MLEs of & based
on Z are identified and their joint distribution under normality of Z is derived, this

would provide the asymptotic joint distribution of VN (él N 91*,---,épN - 6’;) . Because of
the nature of (2 assumed above, it will hold that é’w >0,, for all 7. Thus, in the exact

and asymptotic distributions of (él.N —), it will hold that this difference can assume
both positive and negative values when & is an interior point of Q, =(6,,%) , and is

nonnegative when & = 6,, the boundary point of Q. =[6,,,).

One major goal of this paper is to further develop this part when we have one, two or
three boundary points, clearly explaining the joint distribution of the resultant MLEs of &
based on Z which then readily yields the asymptotic joint distribution of the MLEs of &
under X . This knowledge is useful when one is interested in developing Wald-type

inference about a smooth function of & based on the MLEs éN of 6.

To be specific, we establish the following results in Section 2 concerning the asymptotic
distribution of the MLE éN of 6, which is computed by maximizing the likelihood
function L(€|X) wrt 0 Q.

A

e The asymptotic joint distribution of VN(8, 8,6,y ~6;,-+,0,,—6.) with one
boundary point 91* =0, Q, =[6,,0), H,* >G4, Q,=(0,,0), i22.

e The asymptotic joint distribution of \/N(QN ~6,,,0,, —0,,,0,, —0;,---,épN —09;)
with two boundary points & =86, Q.=[6,,©), i=1,2, 9; >0, Q,=(0,,9),
j=3.

e The asymptotic joint distribution of
\/ﬁ(é]zv _6’103@21\/ _ezo’éw _930’é4N _‘9: ""ép/v _‘9;)

6/ =6y, Q,=[60,,0), 11,23, 0,>0,

Jjo 2

with three boundary points
Q,=(60,,2) , j>4.

In each case, we also describe the asymptotic distribution of Zic[éfN which can be used

to draw suitable inference about Zl_cﬂl. . In particular, these results can be directly used to

derive Wald-type tests of hypotheses concerning linear functions of &, without an appeal
to the alternative profile likelihood method. We will illustrate this point later by some
applications.
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We now describe another important aspect of the papers by Moran (1971), Chant (1974),
and Self and Liang (1987) in the context of the derivation and properties of the likelihood
ratio tests for @ based on X when some parameter points may lie on the boundary. To
make matters simple and easy to understand, let us consider the following two testing

problems about just one component, say 6,, of 6.

Problem 2.1. Test the null hypothesis H,:0,=06,,+06 versus H,:0,#6,,+06 where

0 >0. Here naturally 6, is an interior point of €.

Problem 2.2. Test the null hypothesis H,:6, = 0,, versus H,:0,>0,, where 0, is the
boundary point of Q, =[6,,,°).

It is well known that when both Q, the general parameter space, and Q,, the parameter

space under a null hypothesis, are smooth in the sense of being open sets in R” and in a
lower dimensional subspace, respectively, the asymptotic distribution of —2/n(LRT)

under the null hypothesis is central chi-square with an appropriate df . However, this
result is far from being true when some parameters may lie on the boundary either under
the null hypothesis or even otherwise. It is precisely in the context that Q@ and Q, may

not be open sets in R” that we have the following general result primarily due to Self and
Liang (1987). We remark that Self and Liang's results on the asymptotic distribution of
the LRT are quite general, but here we state the results keeping in mind the two null
hypotheses given above under Prob. 2.1 and Prob. 2.2.

Proposition 2.2.

(a) Consider the problem of testing the null hypothesis H,:6,=6,,+J versus
H, :6 #6,+0, for some 6 >0 when Q, =(6,,,%), and suppose we compute the LRT
by maximizing L(@]|X) wrt 6eQ and also under H,. Write
Q,=1{0:6,=0,,+65,0,,--,0, unspecified} . Then the null distribution of the profile log
likelihood based LRT using X , namely, the null distribution of
_y{maxge%ue | X)}
max, o L(0] X)

is asymptotically equivalent to the distribution of the profile log likelihood based LRT
using Z under N[@,X], namely, the distribution of

mingeg* A Z)—mingEQ*Q(é’ | Z) 9)

when @=0. Here Q(0|2)=(Z-6)[2]'(Z-6) is the exponent of the normal
likelihood of Z with mean @ and dispersion ¥, minimum under € e Q, is computed

(8)

when 6, =¢ and 0,,--,0, are unspecified in (—w0, ), and minimum under 0eQ is

computed when all the parameters € are unspecified in (—o0,00). In other words, quite
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generally, Q" is a translation of Q by Q, so that Q  includes the point 0 in the
parameter space of Z .

(b) Consider the problem of testing the null hypothesis H,:6, =6,, versus H,:6,>6,,,
and suppose we compute the LRT by maximizing L(€|X) wrt 6 €Q and also under
H,. Write Q,=1{0:6,,,0,,---,0, unspecified} . Then the null distribution of the profile
log likelihood based LRT using X , namely, the null distribution of
_Zlnl:maxeegol‘(g | X)]
max,.,L(0] X)

is asymptotically equivalent to the distribution of the profile log likelihood based LRT
using Z under N[@,X], namely, the distribution of

mingeg* 00| Z)—mineeg*Q(H | Z) (11)

when #=0. Here, as before, Q(0|Z)=(Z-0)[Z]'(Z-6) is the exponent of the
normal likelihood of Z with mean @ and dispersion ¥, minimum under e Q) is

(10)

computed when 6 =0 and 6,,---,6, are unspecified in (-o0,%0), and minimum under
0eQ is computed when 6§ >0 and all the other parameters @ are unspecified in

(—0,0). In other words, as before, Q is a translation of Q by Q, so that Q" includes
the point 0 in the parameter space of Z .

Remark 2.1. It should be noted that the null hypotheses mentioned above are concerned
only with 6, and do not mention anything about the nuisance parameters 6,,---,6, . It is
quite possible that some of the nuisance parameters may lie in a parameter space
containing the boundary points. In other words, it is possible that 8. € Q. =[6,,,) for
i >1. When this happens, it is implied that the minimization wrt € in the quadratic form
Q(0]Z) is done under the restriction that 8, >0, implying that 0 is a boundary point wrt

0, rather than being an interior point.

Moran (1971), Chant (1974) and, most importantly, Self and Liang (1987) discussed at
length computation of the LRT based on Z and its null distribution under various forms
of the null hypothesis well beyond the two cases mentioned above. In general, as
remarked earlier, it follows that the null distribution of the LRT based on Z is central

chi-square when Q, consists of interior points of the mean vector @ in the normal
distribution of Z . However, this distribution is quite often a mixture of chi-squares when
Q, contains some boundary points of @ as in Prob. 2.2 above.

A second major objective of this paper is to discuss in detail the null distribution of the
LRT based on Z for testing the two hypotheses about &, mentioned above under Prob.

2.1 and Prob. 2.2 when it is likely that there are none or some parameters lying on the
boundaries, thus supplementing the earlier works of Moran (1971), Chant (1974) and Self
and Liang (1987).
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Referring to Prop. 2.1, we should note that once the MLEs of @ based on Z under Q°
and their joint distribution are derived, we can use Prop. 2.1 to approximate the joint as
well as the marginal distributions of the actual MLEs of & based on X . These
distributions can then be effectively used to draw suitable Wald-type inference about a
smooth function of @ such as tests for a single component or a linear function of the
components of @, thus providing an alternative to the profile likelihood approach.

Likewise, referring to Prop. 2.2, once the LRT of H, versus H, based on Z is derived

and its null distribution is obtained, we can use it to get the approximate cut-off points of
the LRT based on X . We remark that this reduction of the original inference problem
based on X with an arbitrary distribution to a canonical form using Z which has a
normal distribution, though only asymptotically valid, is a key feature of the asymptotic
theory and the spirit of all the earlier works of these authors.

We are now in a position to describe the main results of this section. Based on the
distributional assumption Z ~ N [6,%], where € is unknown and X is positive definite
known, we develop some new results for exact inference on 6, in presence of a few

nuisance parameters, allowing the possibility that some of the nuisance parameters may
lie on the boundaries.

Towards deriving the LRT of H:6, =0 versus H,:6, #6 for some 6 >0 based on Z,
which corresponds to testing H,:6, =6,,+06 versus H,:0,#6,,+5 for some 6>0 in

the original distribution of X, we note that the likelihood function of Z, namely,
L(€|Z) can be written as

L(0]Z) = K exp[~(Z - 0)S™(Z - 0)]. (12)

Since we assume that the p parameters are functionally independent, for testing
H,:0,=06 versus H,:0, # 06 based on Z, it is well known that if the parameter vector

@ is an interior point in R”, which means the true parameter values of the parameter 6,
of interest as well as the nuisance parameters 6,,---,6, are interior points, then the usual

normal test based on Z, is the LRT and it provides a a valid test. Recall that the

dispersion matrix of Z is assumed known which results in a normal test rather than a 7-
test.

As mentioned earlier, Self and Liang (1987), based on previous works of Chernoff
(1954), Chant (1974), Moran (1971) and Shapiro (1985), developed appropriate solutions
to this kind of problem for a wide variety of scenarios involving several parameters under

H,, and allowing some of them and also some nuisance parameters to be on the

boundary. In the huge literature on mathematical statistics, Self and Liang (1987) paper is
indeed a landmark paper with a novel contribution to this important problem particularly
because it is quite common that some parameters of interest as well as some nuisance
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parameters in a typical multi-normal set-up can indeed lie on the boundary and also
because of the fact that such situations often arise in applications.

Following essentially Self and Liang's ideas, we derive below the likelihood ratio tests
(LRTs) of H, versus H, based on Z, allowing one, two and three nuisance parameters

to be on the boundary. It turns out that, as one can expect, the form of the LRT becomes
quite complex with the increase in the number of nuisance parameters which lie on the
boundary. In the sequel, we also derive the maximum likelihood estimates of all
parameters & based on Z under the condition that some of the parameters may lie on the
boundary, and derive their joint and marginal distributions. As mentioned before, these
results would be useful when one is interested in deriving Wald-type asymptotic
inference based on X about a smooth function of @, and in particular, about a linear
function of these parameters which is the case for dose-response multistage Weibull
models mentioned in Section 1.

Some standard results from classical multivariate analysis which are needed in the sequel
are listed below. Write Z =(Z,,,Z,)), 0 =(,,,6,) where Z, :qx1, Z, :(p—q)x1,

0, :q*1, 0, :(P—q)x1, and g, =var(Z,), Loy =var(Z,), and

Ly =con(Zy,Z,)). Then:
distribution of a quadratic form

[Z-01(2)'[Z-01~x, (13)
marginal distribution

Z, ~ N [6),%,] (14)
conditional distribution of Z, , given Z, =z,

Zl | Zy Nq [6?1 +Z(12) (2(22))_1(22 - 92),2(11) _2(12) (2(22))_12(21)] (15)

2.1 One parameter on the boundary

In this subsection we assume that there is one parameter, say 6., which may lie on the
boundary in the sense that 6, € ), =[6,,,0), and carry out appropriate inference about 6.

Before we develop inferential tools, let us make a remark about testing for the existence
of a boundary parameter.

Consider a general multi-parameter model based on X involving p parameters
0=(6,-.,0,)eQ where Q=Q x---Q  with Q =[6,,0) or (6,,0) for all i.
Suppose it is suspected that one parameter lies on the boundary! How do we determine
which one? Here is an ad hoc approach. Assuming that 6 =6, is the point on the
boundary, we can maximize the likelihood L(6,--,0,,,0,,--,0,|6,=06,,,X) wrt
0,€Q,=(0,,0) forall j=i and compute the maximum value of the likelihood, say
L,. Comparing L,,---,L, and selecting the index k such that L, =max(L,,---,L,), we
can conclude that 6, lies on the boundary. Alternatively, we can test the hypothesis

H, :0, =0, versus H, :0 >0, by computing the LRT statistic, say A , and choose the

1 1
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index k for which A, is the smallest with the conclusion that 6, is likely to lie on the

boundary. Details about such a test are given below.
Let us consider the two testing problems about 6, mentioned earlier, under the

assumption that there is one boundary parameter. We will derive exact tests based on Z
which would yield asymptotic tests based on X . Consider testing H,:6, =¢ versus

H, :0,#6 based on Z ~ N[#,X]. We distinguish between two cases depending on
whether the parameter on the boundary is itself the parameter of interest (6,) or a
nuisance parameter, say 6,. In the former case, we take 0 =0 as the boundary point of
Q; =[0,0) and write H,:6, >0 while the other parameters are free. In the latter case,
we take & >0 as an interior point of Q; = (0,), and assume that one of the remaining
unspecified nuisance parameters, say 6,, may lie on the boundary in the sense that
0, €[0,) . Note that, by definition, a nuisance parameter can never be known so that we
cannot conclude that 8, =0!

Case 2.1.1 6, is a boundary point. This has been discussed at length in Self and
LiangError! Reference source not found. who derived the LRT of this problem. It turns
out that the LRT is based on Z}1[Z, > 0]/ o,, and its null distribution is a 50:50 mixture

of x: and y! distributions. Details are omitted.

Case 2.1.2 6, is an interior point and 6, is a boundary point. To derive the LRT for
H,:6=06+6, versus H,:0,#5+6,, for some 6>0 on the basis of X, note that,
asymptotically, this is equivalent to testing H,:6, =0 versus H,:0,#95 for 6 >0 based

on Z. We proceed to apply Prop. 2.2. It is clear from the expression of the likelihood
function L(6|Z) given in (12) that what matters is the quadratic form Q(0|Z) given by

00|2)=(Z-0)x(Z-0). (16)

Writing 0(0|2)=0(6,,0,|2,,2,)+0(Z;,---,Z | Z,,Z,;0) where the first part is the
marginal bivariate quadratic of (Z,,Z,) and the second part is the (p—2)-dimensional
conditional quadratic of (Z,,---,Z,), given (Z,,Z,), it follows from Self and Liang
(1987) that due to the interior nature of the parameters 6;,---,6,, the only part we need to

study is the first part, and maximization of the likelihood corresponds to finding the two
minimums of the first part, one under the union of null and alternative hypotheses, and
the other under the null hypothesis.

To derive the maximum likelihood estimates (MLEs) of the parameters ¢ under the
union of null and alternative parameter spaces, we can express 0(6,,6, | Z,,Z,) as

006,,0,12,,2,) = O0(Z,16,)+Q(2,12,;6,,6,) (17)
where O(Z, | 6,) is the marginal pdf of Z, and Q(Z,|Z,;6,,0,) is the conditional pdf
of Z,, given Z,. It is clear from the discussion in Self and Liang (1987) that due to the
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interior nature of 4, the minimum value of QO(Z, |Z,;6,,6,) wrt 6, is 0, irrespective of
the value of 6,. Now a minimization of Q(Z,|6,) wrt 6, subject to 6, >0 readily

yields:
minezon(Zz|92) = 0 i Z,>0

= Z;lo, if Z,<0.

(18)

To minimize Q(6,,6,|Z,,Z,) wrt 6, under the null hypothesis when 6, =6, we write
000,,0,12,,2,) = 02,10, =0)+ (2, 2,6, = 9,0,) (19)

where Q(Z, |6, =0) is the pdf of Z, under the null hypothesis and O(Z, | Z,;6, = 9,6,)
is the pdf of Z,, given Z, when 6, =0 . Since the first term is independent of 8,, it is
clear that the minimum value of Q(6,,6,|Z,,Z,) wrt 6, arises essentially from
minimizing Q(Z, | Z,;6, = 5,6,) wrt 6,. Since

[Z, _92 _p%(zl _5)]2
0(Z,12,;6,=0,6,) = — (20)
on(1=p7)
minimization of O(Z, | Z,;6, = 6,6,) wrt 6, under the condition &, >0 readily gives
minazzo[Q(Zz 12;6,=6,6,)] = 0 if Z,,>0
: @)

= — 2 i 7 <0
O-zz(l_pz) 4 *!

where Z,, =7, —,oﬁ(Z1 —0). Hence we get
o

1

. (Z,-6)" .
min, _s5.0,50Q0:0,12.2,) = ———., if Z,,>0

Oy 22)
Jf Z,,<0.

(Z1 _5)2 + 222.1
Oy J22(1_,02)

Combining (18) and (22), and taking the difference, we get —2In(LRT) =W (say) as
w = (Z,-6)/o,,if Z,>0,Z,, 20
(Z,-6) 10,,~Z; 0, if Z,<0,Z,,>0
zZ lo,(1-p%), if Z,<0,Z,,<0 (23)
2=’ Z,
oy o, (1-p%)

Jif Z,>0,Z,,<0.

It is easy to verify that when p =0, W reduces to (Z, —J5)’ / o,, which has a chi-square

distribution with 1 d.f. under H, a familiar result.
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To derive the null distribution of W for any given p, we assume without loss of
generality that o, =0, =1 and 6 =0. It is proved in the Appendix that the cdf of W is
given by the following.

Theorem 2.1 The cdf G(w) of W, for 0 <w <00, is given by the sum of four parts:

(i) Firstpart = [’ [j V?%N(O l)dx}N(O v (24)
(i) Second part = j U " N(O, l)dx}N(O Ddv (25)

vp+ w+v?

(iii) Third part = j ) WD FN(O l)dx}N(O Ddv (26)
(iv) Fourth part‘{[ el=r’) SN, 1)d”j " (p)N(O,l)dx} 7

The above distribution can be used to get a cut-off point of the statistic —2/n(LRT) which

can then be used to carry out the LRT based on X . Quite surprisingly, our simulations
indicate that the above distribution does not depend on p !

We now discuss the application of Wald-type test for testing H, versus H,. Towards this
end, we note from Self and Liang (1987) that the MLEs of the parameters 6, when 6,
Gipﬂ 22 .

J2
Theorem 2.2 The MLE of 6,, i=1,3,---, p when 6, is on the boundary is given by

may be on the boundary are given by the following. Define Z,, = Z, -

0, =7I11Z,>0]+Z,1[Z,<0]. (28)

The marginal distribution of the MLE of 6, which depends on the correlation p,,
between Z, and Z,, is given below. This would be useful if one is interested in drawing
suitable inference about just one parameter 6, .

Theorem 2.3 The pdf of the MLE éiZUi of 6 is given by

1

2. u 2xpz
lpz } - (u,-2 | (29)
20,(1-p%
e
(1-p3) 24/27z0 1- ,02)

Proof. The pdf of U, is derived from the cdf of U, which is readily obtained as follows.

1

Since Z, and Z,, are independent and P(Z, <0)=0.5, the second part is obvious. For
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the first part, we first write down the bivariate normal pdf of Z, and Z,, and then
integrate out Z, over (0,0). The pdf of U, for the first part is then directly obtained
from the cdf of the first part upon differentiation wrt u, . This completes the proof.

Remark 2.2 Specializing to the case of testing H:6, =6 +6,, versus H,:6,>0+06,
based on X , we can easily derive a Wald-type test based on the MLE of 6, , namely, él v
which is the standard MLE of & based on X under #eQ with Q, =[8,,,0) and
Q. =(6,,,o) for i # 2. Because of the nature of /, and /,, it makes sense to reject
for large values of 671 v 1.e., when 671 v > ¢y for some ¢, . To determine the value of ¢,
for a given level of significance «, it follows that, asymptotically,
a="P[6,,>c,|H,)=PINN(@, -5-6,)>IN(c, ~5-0,)|~PIZI(Z, > 0)+Z,,I(Z, <0)> N (cy - 5)] -
We can now use the result of Theorem 2.3 to claim: /N (cy —6)=z,, where z,  is the
upper o cut-off point of the distribution of Z I[Z, > 0]+ Z,,I[Z, <0] given in Theorem
ap! JN . This is of course a very

easy test to carry out without the need to compute a profile likelihood which is the basis
of LRT. However, we should also note that we have taken a one-sided alternative as H, .

2.3 for i =1. Hence we reject H, when 6A?1N >0+0,+z

For a both-sided alternative, we may choose to reject H, for large values of

| él v —0 —06,, | and determine the cut-off point appropriately. Note that this would provide
an alternative approach to the profile likelihood method (LRT).

Remark 2.3 If one is interested in making inference about a linear combination of 8,'s
which  excludes the boundary point 6,, we note that the distribution of
U= Z#ZCI.UZ. = [Z#ZCI.ZI. 1[Z, > 0] +[Z:l_$2cl.Zl.2]l[Z2 <0] is again readily obtained as the
sum of two parts of which the second part (when Z, <0) is normal with mean 0 and
variance obtained from the variances and covariances of the residuals Z,'s, and the other

part is a convolution of two normals. The latter term is obtained by writing down the
bivariate normal pdf of (Zi c¢Z) and Z,, and then integrating out Z, over (0,o).

#2 L
Thus,  defining ¢ = (¢,0,¢5,...¢,), ol*=c*Zc¥, p = Z#zcipﬂo-i and
A2 = ZMC,.ZO'ﬂ(l - p5)+ Z#jﬁcicjaiaj (P; = Pnp;y), the pdf of U is given by
fw)=f,(u)+ f,(u) where

_u?
2
e 20

fiw) = W

2
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2 *
ERLA SLYE
o 2*O'
2(1-p7)

fow) = _[:e dx [[2n6"\1- p*'] (30)

Let us recall that the distribution of U given here is precisely the asymptotic distribution
of VN [ZiﬁciéN - z ¢,0.] and hence can be readily used for drawing valid asymptotic

i#2 11

inference about Ziﬁcﬁl_. Note that this so-called Wald-type approach avoids computing
profile likelihoods for testing hypotheses about [Zi cO].

#2 11

Remark 2.4 If, on the other hand, we are interested in making inference about a linear
function of the 6,'s which also includes &, , naturally we need to derive the distribution of

V=Y cb+cb,. Since 6,=2,1[Z,>0], it follows from (28) that the distribution of
V' will again consist of two parts: one part, corresponding to Z, <0, is just normal and is
independent of Z,. This is in fact the distribution of Zi ¢, Z.,. The other part, for

2 17702°

Z,>0, is obtained by first deriving the conditional distribution of Z,- ¢,Z, which is

#2101

normal and then convoluting it with ¢,Z,. This argument leads to the pdf of V' as
f) = f,(v)+ f,;(v) where f,(v) is the same as f,(u) ,and f,(v) is given by

2

p
(V=X) Zcipizai} )
i=1 X
( —)
. e 2A° 2
Lim=] - dx. (31)

We recall that the distribution of V' given here is precisely the asymptotic distribution of
JN [Zilcl@,\, —z’ilclﬁi] and hence can be readily used for drawing valid asymptotic

inference about Zilcﬂi. Again, this approach avoids the computation of a profile
likelihood.

2.2 Two parameters on the boundaries

We now discuss the case of two boundary parameter points. Kopylev and Sinha (2011)
discussed the case when the parameter of interest and a nuisance parameter lie on the
boundary. Here we consider the case when two nuisance paramaters lie on the boundary
and the parameter of interest is an interior point.

Assume without any loss of generality that @, and 6, lie on the boundary and our

primary interest lies in the parameter 6§, which is an interior point. In the sequel, we
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consider both LRT and Wald-type tests for H,:6, =6,,+06 versus H,:0,#6,,+06 for
some ¢ >0 based on X .

As before, write O(Z|0)=0(2,,2,,2,16,,0,,60,) +0(Z,,+,Z,|Z,,Z,,Z,;0) and recall
that in the @-space for Z, 6, €[0,0), 6, €[0,%0) and 6 € (—0,0) for i=2,3. Hence,

for LRT as well as for Wald, we need to concentrate only on the first part. For the
unrestricted MLEs of &, and 6,, we get from Self and Liang (1987):

6,,0,) = (Z,,Z)).if Z,>0,Z,>0
= (£,5,0),if Z,;<0,Z,<0
= (0,2,,),if Z,<0,Z,,>0
= (0,0),if Z,;<0,Z;,<0.

(32)

Since the minimum of O(Z, |Z,,Z;;6,,0,,0,) wrt 6, for any given (6,,6,) is 0 and also
the minimum of Q(Z,,---,Z,|2,,Z,,Z,;0) wrt 0,,---,6, for any given 6, 6, and 6, is
0, we get

min, .O(Z|0)=0(Z,,710,,0,) (33)

It is easy to show that the above minimum simplifies to
mineeg*Q(Z |0y = 0,if 7Z,>0,Z,20
- Z32/O-33’if 2,<0,Z,,>0
= Zjloy,if Z,<0,Z,,>0
= 004,,2,10,=6,=0),if Z,,<0,Z,,<0

(34)

Once 92 and 633 are derived, the MLEs of the rest of the (interior) parameters are readily
obtained from 0Z,2,,,Z, | Z,,Z,;0) as the residuals of Z,, given (Z,,Z,), and are
given by

éi:Zi_E[Zi|Z2_é2’Z3_é3]' (35)

To derive the LRT of H:6, =6 versus H,:6, # 6 based on Z , we need to derive the
restricted MLEs of 8's under the null hypothesis /. Without any loss of generality, let
us assume O =0, and write

0Z,,2,,2,16,=0,0,,0,)=0(Z,|10=0)+0(Z,,Z, | Z,;6, = 0,0,,0,) . Since the first part
is independent of 6, and €, , writing ¥, =Z,, and Y, = Z, |, we get from Self and Liang
(1987) the following restricted MLEs of 6, and 6, :
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(00,0, = (LY, if ¥,>0Y,20
= (%,,,0), if Y%,<0,Y,<0
= (0.Y,,), if Y%,<0Y,>0
= (0,0, if Y,,<0,Y,<0.

(36)

Since as before the contribution from the minimization of Q(Z,---,Z N Z,2,,75;0) with
respect to 6,,--+,6, is 0 even under H, due to the interior nature of the parameters
0,,---,0,, it follows that

min, O(Z|0:H,) = O(Z,16,=0)

+min€2’(9320 0z,,2,12,,6,=0,0,,0,)

= 0(Z,16,=0)+0(Z,,Z,| Z,,0, null, 0, null)

= le lo,,if Z,,>0,Z,,20 (37)
72
= Z32 /Oy +%aifz31 <0,Z,,,>0
oL U= 0
2 lez .
= Z,/op+——=—=—,if2,,<0,Z,,>0
o, (1-pp)
= le 1oy, +(Z,,/0,,Z5, /0-3)’471(22‘1 /05,25, /0-3)'v
ifZ,,<0,Z,,,<0

where the matrix A4:2x2 is defined as

AZ[ (1—,0122) ,023—,015,013]. (38)
P~ PaPrs 1-p5
Combining (34) and (37), the LRT of H,:6, =0 is obtained as /¥ given by
W=min .O(Z|0;H))—min_ .0O(Z|0). (39)
GGQO 0eQ)

To simulate the null distribution of W, we can take without any loss of generality
(Z,,Z,,Z,) ~ N[(0,0,0),="] where X" has its diagonal elements as 1. Upon generating

the jth iteration element as (Z,,,2,,,2Z5,), we compute

12
(Zz.sj,Z3‘2/.,Z3_1j,Zz'lj.,ij,ij) , leading to a value w; of W.
Obviously, the LRT of H, versus H, rejects H, when W computed as above is large.

Again, quite surprisingly, it turns out from our simulation studies that the null
distribution of W does not depend on the correlations between Z, and (Z,,Z,).

For Wald-type inference about 6,, we concentrate on the distribution of the MLE of 6,
given in (35) under the natural restriction of two boundary points. Such a distribution can

Pak.j.stat.oper.res. Vol.VIll No.3 2012 pp441-478 457



Bimal K. Sinha

be obtained from (34) by conditioning on four disjoint subsets in (z,,z,)-plane and
deriving each component distribution and mixing them with suitable proportions. Details
are omitted as this is similar to Theorem 2.1. This distribution can be used for testing
H,:0,=0+06, based on X . Thus, if the alternative is H, :6, > 0 +6,,, a reasonable test
is to reject H, for large values of the MLE 67”\, of 6, namely, when (6A?1N -0-6,)>c,.

To determine the value of ¢, for a given significance level « , we can use the asymptotic

null distribution of /N (él v —0—0,,) in presence of two boundary parameters, which is
precisely the distribution mentioned above.

On the other hand, for a both-sided alternative H,:6, # 0 +0,,, a reasonable test is to

reject H, for large values of |(§1 v—0—06,]|. To determine the cut-off point for a given
significance level «, we can again use the asymptotic null distribution of
JN (éw—é —0,) in presence of two boundary parameters, which is precisely the
distribution mentioned above. Details are omitted.

Remark 2.5 Suppose we are interested in making a Wald-type inference about a linear
function of @, say Zi c,6, which excludes the two boundary points &, and 6,.

#2311

Naturally we would then consider the distribution of Z#Z 30[62]\,. From (32), such a

distribution can be obtained by conditioning on values of (z,,z;) and then suitable
unconditioning.

Remark 2.6 Suppose now that we are interested in making a Wald-type inference about a

linear function of 4, say Z#Z 6,0, +¢,0, which contains one of the boundary points, say

6,. We would then consider the obvious statistic Z#z BC[Q.N +026A?2 v Its asymptotic

distribution can be derived from the results given above.

Remark 2.7 Let us also assume that we are interested in drawing suitable Wald-type
inference about a linear function of &, which includes both the boundary parameters.

Obviously, such a linear function can be written as 7 = Zicﬂl. and inference about 7 is
drawn by studying the asymptotic distribution of W = ziciéw. This distribution can also

be derived from the above results.

2.3 Three points on the boundaries

In this section we deal with the case when three parameters lie on their boundaries.
Kopylev and Sinha(2011) discussed the case when the parameter of interest and two
nuisance parameters lie on the boundary. We consider here the case when all three
nuisance parameters lie on the boundary and the parameter of interest is an interior point.
Without any loss of generality, suppose 6,, 6, and @, are the three boundary parameters

with Q =[6,,,0) for i=1,2,3 and Q,=(6,),%) for j>3, and 6, is the parameter of
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interest. The relevant testing problem about 6, is then to decide between
H,:0,=0,,+6 versus H :0,#86,,+J on the basis of X where 0 >0 is specified.
Equivalently (and asymptotically), this is the same as testing H,:6,=0J versus
H,:0,#06 basedon Z ~ N[#,%], when 6, 20, i=1,2,3 and —0 <6, <oo for j>3.

To derive the LRT for the above testing problem, we proceed in the usual fashion by
deriving both unrestricted and restricted (under H,) MLEs of 6 based on X and
computing the value of W =-2In(LRT(X)), which is indeed the profile likelihood

approach. To carry out the LRT test, naturally we need to determine the cut-off point of
the null distribution of W . Following Self and Liang (1987) and Prop. 2.2,
asymptotically, such a distribution is given by the distribution of the difference of two
quadratic forms based on Z . This is discussed in Kopylev and Sinha (2011) and we have
the following expressions for the unrestricted MLEs of the parameters € in the
distribution of Z .

6,.6,,0,) = (Z,2,,Z,).,if Z,20,Z,20,Z,>0

= 0,2,,,2,)).if Z,<0,Z,,>0,Z,,20

= (2,,,0,2,,),if 2,<0,Z,,>0,Z,,20

= (Z£,3,2,5,0),if 72,<0,Z,,20,Z,,20 (40)

= (0,0,7,,,).if Z,,<0,Z,,<0,Z,,>0

= (0,2,,,,0),if Z7,,<0,7Z,,<0,Z,,,>0

= (Z,4,0,0),if Z,;,<0,Z,,<0,Z,,,>0

= (0,0,0),if Z,,<0,Z,,,<0,7Z,,<0.
where Z.. are the wusual residual terms. Naturally we need to plug in these estimates of
the MLEs in O(Z,,Z7,,7Z,16,,0,,0,) and simplify to get an expression of the unrestricted
minimum, i.e., Q,(Z). Writing O(Z0)=0(Z2,,2,,7,16,,6,,0,)+ O(Z,,---,Z | 0), since

the unrestricted minimum of the second term is 0, it follows that
minHEQ*Q(Z |6) = min9120,9220,49320Q(Zl’22’23 16,,6,,6,)

A A A (41)
= 0(Z,,2,,Z,16,y,0,y,0,y).
Because of the nature of (éﬁN,éZN,@N) given above in (40), it is obvious that the

unrestricted minimum value of the relevant quadratic of the likelihood based on Z can be
divided into eight disjoint sets, each set having a distinct value of the quadratic. This is
explicitly presented in Kopylev and Sinha (2011).

On the other hand, to compute the restricted maximum likelihood under the null
hypothesis H,:0,=6,,+0 in the X space which is equivalent to 6, =06 in the Z

space, note that all we need to compute are the restricted MLEs of 6,, 6, and 6,, subject
to their being non-negative. This is derived as follows. We write
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0Z,2,,2,,Z, | 919929937‘94 =0)

= 0Z,19+0(<,,2,,2,\12,,6,,6,,0,,6, = 5) 42)
and note from (15) that the second quadratic can be expressed as
0(Z,,2,,2,12,,60,,6,,0,.0,=86)=(Z,,, 2,1, Z,)2 (Z, 4. 2,4, Z5,) (43)
where the residuals Z, ,,Z,,,Z,, and £ are defined as
Z,=2,-0-p,0(Z,-0)o,, i=12,3
$=3,-2,%, /0,
o, 0, O (44)

2,:3x3=|0, 0, Oy
O3 O3  Os;.

2, = (04,00, (734),

To determine the restricted MLEs of the parameters 6,,60,,6, which must be non-
negative, by minimizing 0(Z,,Z7,,Z,|Z,,6,,6,,6,,0,=0), under the null hypothesis:
6,=0, we can readily apply the above results. Based on the first step residuals
(Z2,,=72,,Z,,=Z,,Z,,=Z,) and their dispersion matrix X, we define the second step
residvals (Z,,,Z,,,Z,,75,7Z,Z+1>Z4 132, 2:Z+,,) in the usual fashion. Then, the restricted
MLEs are given by:

A

0> 0> O )’ = (Zl*azz’Z;),aif Z:ZO,Z;ZO,Z;ZO
= (O,Z;I,Z;I)',if ZI*<O,Z;1>O,Z* 20

312
= (Zl*zaoa Z:.z),a if Z; <0, Z1*.2 > 0723*2 >0
= (Z;,Z;,O)', if Zz* < 0921*,3 2 OaZ;.z 20

= (0, O’ZS*.12),3 lf Zl*.2 < 052;1 < 032;12 >0
= (O,Z;B,O)', if Z1*.3 < O=Z;.1 <0, Z;B >0

= (Z1.23’0’0)" if Z;s <0, Z3*.2 <0, Zl*.23 >0

= (0,0,0),if Z,,,<0,Z,,,<0,Z;,,<0.

2,13 — 3.

(45)

This then results in the restricted quadratic form
mineegz 0(Z|0€Q,)

= min, 02,7, 2,16,0,,0,0, = 5) (46)

= 0(Z,|10)+0(2,,2,,Z, |Z49é1 éZ;null’é3;null7e4 =9)

snull

Using (41) and (46), we obtain the difference A(Z) between the two quadratic forms,
whose distribution under Z ~ N[0,Z] is essentially the asymptotic null distribution of
—2In(LRT) based on X . Obviously, the distribution of A(Z) would depend only on the
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nature of correlations among the estimates of the four parameters - one parameter of
interest, namely, 6,, and the three boundary parameters, 6,,6,,6,. It may be remarked

that the null distribution of A(Z) may have to be obtained by simulation and it is obvious

that we can take the dispersion matrix of Z as the correlation matrix, without any loss of
generality. It would be interesting to check through simulations if this null distribution
really depends on the correlations. Let us recall that this was not the case in the previous
two instances.

A Wald-type test of H:6,=6,,+0 versus the one-sided alternative H, :6,> 6, +5

based on X can be easily derived using the unrestricted MLE é4 v of 6,. This readily
follows from the conditional distribution of Z,, given (Z,,Z,,Z,), and plugging in the

restricted MLEs of 6,,6,,0, derived above. Such a test would reject H,, for large values

of 94N, or VN (é4N—040—5) and the cut-off point of its null distribution is
asymptotically computed from the distribution of the MLE of 6, based on Z in

presence of three boundary parameters. Similarly, for testing /, versus the both-sided

alternative H,:6, #6,,+9J , one could reject H, for large values of JN | 94 v =0, 0|

and the cut-off point is determined analogously from its null distribution. Obviously, this
distribution, which depends on the correlation structure between Z, and (Z,,7,,Z,), can

be easily derived.

3. Applications of general theory to multistage Weibull models

In this section we consider some applications of the general theory developed in Section
2 in the context of multistage Weibull models and analyze some relevant data sets. In the
sequel, we consider three cases: /linear Weibull model, quadratic Weibull model and
cubic Weibull model.

Quite generally, assume that there are m+1 dose groups with doses d, =0 (control),

d,-,d, and n subjects in the ith dose group, yielding independent

X, ~B[n,,7,(01d,)], i=0,---,m where

{90+d1.6?1 +-- -+dik6?k}
7(0]d)=1-e¢ . (47)

Here 6=(6,,---,0,)#0 and 6, >0 for all i, which are considered as the natural model

restrictions! There are three kinds of inference problems of interest to us. First, inference
about the absolute risk (AR) 7(€|d*) at a given dose d *; secondly, inference about the
extra risk (ER) y(d*) at a specified dose d *, where y(d*) is defined by

{0d*+0,d%++0,d*]

y(@*) =[z(0|d*)~7(0]d)))/[1-7(0|d)]=1~e (48)

The third inference problem is about the benchmark dose (BMD) d* which yields a
specified relative risk y. From the expression for 7(6|d*), it is clear that the first two
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inference problems are essentially concerned with linear functions of &, while the third
problem is about drawing inference for d * which satisfies the polynomial equation:

In(1/(1=y)) = 0d*+0,d ** +---+0,d* . (49)

Obviously, d* is an implicit function of & whose solution is easy to obtain in linear,
quadratic and cubic cases. We mention in passing that sometimes we may be interested in
what is called an added risk at a given dose d , defined by ADR(d)= (0 |d)—=(0]d,).

Since the inference on ADR is very similar to that on AR, we do not pursue it here.

Case 3.0.1 Linear Weibull model. Taking k£ =1 in (47), we get
16+dg] . o
r.(0|d)=1-e , which readily gives

{6,+d*6)
AR(d*)=1-e¢ (50)
ER(d*)=1- o4 (51)
BMD = (1/6)In(1/ (1-y)). (52)

Appropriate statistical inference about the above quantities follows upon computing the
natural MLEs of the two parameters 6, and 6, based on the data (X, -+, X ), namely
éo v and él v » and applying their asymptotic distributional results derived in Section 2. It
is easy to derive the Fisher information matrix 7(6,,6,):2x2 under the assumption of
independent binomial distributions of the X,'s, and hence %(6,,6,)=1(6,,6,)"", where
1(6,,6,) is given by

$1n0) 5, 1-70)

i 7,(0) i=0 7(0)

1(6,,6,) = . (53)
$y 1210 §1p2 17,0
= m(0) = m(0)

When 6,>0, 6 >0, we clearly have a regular parametric scenario. By applying the
standard asymptotic theory, we then get the following result.

JIN (G, -6,,6,, —6) - N,[(0,0),2(6,,6,)] (54)
IN[(@yy +d*8,)~ (6, +d *6)]— NIO,(1,d*)X(6,,0,)(1,d*)']. (55)

We remark that for most inference purposes, 6, and 6, in %(6,,6,) are replaced by their

MLEs or their null hypotheses values, if any. Drawing inference about AR, ER and BMD
is fairly routine in this case.

When 6, =0, which may well happen in some situations, we have the case of one

parameter point being on the boundary, and hence the asymptotic distributional and
inferential results mentioned above are not true. Using Self and Liang (1987), we get

462 Pak.j.stat.oper.res. Vol.VIIl No.3 2012 pp441-478



Some New Aspects of Statistical Inference for Multistage Dose-Response Models with Applications
VN(HON’HIN_91)_)(90(20321)591(20921)) (56)

where Z=(Z,,Z,)~ N[0,2] and éO(ZO,Zl)ZO it Z2,<0, =2, if Z,>0, and
631(20,21) =Z,ifZ,<0,and =2, if Z,>0. Here Z,,=Z, - po,Z,/ o, is the standard
residual of Z, on Z,.

A remark about ¥ is in order here. Since ¥ is obviously a function of 6= 6,,6,), we

can use ﬁ(éN) . In case it so happens that X, =0 so that éo v = 0, computation of 3 may
pose some difficulty (in terms of singularities!), and then we can take an arbitrary small
value of éo v-

Returning to the inference problems, although we still have the same point estimates as

A {éozv'kd*éw} ~ _d*é
before, namely, AR(d*)=1-¢ , ER(d*)=1-e IV

BMD = (1/ él In(1/(1-y)), the asymptotic distributions of these estimates are not

and

normal any more, and in fact are obtained by replacing éON and 671 v by éo(Zl,Zz) and

él (Z,,Z,), respectively, and deriving the resultant distributions by simulation.

0,
I and

BMD=(1/0)in(1/(1-y))  on  the basis of ER=1-¢*""  and
BMD=(1/6,,)In(1/ (1-7)).

We have pursued in Section 4 the inference methods for ER(d*)Zl—e_d*

What we have described so far is the Wald approach! For the derivation of the LRT for
hypotheses about ER(d*) and BMD, since these quantities involve only 6, it follows
from the general theory discussed in Section 2 that irrespective of the nature of 6,
whether a boundary point or not, the asymptotic distribution of —2/n(LRT) remains as

v* with 1 d.f. We have compared the Wald test with the LRT test in a few cases in
Section 4.

Case 3.0.2 Quadratic Weibull model. Taking k=2 in (47), we get

-Gy +d G +d?0, |

r,(0|d)=1-e , which readily gives

—[90+d *0+d *2492]
AR(d*)=1-e¢ (57)

% k2
ER(d*¥) =1-¢ 41870) (58)
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avgp - NG +40.71-6

20,

(59)

Appropriate statistical inference about the above quantities follows upon computing the

natural MLEs of the three parameters 6,, 6, and 6, based on the data (X,,---,X,),

namely éo N él v and éz v» and applying their asymptotic distributional results derived in

Section 2. It is easy to derive the Fisher information matrix /(6,,6,,6,):3x3 under the

assumption of independent binomial distributions of the X,'s, and hence
0,,0,)=1(6,,6,,0,)", where 1(6,,6,,6,) is given by

m o _ 7 m 1_ . m 1

Zl 7.(0) Zdi 7.(0) Z 1-7,(0)

S x0) 5 ane 5 a0
-7, 1 1

1(6,,6,.6,)=| ‘=m0 = ﬂ(t9) o7 (9) : (60)

N 21_7[1‘(9) . 31_7[1‘(9) . 41_7[,‘(0)
,-:od" 7,(0) ;di 7,(0) ;di 7,(0)

When 6,>0, 6,>0, 6,>0, we clearly have a regular parametric scenario situation.
By standard asymptotic theory, we then get the following result:

N (@, —6,,0,, - 6,.6,, —6,) — N,[(0,0,0),2(0)] (61)
NI, +d* 6, +d**6,,)— (6, +d *6, +d*>*0,)] > ©2)
N[O,(l,d*,dz*)Z(H)(l,d*,dz*)’]

IN[(G,y +d *6,,) (6, +d *6,)] = N[O, (1,d")E(0)(1,d*)]. (63)

Here () is the 2x2 lower sub matrix of 2(6) obtained by deleting the first row and

the first column. Again, drawing inference about AR, RR and BMD is very routine here.
Details are omitted.

We now consider the case when some parameters may lie on the boundaries. Since we
have assumed a quadratic Weibull model, there are three possible scenarios: (i) 6, =0,

(i1) 6,=0,and (iii) 6,=6,=0.
When (i) 6, =0, which may well happen in some situations, we have the case of one

parameter point being on the boundary, and hence the asymptotic distributional and
inferential results mentioned above are not true. We should note that for statistical
inference about ER(d*) and BMD which involve the parameters 6, and 6, , all we would
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need is the asymptotic joint distribution of the relevant MLEs. Using Prop. 2.1, quite
generally we get

\/N(éowé)w _epézzv _‘92) - (éo(zoazl922)96}1(Zoazlazz)oéz(zovzlvzz)) (64)

where Z=(Z,,2,,Z,) ~ N[O,i] and from the discussion in Section 2, Theorem 2.2, we
get

0,(Zy2,,2,)=Z, if Z,>0, and =0 if Z,<0 (65)
0(2,,2,,2)=2, if Z,>0, and =Z2,, if Z,<O0. (66)
0,(2,,2,,2,)=2, if Z,>0, and =Z,, if Z,<0. (67)

where Z,, and Z,, are the usual residual variables. A remark about 3 is in order here.
Since X is obviously a function of &, we can use ﬁ(éN). In case it so happens that
X,=0 so that éON =0, computation of ¥ may pose some difficulty (in terms of

singularities!), and then we can take an arbitrary small value of éo v

Returning to the inference problems, although we still have the same point estimates as
before, namely,

AR(d*) = 1_ef[é0N+d*91N+d*zt92N]’ )
I ) —1_ ‘(d*éw‘i'd*zéz]v)
ER(d*)=1-¢ : 69)
EMD=[‘/[éfN+4é2Ny]—élN]/2ézN,

(70)

the asymptotic distributions of these estimates are not normal any more, and, in fact,

A

these are obtained by replacing 6,,, élN and ézN by éO(ZO,Zl,Zz), él(ZO,Zl,Zz) and

éz (Z,,Z,,Z,) , respectively, and deriving the resultant distributions by simulation.

(d*6+d*6))

We have explicitly pursued below the inference methods for ER(d*)=1-¢ ! :
{d*0,,+d*0

and BMD =[,[[6 +46,]-6,1/26, on the basis of ER(d*)=1-e S and

BMD =[\J[6%, +40,,7]1-6,,1/26,,, . Here are the results.

, (d*G+d*6,) _
Inference about ER. Since ER(d*)=1-e , without any loss of generality,

we consider equivalently the problem of drawing suitable inference about
ER(d*) = 6, +d *6, which is based on ER(d*)= 6A?1N +d *ézN . Applying Theorem 2.2,
we conclude that
\/N[(é’w+d*é2,v)—(9]+d*92)] ~ Zl+d*ZZ if Zo>0
~ Z,+d*Z,, if Z,<0.

(71)
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Since ﬁ(é) is known, it is rather easy to simulate the asymptotic distribution of
JN[(6,, +d*6,,)~(6,+d*6,)], from which the cut-off points of this distribution can

be obtained. Tests and confidence intervals about ER(d*) are then routinely derived.

Inference about BMD. Using (64) and (70), it is easy to generate the asymptotic
distribution of BMD(d*) from which its cut-off points can be derived and used for tests

and confidence intervals for BMD(d*).

What we have described so far is the Wald approach! For the derivation of the LRT for
hypotheses about ER(d*) and BMD, since these quantities involve only 6, and €, which

are regular parameters, it follows from the general theory discussed in Section 2 that
irrespective of the nature of @,, whether a boundary point or not, the asymptotic

distribution of —2/n(LRT) remains as y” with an appropriate d.f. We have compared the
Wald test with the LRT test in a few cases in Section 4.

We next consider the case (i/) 6, =0 which is still the case of one boundary parameter.
Using Prop. 2.1, the asymptotic joint distribution of the MLEs éN is given by
‘/N(éozv - goaélzvaézzv - 02) -

. R A (72)
(6,(2,,2,,2,),6,2,,2,,2,),6,(2,,2,,2,)

where, as before, Z =(Z,,Z,,Z,) ~ N[O,ﬁ], and
0,(2,,2,,2,)=2, if Z,>0, and =Z,, if Z,<0 (73)
0(2,,2,2,)=2, if Z,>0, and =0 if Z <0 (74)
0,(2,,2,,2,)=2, if Z,>0, and =2, if Z,<0 (75)

Using the above asymptotic distribution of the MLEs of €, we can approximate the

~ _[d*élN+d*2é2N ~ ~ ~ ~ ~

distributions of ER(d*)=1-e and BMD =[\/[6, +46,,71-6,,1/26,,
by simulations and use them to carry out tests and confidence intervals of ER and BMD .
We remark that the LRT for ER(d*) which is equivalent to the linear function 6, +d *6,
can be carried out as follows. From the discussion in Section 2, we first consider a
reparametrization from (6,,6,,6,) to (6,,6,,6,+d*0,=06,*) and express the joint
distribution in terms of these new parameters. The problem then boils down to inference
about 6, * when 6, lies on the boundary! This is precisely the set up discussed in Section
2.

Finally, we consider the case when (iii) 6, =6, =0, which involves two points on the
boundary, a case discussed in Section 2. Following Prop. 2.1, the asymptotic distribution
of the MLEs éN of @ is given by

466 Pak.j.stat.oper.res. Vol.VIIl No.3 2012 pp441-478



Some New Aspects of Statistical Inference for Multistage Dose-Response Models with Applications

IN Gy -6-00 =0) > (620,20, 2,),01(2,, 2,,2.),6,(2,,2,.2,)) - (76)
where again  Z=(Z,,Z,,Z,)~ N[0,£] and éO(ZO,Zl,Zz), Q(ZO,ZI,ZZ) and
éz (Z,,Z,,Z,) are as defined in (73) - (75) with obvious changes.

As remarked earlier, while using i, we can use either the natural MLEs éN or take

6, =6 =0 and replace 6, by éz N

From the above asymptotic distribution, it is indeed possible to derive the asymptotic

distribution of any function of the MLEs such as ,ZIR(d*) , ER(d*) and BMD . Details
are omitted.

Case 3.0.3 Cubic Weibull Model. Taking £ =3 in (47), we get

2 3
7.(0]d,) = 1= WTHOFEOFDEO] (piih readily gives
- * *2 %3
AR(V = [6?0+d O+d*0,+d 6?3} 77
o +d®0,+d0
ER(d*)zl_e «“ '9| 2 3). (78)

Regarding BMD d*, we note from (49) that d* is the solution of a cubic equation.
Following Cardano, an explicit formula for d* is given as follows. Let
In(1/(1-y))=—u. Define

40) - % 30 = 2008 = 27233 276 79)
—J[B%m A0y
"0)= - . 1O =v(0)" (80)
5(0)= % (6) = 5(0)~1(0). (81)
Then BMD d *(6) is given by
d*(0)=1(0) —% (2)

Appropriate statistical inference about the above quantities follows upon computing the
natural MLEs of the three parameters 6, 6,, 6, and 6, based on the data (X,---, X, ),

namely éo Vo 671 Vo éz v and 93 v»> and applying their asymptotic distributional results
derived in Section 2. It is easy to derive the Fisher information matrix
1(6,,6,,0,,0,):4x4 under the assumption of independent binomial distributions of the

X,'s, and hence 2(6,,6,,0,,0,)=1(6,,6,,0,,0,)”", where 1(6,,6,,6,,0,) is given by
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[(00391992a03)= (83)

Ll-7(0) &, 1-7(0) ,1-7,(0) 1-7,(0)
Zo: 7,(0) zo 7,(6) ;d 7,(6) ;d 7,(6)

Lo 1-7(0) B pl-m(0) B 1-m(0) & 1-7(0)
lzo:dl 7,(0) :od’ 7,(0) 20: 7,(0) Zo: 7,(0)
n o l-m(0) & 1-7(6) J-7,0) s1-7,0) |
Zo: 7.(0) Zo: 7,(0) ,Z.;d 7,(0) ;d 7,(0)

J-7(0) & 1-7(0) & s1-7(0) o 1-7,(0)
= 70 Z;‘ 7,(0) Z.: 7,(0) ,Z;‘d 7.(0)

When 6,>0, 6>0, 6,>0, 6,>0, we clearly have a regular parametric scenario
situation. By Prop. 2.1, we then get the following result.
NG,y = 6,.6,, - 6,6, —6,.6,, - 6,) > N,[(0,0,0,0),%(9)] (84)
NI, +d* 0, +d** 0, +d**6,,)— (O, +d *6, +d**0,+d**6,)]  (85)
— N[0, (1,d*,d**,d**)Z(O)(1,d*,d**,d’*)']
N[ +d* 6, +d**6,)~(6,+d*0,+d* *0))]
— N[O, (1,d*,d**)E(O)(1,d*,d**)']. (86)

Here 3(0) is the 3x3 lower sub matrix of £(&) obtained by deleting the first row and

the first column. Statistical inference about AR, RR and BMD is very routine here.
Details are omitted.

We now consider the case when some parameters may lie on the boundaries. Since we
have assumed a cubic Weibull model, there are several possible scenarios: (i) 6, =0,

(ii) 6,=0, (i) 6,=0, (iv) 6,=6,=0, (v) 6,=6,=0, (vi) 6,=6,=0, and (vii)
6,=6,=0,=0.

When (i) 6, =0, which may well happen in some situations, we have the case of one

parameter point being on the boundary, and hence the asymptotic distributional and
inferential results mentioned above are not true. We should note that for statistical
inference about ER(d*) and BMD which involve the parameters 6,, 6, and 6,, all we

would need is the asymptotic joint distribution of the relevant MLEs. Using Prop. 2.1 ,

quite generally we get
\/_( 0N7 _elaéZN_ezaéw_es)_) (87)
(90(20721922723)5el(ZanpZzaZ3)’Hz(zoaZla22523)793(20521322923))

where Z=(Z,,2,,2,,Z;) ~ N[O,i] and from the discussion in Section 2, Theorem 2.2,
we get
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0,(2,,2,,2,,2)=Z, if Z,>0, and =0 if Z,<0

(88)
0(2,,2,,2,,Z,)=2, if Z,>0, and =Z2,, if Z,<0. )
0,(Z,,2,,2,,2,)=2Z, if Z,>0, and =Z,, if Z,<0. (90)
0,(Zys 2,12y, Z)=Z, if Z,>0, and =Z,, if Z,<0. 1)

where Z,,, Z,, and Z,, are the usual residual variables. A remark about 3 is in order
here. Since X is obviously a function of €, we can use ﬁ(éN) . In case it so happens that
X,=0 so that éo v =0, computation of > may pose some difficulty (in terms of

singularities!), and then we can take an arbitrary small value of éo N

Returning to the inference problems, although we still have the same point estimates as
before, namely,

N éON+d*é1N+d*2é2N+d3*é3N

AR(d*)=1-e¢ (92)

2

o @6 +d*®20, +d3*0
ER(d*):l_e IN 2N 3N)’ (93)
and a similar expression for BMD , the asymptotic distributions of these estimates are not

A ~

normal any more, and, in fact, these are obtained by replacing 6,,, 6,,, éz v and é3 v by

ON >
020 2,,2,,2)),  0/(2,,2.2,.2,),  0,(Z.2,.Z,.2,) and  6,(Z,.2,.2Z,.2,),
respectively, and deriving the resultant distributions by simulation.

We  have  explicitly  pursued  below  the  inference  method  for

_(d*91+d*202+d3*03) . A ’[d*elN"'d*zezN"’d%ez.NJ
ER(d*)=1-e on the basis of ER(d*)=1-¢ .

The same for BMD can be pursued with some extra effort! Here are the results.

. (d*G+d*20,+d>*6,)
Inference about ER. Since ER(d*)=1-e , without any loss of

generality, we consider equivalently the problem of drawing suitable inference about
ER(d*)=6,+d*6,+d**6, which is based on ER(d*)=0,+d*0,, +d**0,, .
Applying Theorem 2.2, we conclude that
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IN| By +d*6,+d**0,) (0, +d*60,+d**6,) |
~Z+d*Z,+d**Z, if Z,>0 (94)
~Z o, +d*Z, +d**Z,, if Z,<0.

Since ﬁ(é) is known, it is rather easy to simulate the asymptotic distribution of
IN[(@,, +d*0,, +d**6,,)— (6, +d *6,+d**6,)], from which the cut-off points of this
distribution can be obtained. Tests and confidence intervals about ER(d*) are then
routinely derived.

What we have described so far is the Wald approach! For the derivation of the LRT for
hypotheses about ER(d*) and BMD, since these quantities involve only &, and 6, which

are regular parameters, it follows from the general theory discussed in Section 2 that
irrespective of the nature of 6,, whether a boundary point or not, the asymptotic

distribution of —2/n(LRT) remains as y° with an appropriate d.f. We have compared the
Wald test with the LRT test in the case of ER below.

The cases (ii) 6 =0 and (iii) 6, =0 which are still concerned with one boundary

parameter can be handled similarly. When (iv) 6, =6, =0, which involves two points on

the boundary, following Prop. 2.1, the asymptotic distribution of the MLEs éN of 0 is
given by
\/N(QON’HIN’QZN _92’H3N _93) - 95)

(6120:2,,2,,2.),6/(2,,2,,2,,2,).6,(2,, 2,,2,,2,).6,(2,, 2, 2, Z,)
where again Z=(Z,,Z,,Z,,Z,)~N[0,2] and 6,(Z,,Z,,Z,,Z,), 0(Z,.2,,2,,Zs),

0,(Z,,2,,2,,2,) and 0,(Z,,Z,,Z,,Z,) are defined in Section 2.

As remarked earlier, while using Y, we can use either the natural MLEs éN or take

6, =6, =0 and replace 6, and 6, by éz v and 673 v » respectively.

From the above asymptotic distribution, it is indeed possible to derive the asymptotic
distribution of any function of the MLEs such as ﬁR(d*), ER(d*) and BMD . Details
are omitted.

Finally, the case (vii) 6,=6,=60,=0 which involves three parameters on their

boundaries can be dealt on the basis of the theory developed earlier. Again, details are
omitted.
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4. Applications

4.1 Simulations

Monte-Carlo simulations were performed to compare coverage of the confidence
intervals for the multistage model parameters ¢, extra risk (a linear function of
parameters) as well as benchmark dose (linear or nonlinear, depending on the order of the
model). We considered linear, quadratic and cubic multistage models (k=1,2,3). In each
case, the true value of one or two of the parameters (but not the leading coefficient) was
on the boundary (equal to zero) or the true value of one or two parameters was not on the
boundary, but their estimates often were. All simulations were performed for 4 groups (1
control group and 3 dose groups), each of 50 animals. The chosen doses were 0, 1/4, 1/2
and 1. This imitates a standard rodent bioassay setup. The nonzero parameters were
chosen to provide a range of incidences for each dose group.

Monte-Carlo simulations were performed as follows. The model parameters define the
binomial response probabilities P(d,0) at each of the four doses. For each of 5000

realizations, these probabilities were used to generate tumor incidence data
X ~ Binom(N =50,P(d,0)). The resulting experiment data was used to estimate
parameters of the model, using BMDS programs (U.S. EPA, 2006) for extra risk equal to
0.1, a standard EPA practice when analyzing quantal response bioassay data. The
information matrix was estimated. To avoid singularities, if the background rate was
estimated to be 0, 6, was taken to be 5E-4, as discussed in Section 3. In such cases, the
confidence interval for 6, depends on the chosen substitution value and therefore
confidence intervals for 6, were not considered. It should be possible to derive a
confidence interval for 6, via a re-sampling procedure, but this is beyond the scope of

this report.

Using the information matrix, Wald confidence intervals were computed for all
parameters described above. If a parameter estimate was on the boundary, the confidence
interval was computed using the asymptotic distribution derived according to Self and
Liang (1987) (See Section 3). The confidence interval values were retained and
procedure repeated 5000 times. For estimating coverage of confidence intervals, only
those realizations were retained for which the y° goodness-of-fit P-value exceeded 0.1,
conforming to the practice recommended by EPA (U.S. EPA 2012), and for which the
estimate of the leading coefficient was positive, so that models of the same order are
compared to each other.

In the following tables, the "Wald" column shows coverage for Wald confidence
intervals, while the "Self--Liang" column shows coverage of the procedure such that for
each simulation, depending on the estimated value of the corresponding parameter being
on the boundary or not, the interval was computed according to the asymptotic
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distribution derived in Self and Liang (1987) or as a Wald interval, respectively. The
"Fit" column shows the percent of the simulations when the model fit well ( #>0.1) and
the estimate of the leading coefficient was non-zero. The desired coverage is 90%. Only
results for Benchmark Dose (BMD) are shown in the tables (results were similar for
Extra Risk (ER) and non-background parameters).

For the linear model (Table 1), both Wald and Self--Liang confidence intervals have
practically the same coverage and average length for a wide range of 6,. The coverage is

very close to the desired level.

Table 1: ~ BMD coverage for linear model under several scenarios, when some of
the parameters or their estimates are on the boundary.

Parameter Wald Self-Liang LRT Fit

True Values CI Length CI Length CI Length %

6,=0; 6 =05 90.2 0.121 89.1 0.132 90.2 0.125 95.8

6,=0; 6 =1 90.1 0.046 90.2 0.048 90.5 0.046 95.4
6,=0; 6 =2 90.3 0.020 90.4 0.020 90.6 0.020 95.7
6,=0;6=3 90.2 0.013 90.8 0.013 90.6 0.013 96.2

6,=0.02; 6=05 903 0.138 92.1 0.141 89.3 0.154 91.9
6,=0.02; 6 =1 90.1 0.049 91.6 0.050 89.7 0.051 91.8
6,=0.02; 6, =2 90.2 0.020 91.0 0.021 90.2 0.021 92.7

g,=0.02; 6,=3 90.3 0.013 91.1 0.013 90.4 0.013 92.9

For quadratic and cubic models (Table 2 and Table 3) with one or two parameters whose
true or estimated value was on the boundary, the Wald confidence interval generally
exceeded nominal coverage and Self-Liang confidence intervals are generally closer to
the desired confidence level of 90%. Also, in almost all cases, Self--Liang intervals
improve on average length compared to Wald intervals.
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Table 2: BMD coverage for quadratic model under several scenarios, when some
of the parameters or their estimates are on the boundary.
Parameter Wald Self-Liang LRT Fit
True Values CI Length CI Length CI Length %
6,=0;6=0.05; 6,=0.5 96.2 0.239 96.0 0.224 944 0226 964
6,=0;6=0.05; 6,=1 95.6 0.182 97.2 0.158 93.8 0.151 978
6,=0;6=0.05; 6,=2 95.7 0.142 96.7 0.117 939 0.105 974
6,=0;6=0.05;6,=3 95.0 0.125 96.3 0.100 93,5 0.088 97.6
6,=0;6=08;60,=05 93.5 0.131 90.7 0.136 929 0.122 87.7
6,=0;60=08; 0,=1 89.1 0.118 91.0 0.121 920 0.110 96.8
6,=0;60=08;0,=2 88.9 0.112 92.5 0.110 913 0.097 99.6
6,=0;6=08; 6,=3 91.5 0.115 95.2 0.105 90.7 0.089 999
6,=0.02; 6,=0; 6,=0.5 94.9 0.315 92.9 0.285 90.0 0.259 92.0
6,=0.02; 6,=0; 6,=1 94.2 0.229 91.5 0.189 89.1 0.164 929
6,=0.02; 6,=0; 6,=2 94.2 0.174 91.4 0.135 899 0.112 93.0
6,=0.02; 6,=0; 6,=3 94.2 0.156 91.4 0.117 899 0.094 93.0
6,=6=0;6,=05 96.3 0.238 93.8 0.226 92.0 0229 979
6,=6=0;0,=1 96.7 0.182 94.9 0.154 91.7 0.148 98.1
6,=6=0;0,=2 96.3 0.143 94.5 0.114 91.1 0.102 975
6,=6=0;0,=3 95.6 0.126 94.2 0.098 90.6 0.085 974
6,=6=0.02;60,=0.5 93.8 0.333 94.0 0.296 913 0.265 918
6,=6=0.02; 0,=1 93.4 0.234 93.2 0.192 90.5 0.167 93.7
0,=6=0.02; 0,=2 93.0 0.169 92.8 0.134 90.8 0.113 934
6,=6=0.02;0,=3 93.5 0.154 91.5 0.117 90.8 0.095 93.7
Table 3: BMD coverage for cubic model under several scenarios, when some of
the parameters or their estimates are on the boundary.

Parameter Wald Self-Liang LRT Fit
True Values CI Length CI Length CI Length %
6,=0.1; 6,=0
0,=0;0,=2 98.8 0.569 92.7 0.240 90.3 0.184 79.9
6,=0; 6 =1
0,=0; 0,= 94.9 0.920 89.6 0.122 89.9 0.120 83.9
6,=0;6=2
0,=0; 60,=0.5 100 0.731 86.6 0.055 91.9 0.074 43.6
6,=0.2; 6 =0.01
0,=0.01; 6,= 99.9 1.8368 93.9 0.387 92.1 0.303 79.2
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4.2. Example

In this section we consider an example from National Toxicological Program (NTP
1993). In this study, B6C3F1 mice were exposed to 1,3-butadiene. The outcome was
heart hemangiosarcomas. This data was also analyzed by Bailer and Smith (1994). The
data is given in the Table 1 (only doses up to 200ppm are given, following Bailer and
Smith 1994):

Table 4: Bailer and Smith (1994) data

Dose (ppm)  Number at risk Number of tumor-bearing animals

0 50 0
6.25 50 0
20 50 0
62.5 49 1
200 50 21

A 3-stage Weibull model (see Case 3.0.3 in Section 3) fits well to this data and two
parameters, 6, and 6,, are estimated to be on the boundary. Bailer and Smith (1994)

considered several approaches to constructing an upper 95th confidence limit on Extra
Risk. Their results for the confidence limit for extra risk at three doses are summarized in
Table 5:

Table 5: Bailer and Smith (1994) results

Dose Likelihood Nonparametric Parametric
ppm bootstrap bootstrap
2.00 1.404E-3 5.167E-5 5.168E-5
0.20 1.405E-4 5.154E-7 5.156E-7
0.02 1.405E-5 5.153E-9 5.155E-9

The likelihood upper bound in the Table 5 is calculated according to a methodology
(cited in Bailer and Smith 1994) based on Crump et al. (1977): it is the profile likelihood
bound on a linear term of the multistage model using # as an asymptotic distribution.
That is the situation considered in Self and Liang (1987), Case 6: one parameter of
interest and one nuisance parameter are on their boundaries. In this case, the correct
asymptotic distribution is a 50:50 mixture of y and y; .

We calculated 90 % confidence intervals for the extra risk using asymptotic normality
(Wald) and also using asymptotic distribution derived according to Self and Liang
(1987). The confidence intervals for Extra Risk at three doses are shown in Table 6:
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Table 6: Wald and Self and Liang (1987) confidence intervals

Dose Wald Confidence Self-Liang

ppm Interval Confidence Interval
2.00 (0; 4.476E-5) (2.143E-6; 4.471E-5)
0.20 (0; 5.027E-7) (1.804E-8; 4.982E-7)
0.02 (0; 1.060E-8) (1.770E-10; 1.063E-8)

It is interesting to note that the upper bounds of both Wald and Self--Liang confidence
intervals agree well with each other and with both nonparametric and parametric
bootstrap confidence bounds in Table 5. However, for all 3 doses, the Wald 90%
confidence interval contains 0, but confidence interval calculated according to Self and
Liang (1987) does not. Also, the Self-Liang interval is shorter than Wald's.

5. Concluding Remarks

There have been long-standing questions about the accuracy and validity of various
asymptotic confidence interval methods applied to risk estimates from dose response
models. Very recently, Molenberghs and Verbeke (2007) sketched a framework for
testing in constrained parameter spaces and Nitcheva ef al. (2007) explored Wald tests for
the multistage model using simulation when some of the parameters are on the boundary.
Our report develops a theoretical approach, based on Self and Liang (1987), to resolve
some of the remaining issues when parameters of the dose-response model are on the
boundary but the parameter of interest is not. It also provides theoretical results,
implementing Self and Liang's methodology, for the case of parameters, risk estimates,
and the benchmark dose for the multistage dose response model, often employed in
cancer risk assessments.

Numerical results for various scenarios involving the multistage model demonstrate
substantial differences between several confidence interval approaches. The Self-Liang
method improves upon Wald intervals for all the parameters and performs comparably
with the likelihood ratio test intervals, the latter being slightly shorter. However,
programming the profile likelihood method requires complicated routines for nonlinear
optimization with inequality constraints. In contrast, Self and Liang's improvement on the
Wald method can be programmed very easily, as it involves only inversion of the
information matrix and simulation of a multivariate normal distribution, both operations
being part of many standard software packages and not requiring much computer time.

This report investigated coverage of two-sided intervals only. A next step would be to
examine one-sided intervals when some parameters are on the boundary. Initial
investigations show that, unlike two-sided intervals, coverage of one-sided intervals can
be far from nominal when some parameters of the multistage model are on the boundary.
Another useful applied project would be to evaluate coverage of profile likelihood, Self-
Liang and Wald intervals for the multistage model using various sample sizes.
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Appendix A.

Here we provide a proof of Theorem 2.1. From (23), by a direct computation, we get

G(w) = P[W<w]

— 2
= P[(Z, Sw)]]<z2>0,22‘1>0)

+ P[(Z}-7Z;< w)]]( (A1)

2,<0,Z, ,>0)

2 2
+ P[(Zl.z < W(l—p ))]I(Z2<0,Zz'1<0)

2

2 ZZ.I
+ Pl(Z; + s SW)]I<22>O,ZZ.1<O)‘

We now apply the method of transformation from (Z,,Z,)—>(Z,,=U,Z,=V)
with (U,V) ~ N[(0,0),var(U)=1-p* ,var(V)=1,cov(U,V) =1- p°]. Obviously,
Z,=WV-U)l/p and Z,= -U)/p-pV. Moreover, V |U =u ~ N[u, p’], implying
(V=U)/ p ~ N[0,1]. This yields the various terms in (A.1) as follows.

Terml = P[{(V-U)’<wp’ (U >0,V >0)]
- P[{U—pﬁsV3U+p\/$}1(U>0,V>0)]

J«Opﬁ [

.[:J—Uj: A “)dv}f () (A2)

pdw N
- J-OW|: .[WN(Oal)dx}N(O,l)du

[ e u)dv} S (u)du

0

+

+

U_f;N(O,l)dx} | jpﬁz) N(0,1)dx |.
Term?2 = P[{(V—U)2 < (W VH-I(U >0,V<0)}

- P[(USV+px/w+V2)-[(V<O,V+p\/w+V2 >0)} (A3)

[_L"Z) < NO,1)<vp+wir? }N(O,l)dv.
P

Il
—
I o
=
AN
~
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Term3=P[{(V -U - p’V)’ <wp’(1-p")}-1(U <0,V <0) | (A.4)

:{V(l_pz)_WSUSV(I—P2)+W}-I(U<0,V<0)}
AP0y o) 20 10y o= <o

=P

(1-p%)

+P{V(l—p2)—\/w,02(l—,02) éUso,—,/(lwpzz) <V < 0}
-p

- P[—«/W(l—pz) <N@O,1)< «/W(l—pz)]P{N(O,l) <o | 2E }

(1-p%)

2

+P{{—\/W(1—p2) <N(0,1)< _V(1—p2)/p},— P <y < o}.

(1-p%)

Term4 = P{(V-UY(1-p")+U’p’ <wp’(1-p")}- IU <0,V >0) |

PI{U-V(1=p") <(w=7)p’ (1= p))}IU <07 > 0)

(A.5)

PIV(=p)=v=1D)p (1= p)) <U <0,0<V < pilw |

w
- [ P[—\/(w—vz)pz(l—pz) < N(0,1)< —v(l—pz)/pJ-N(O,l)dv.
The theorem follows upon combining and simplifying these four terms.
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