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Summary
For an exponential model with scalar parameter, WelchP:1963 examined the role of Bayesian analysis in
statistical inference, more specifically the use of the Jeffreys:1946 prior. They determined that Bayesian
intervals and thus in effect Bayesian quantiles had second order confidence accuracy. We use a Taylor
series expansion of the log-model to develop a second order version of the vector exponential model; this is
developed as a contribution to theory in statistics at a time when algorithms are prominent, and it provides a
basis for generalizing the Welch-Peers approach to the vector parameter context.

Some Keywords: Asymptotic model; Bayes as approximate confidence; Exponential
model; Jeffreys prior; Likelihood analysis; Root-information prior; Second order
expansion.

1. Introduction

Exponential models are widely used in contemporary statistics, offering rich model
flexibility with relatively easy analysis that is largely immune to high data dimension: In
basic theory they support the uniformly most powerful unbiased and similar tests
(Lehmann & Romano,2005, Section 4.4); In model building they provide the structure to
go beyond Normal theory to generlized linear models (Nelder & Wedderburn,1972;
McCullagh & Nelder,1989); With graphical models they provide key structure
(Lauritzen,1996); In machine learning they are a primary ingredient (Wainwright &
Jordan,2008); In approximation theory they offer a basis for saddlepoint methodology
(Daniels,1954); In current inference theory they underpin higher order methods
(Barndorff-Nielsen,1986); And for determining the connections between Bayesian and
frequentist inference they give access to the needed location models (Welch &
Peers,1963).

A scalar exponential model ( ; ) = exp{ ( ) ( ) ( )} ( )f y s y k h y    can be viewed as an
exponential tilt of a basic density or relative density ( )h y . By suitably recentering the
variable and the parameter relative to observed data 0y and corresponding 0̂ we can
work with the more transparent form of model ( ; ) = exp{ ( )} ( )g s s g s    where ( )
is the reexpressed observed log-likelihood with observed data value = 0s . Asymptotic
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theory examines the effects of increasing data size n and produces remarkably accurate
approximations for the density and the distribution function at the observed data point.

These approximations use the log-likelihood function ( ; ) = log ( ; )s g s  which is
typically directly available from the original model as log ( ; )f y  provided allowance is
made for parameter change from  to  . The approximations also typically use two
intermediate measures of departure, the signed likelihood root r and the maximum
likelihood departure q in the canonical  scaling:

1/2 1/2ˆˆ ˆ ˆ= s ( ){2[ ( ) ( )]} ,     = ( ),r ign q j         (1)

where ˆ ˆ= ( )s  is the value that maximizes the likelihood ( ; )s and
2 2

ˆ
ˆ ˆ= ( ) = ( / ) ( ; ) |j j s s      is the curvature of likelihood at that maximum. For a

model with data, the value of r and q are part of the usual output from many statistical
packages, and come directly from the observed likelihood function: r comes from
vertical change in likelihood and q comes from horizontal change, maximum likelihood
value less parameter value of interest.

The highly accurate approximations for the density and distribution functions are
/ 1/2 1ˆ( ; ) = ( ) ,      ( ; ) = { log( / )}k nf s e r j F s r r r q     (2)

where ( )z and ( )z are the standard Normal density and distribution functions and
accuracy is third order 3/2( )O n with k constant to that order. These approximations
from Daniels (1954) and Barndorff-Nielsen(1991) provide exceptional access to
statistical inference, both theoretical and practical; for some recent discussion see Fraser
(2011).

In particular, the approximations lead to a simple proof of the Welch & Peers (1963)
theorem, and provide the stronger statement that a scalar exponential model is a location
model to second order, which thus justifies the Jeffreys (1946) choice of root information
as a second order prior for the scalar exponential model; this is described from a Taylor
expansion view in § 2 and § 3. We then pursue the Welch-Peers direction and derive the
second order form for a vector exponential model in § 4. Some discussion in § 5 focusses
on the implications for general statistical inference but does not pursue the details; some
immediate consequences will developed in Fraser et al. (2012). Thus our present material
can be viewed as a contribution to statistical theory and to the interpretation of statistical
theory, particularly the profound Welch-Peers result.

2. Welch-Peers and log-model expansions
Statistics has two rather different methodologies for statistical inference: the frequentist
which is based on frequency properties in the statistical model, and the Bayesian which
augments this with a prior density purporting to describe origins for the particular
parameter value. The literature records support for one or the other of these, or discusses
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conflicts between or within the approaches, or proposes alternative approaches such as
(Fisher,1956). A profound link among these emerged with Welch & Peers (1963) who
showed that the two approaches lead to the same result to second order in the presence of
a scalar exponential model, provided the prior used is the Jeffreys root information prior

1/2( ) = ( )d j d     ; for some recent discussion see Fraser (2011).

A more transparent route to this Welch & Peers (1963) result is available using a Taylor
expansion of the log-model in terms of appropriately standardized variable and
parameter; for some background see Fraser & Reid (1993) and Cakmak et al. (1998).
These expansions are usually examined to third order, but for the Welch-Peers result to
be discussed here a second order expansion suffices, and is flexible for extension to the
vector parameter context.

For the present scalar exponential model ( ; ) = exp{ ( ) ( ) ( )} ( )f y s y k h y    we first
consider the log-model using a centered and scaled version of  , a centered and scaled
version of s , plus expansion to the second order; this leads to the second order expansion
of log-likelihood as

2 3 1/2( ; ) = ( ) = / 2 / 6s s n s         
where 1/2 ˆ/ = = ( )n j   is the negative third derivative of log-likelihood at the
maximum. The standardized statistical model then has the second order form:

1/2 2 3 1/2

3 1/2 3 1/2

3 1/2 3 1/2 1/2

( ; ) = (2 ) exp( / 2 )exp( / 6 ) ( ) (3)
= ( ) exp{ / 6 ( 3 ) / 6 } (4)
= ( ) exp{ / 6 / 6 }(1 / 2 ) (5)

g s s n h s
s n s s n
s n s n s n

    

   

    

   

   

   

where ( )h s has been determined to the second order by expanding the second
exponential in (3), then using 3 3( 3 ; ) =E s s   for the pure Normal ( ;1) , and then
returning one term to the exponent.

The likelihood 2 3 1/2( ; ) = / 2 / 6s n s      has score function
2 1/2( ; ) = / 2s s n     which gives the maximum likelihood value

2 1/2ˆ( ) = / 2s s s n  . The information function ( ; ) = ( ) = ( )j s j     is the
negative Hessian of likelihood or the negative derivative of score  ; thus

1/2= 1 /j n  . This then gives the Welch-Peers prior

1/2 1/2 1/2 1/2( ) = ( ) = (1 / ) = 1 / 2j n n      (6)

to second order: see Reid & Fraser(2010) and Fraser et al.(2011).

The essence of Welch & Peers (1963) analysis comes from a location relationship
between a reexpressed parameter say  , a reexpressed variable say ̂ , and an associated
model ˆ ˆ( )f d   ; we demonstrate this essence of Welch & Peers (1963) in § 3. But
first we record a fundamental consequence that comes from a location model. With such
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a model say ( )f y  with scalar variable, scalar parameter and data 0y we have the p -
value

0
0( ; ) = ( )

y
p y f y dy 




which records the statistical position of the data 0y in the population labelled  ; it can be
viewed as the primitive or mother-of-all p -values. And with the addition of a flat prior
for  as motivated by location invariance we have the posterior distribution 0( )f y 
for  and then the Bayesian survivor value

0 0( ; ) = ( ) ;s y f y d


  



these present the conditional probability consequences of introducing or formally
assuming probability properties for the mathematical prior ( )  when no such properties
are part of the given. Introductory calculus then shows that the two integrals are equal.
This gives a p -value or confidence calibration for the Bayes approach, and provides a
primary or fundamental connection between Bayesian and frequentist methodologies. For
some recent discussion see Fraser et al.(2010) and Fraser & Reid (2011), and for some
background on the Bayes-frequentist connection see Fraser (2011).

And then for the scalar exponential model considered here using the location results from
the next section we have the WelchP:1963 result that the frequentist p -value and the
Bayes survivor value ˆ( ; )s   are equal to the second order, where

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ( ; ) = ( ) ,     ( ; ) = ( ; ) = ( )p f d s L cd f d



 
                (7)

with the constant prior =1c for  : the two integrals are numerically equal so that
ˆ ˆ( ; ) = ( ; )p s    . In § 3 we determine the second order location parameter  and the

related model ˆ ˆ( )f d   .

3. Location parameterization and the reexpressed model
We use the information function to rescale on the parameter space and thereby derive a
new parameterization. For the standardized model (2) the information

( ; ) = ( )j s   arises as a second derivative; the root information can then be
viewed as a rate for the given parameter and accordingly we can rescale locally to obtain
an increment for a new parameterization and then integrate to obtain the new  in terms
of the old  :

1/2 1/2

1/2 1/2 2 1/2

= ( ) = (1 / 2 ) , (8)

= ( ) = (1 / 2 ) = / 4 (9)

d j d n d

j d n d n




    

      



  

where the lower limit of integration for convenience is at 0̂ which is 0 in the
standardized notation The reverse transformation expressing the old  in terms of the
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new  is then 2 1/2= / 4n   . And somewhat similarly we obtain the connections
between the old and the new variables; using (9) we obtain

2 1/2 2 1/2 2 1/2 2 1/2 2 1/2

1/2

ˆ ˆ ˆ= / 4 = / 2 ( / 2 ) / 4 = / 4 , (10)
ˆ = (1 / 2 ) ; (11)

n s s n s s n n s s n

d s n ds

      

 

    



and for the reverse transformation we have 2 1/2ˆ ˆ= / 4s n  .

We now reexpress the standardized model in terms of the new parameter  and the
related maximum likelihood variable ̂ . For this we make the change of variable

2 1/2ˆ ˆ= / 4s n  and parameter 2 1/2= / 4n   in (4), and obtain
3 1/2 3 1/2 1/2

1/2 2 2 3 1/2 3 1/2

1/2 2 3 1/2

1/2 2 3 1/2

( ; ) = ( )exp{ / 6 / 6 }(1 / 2 ) (12)
ˆ= (2 ) exp{ / 2 / 2 / 6 / 6 } (13)

ˆ ˆ ˆ= (2 ) exp{ ( ) / 2 ( ) /12 } (14)
= (2 ) exp{ / 2 /12 } , (15)

g s ds s n s n s n ds

s s n s n d

n d
z z n dz

     

     

      

 







   

    

   

 

where the first equality brings one term down from the exponent to form the factor before
ds , the second equality come from moving the Normal density to the exponent, the third
collects the quadratic and cubic terms to order 1( )O n , and the fourth expresses the
model in terms of the centered pivot ˆ=z   . We thus see that the model for ̂ is
location with constant observed information ˆ = 1j .

A simple example with immediate verification. Consider y with an exponential life
model ( ; ) = exp( )f y y   and positive y and  . The canonical variable is =s y
and the likelihood becomes ( ; ) = logs s   giving 1= s   and 2=j   . Then
from (9) we obtain

1= = log ,d


   
and then from 1ˆ = y  obtain ˆ = log y  . Accordingly consider the distribution of
ˆ = log log = log = logy y z        where =z y . Of course z has the standard

exponential distribution ( ) = exp( )g z z on (0, ) and thus ˆ= = logw z   has the
extreme value distribution exp( )we w  on ( , )  , free of the parameter; thus ̂
has a location distribution exactly, which is centered at  .

4. Vector exponential model and the second order reexpression
Consider a full p -dimensional continuous exponential model with canonical parameter

( )  and canonical variable ( )s y , as reexpressed in the standardized form used in the
preceding section:
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( ; ) = exp{ ( )} ( ),f s s h s     (16)
where ( ) is the observed likelihood at a data point 0y of interest with 0 0= ( ) = 0s s y
by recentering the canonical variable and 0ˆ = 0 by recentering the canonical parameter.
With moderate regularity we then further standardize to obtain observed information

0ˆ =j I , the identity matrix. For this it is often convenient to order the coordinates of 

such as = ( , )T   in the = 2p case so as to maintain the integrity of an interest
parameter say  ; we can then take 1/2j to be the right positive lower triangular square
root of the observed information matrix, 0 1/2 1/2ˆ = ( ) ( )j j j  , and define a new

parameterization as 1/2j  in terms of the old parameterization. The new parameterization
is then centered at the observed maximum but with an identity observed information and
has new first parameter coordinate monotone increasing in the old first parameter. With
asymptotic properties the model can then be expressed in the pattern (3),

1/2( ; ) = ( )exp{ / 6 } ( ),ijk ijk i j kg s s n h s       (17)

to the second order, where 1/2/ =ijk i j k
n j   is the third derivative of negative log-

likelihood with respect , ,i j k   but calculated in the standardized coordinates.

We now derive ( )h s to second order following the pattern from (3) to (4) and (5) in § 2.
There a term say 3 1/2

1 / 6n in the exponent is brought down as 3 1/2
11 / 6n which

then requires 3 1/2
1( ) = 1 ( 3 ) / 6ih s s s n  based on 3 3( 3 ) =E s s  for the Normal ( ;1) .

Now a term 2 1/2
1 2 / 2n  comes down as 2 1/2

1 21 / 2n  which then requires
2 1/2
1 2( ) = 1 ( 1) / 2h s s s n  based on 2 2

1 2 1 2( 1) =E s s   for the Normal 1 2( , ; )I  . Also a
term 1/2

1 2 3 / n   comes down as 1/2
1 2 31 / n   which then requires

1/2
1 2 3( ) = 1 /h s s s s n based on 1 2 3 1 2 3( ) =E s s s    for the Normal 1 2 3( , , ; )I   . We can

then combine these steps and obtain
3 3 1/2 2 2 1/2

1/2 1/2 1/2
< <

( ; ) = ( )exp{ ( )6 ( ) / 2 }

exp{ ( ) / }(1 / 2 / 2 ).
i iii i i i j iij i j i j

i j k ijk i j k i j k i iii i i j iij j

g s s s n s s n

s s s n s n s n

       

    




     

   

Example: Second order two-dimension exponential model. The two dimensional model in
standardized notation has the form

3 3 1/2
1 2 1 2 1 1 2 2 3 1 1

2 2 1/2 2 2 1/2 3 3 1/2
2 1 2 1 2 1 1 2 1 2 0 2 2

1/2 1/2 1/2 1/2
3 1 2 2 1 1 0 2

( , ; , ) = ( ) ( ) exp{ ( ) / 6 }

exp{ ( ) / 2 ( ) / 2 ( ) / 6 }

(1 / 2 / 2 / 2 / 2 ).

g s s s s s n
s s n s s n s n

s n s n s n s n

       

       

   

    

      

   
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5. Discussion
Exponential models can be used to construct larger models in applications, to deconstruct
larger models to determine p -values for interest parameters, and also to get highly
accurate approximations for those p -values. With this as background we have discussed
the Welch & Peers (1963) demonstration that Bayes analysis can reproduce standard
results to the second order, but just in the scalar-parameter exponential model context.
We have then developed the second order version of the vector parameter exponential
model, for general purposes and for seeking vector-parameter extensions of the Welch-
Peers. We view the second order exponential model as a contribution to statistical theory;
some aspects of the vector Welch-Peers have been mentioned in Fraser et al. (2005) and
further aspects will be reported separately (Fraser et al.,2012).
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