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Abstract
Peña and Rodríguez (2002) introduced a portmanteau test for time series which turns out to be more
powerful than those proposed by Ljung and Box (1986) and Monti (1994), and approximated its
distribution by means of a two-parameter gamma random variable. A polynomially adjusted beta
approximation is proposed in this paper. This approximant is based on the moments of the statistic, which
can be estimated by simulation or determined by symbolic computations or numerical integration. Various
types of time series processes such as AR (1) , MA (1) , ARMA (2, 2) are being considered. The proposed
approximation turns out to be nearly exact.

Keywords: Portmanteau test, Moments, Gamma approximation, Beta approximation,
Symbolic computation.

1. Introduction
The zero-mean autoregressive moving average process of order ( , )p q is defined to be a
stationary and invertible solution of the equation, ( ) = ( )t tB X B   , where

2(0, ),t N   1( ) = 1 p
pB B B     and 1( ) = 1 ,q

qB B B     the backshift

operator B being such that =k
t t kB X X  . The 'stX often result from some transformation

of an observed time series such as differencing. The residuals of this model are given by
1ˆ ˆˆ = ( ) ( )t tB B X   , where ˆ( )B and ˆ( )B are polynomials whose coefficients are taken

to be the maximum likelihood estimates of the corresponding parameters. Several authors
such as Box and Pierce (1970), Ljung and Box (1978), McLeod and Li (1983) and Monti



Serge B. Provost, Deepak Sanjel, Susan Z. Sheng

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp415-432416

(1994) proposed diagnostic goodness of fit tests based on the lag k autocorrelation
coefficients of the residuals, ˆ ,t given by 2

= 1 =1
ˆ ˆ ˆ= /n n

k t t k tt k t
r     for = 1, 2, .k  Peña

and Rodríguez (2002) suggested a more powerful portmanteau test whose asymptotic
distribution is chi-square. Lin and McLeod (2006) pointed out that the convergence of
this test statistic to its asymptotic distribution can be quite slow.

The Peña-Rodríguez portmanteau statistic is defined in Section 2. A symbolic
computation methodology as well as a technique involving a recursive formula from
which the moments of the statistic can be determined are described in Section 3. A
polynomially adjusted beta density approximation is introduced in Section 4. In Section
5, such density approximations are shown to be more accurate than the approximations
proposed in Peña and Rodríguez (2002) and (2006).

2. The Peña-Rodríguez Portmanteau Statistic
For stationary time series, the residual correlation matrix of order m is given by

1

1 1

1

1
1ˆ = .

1

m

m
m

m m

r r
r r

R

r r





 
 
 
 
 
 




   


(1)

Peña and Rodríguez ( 2002 ) proposed the following statistic to test for autocorrelations
in the estimated residuals up to lag m :

1/ˆ ˆ= [1 | | ],m
m mD n R (2)

and approximated its distribution by means of a gamma random variable with mean
( 1) / 2 ( )m p q   and variance ( 1)(2 1) / 3 2( )m m m p q    , assuming that the
underlying process is ARMA ( , )p q . Peña and Rodríguez ( 2006 ) showed that a more
accurate approximation can be obtained by making use of

ˆ= log | |,
1m m

nD R
m



 (3)

which is approximately distributed as a gamma random variable with mean
/ 2 ( )m p q  and variance [ (2 1) / 3( 1)] 2( )m m m p q    . We are proposing a more

accurate approximation that is based on the moments of ˆ| |mR .

3. Moments of the Determinant of the Sample Autocorrelation Matrix

Two techniques are being proposed for determining the moments of ˆ| |mR . First, we
discuss the symbolic computational approach.

By making use of symbolic computational packages such as Maple or Mathematica, one
can define an expected value operator E having the following properties:

=1 =1
[ ] = ( )

p p

i i i i
i i

E Y E Y  
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and

=1 =1

( ) = ( ),
p p

s si i
i i

i i

E Y E Y 
where the i 's and is 's are constants and the iY 's are independently distributed random
variables, = 1, ,i p . The Mathematica code needed to implement this operator is
provided in Appendix 2.

In order to determine the moments of ˆ| |mR , we express the elements of the residual

correlation matrix, ˆ
mR , in terms of the quadratic forms, =iQ  iA  where  ( , )nN I0

and = ,i i iA L L kL being a null matrix with the zeros in its thk subdiagonal replaced by

1/ 2 . Then, on expanding the determinant of ˆ ,mR one has a sum of products of quadratic

forms times ( 1)
0

mQ  .  The thh moment of ˆ| |mR is

 ( 1)
0| | /h h m

mE W Q  (4)
where

0 1

1 0 1

1 0

= .

m

m
m

m m
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Q Q Q

W
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

 
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   


In light of Corollary 1 which is proved in Appendix 1, 0Q and 0/ , = 1, 2, , ,iQ Q i m are

independently distributed, and therefore 0Q and ˆ| |,mR which is a function of 1 0/ , ,Q Q 

0/ ,mQ Q are also independently distributed. As a result,

    ( 1)
0

ˆ| | = | | / ( ) .h h h m
m mE R E W E Q  (5)

Since, 0 =Q   0A  with 0 =A I , 0Q is distributed as a chi-square random variable with
n degrees of freedom and its th( 1)h m  moment is

( 1)2 ( ( 1) / 2) .
( / 2)

h m h m n
n

   


(6)

In order to obtain the thh moment of | |mW , we first expand the determinant. This yields a
sum of the products of quadratic forms. Then expressing each of the quadratic forms as

( )

=1 =1
= , = 0,1, , ,

n n
k

k ij i j
i j

Q a k m   (7)

where the ( )k
ija 's are the elements of the matrix kA , and expanding, one obtains a linear

combination of products of powers of independent standard Gaussian random variables,
which on application of the expected value operator yields the thh moment of | |mW .
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For example, the second moment of 2
ˆ| |R can be evaluated as follows when = 3n .

Letting = 2,h Equation (4) becomes

3 2 2 2 2
0 0 1 1 2 0 2

6

6 4 2 2 4 3 2 4 4 2
0 0 1 0 1 0 1 2 0 1 2 0 2

6

2 2 2 4 2 2 3 2 4
0 1 2 1 2 0 1 2 0 2

3( )
2 ( 2 2 )32 ( 6)
2

3( )
2= ( 4 4 4 8 232 ( 6)
2

4 4 4 )

E Q Q Q Q Q Q Q

E Q Q Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q


  

 


    

 

   

(8)

where 3

=1
= ,k

k i i ki
Q  

 so that 2 2 2 2
0 1 2 3= ,Q     2 2

1 1 2 2 3= ( )Q     and 2 2
2 1 3= ( ) ,Q  

which on expanding and simplifying gives
12 10 2 8 4 6 6 4 8 2 10
1 1 2 1 2 1 2 1 2 1 2

12 9 2 7 4 5 6 3 8 10
2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

10 2 8 2 2 6 4 2 4 6 2 2 8 2 10 2
1 3 1 2 3 1 2 3 1 2 3 1 2 3 2 3

7 2 3 5 4
1 2 3 1 2

1 ( 2 3 4 3 2
135135

4 12 12 12 8

4 14 20 32 28 2

12 40
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    

    

     

     

  3 3 6 3 8 3 8 4 6 2 4
3 1 2 3 1 2 3 1 3 1 2 3

4 4 4 2 6 4 8 4 5 2 5 3 4 5 6 5
1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 2 3
6 6 4 2 6 2 4 6 6 6 3 2 7 4 7
1 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3

4 8 2 2 8
1 3 1 2 3

48 12 8 26

43 32 3 16 40 12

10 26 20 4 12 12

8 14 3

           

                

               

     

   

     

     

   4 8 2 9 2 10 2 10 12
2 3 1 2 3 1 3 2 3 34 4 2 ),           

where 1 2,  and 3 are independently distributed (0,1)N random variables whose thk

moment is 0 when k is odd and /2 12 /
2

k k   
 

when k is even. On replacing

, = 1, 2,3,k
i i by the corresponding moments, one has 2

2
ˆ(| | ) = 24412 / 45045E R .

Similarly, it can be verified that the first, third and fourth moments are respectively
74 /105,193184 / 440895 and 6116550 /16731965.

The second approach is based on a general recursive formula for obtaining joint moments
from joint cumulants. Letting =iQ   iA  , = 1, , ,i  where iA is a symmetric matrix
and  ( , ),nN V0 the joint cumulant generating function of 1, ,Q Q is

1
2

11
=1

1( , , ) = ln | | = tr( ) /, , 2
j

Q Q
j

K t t I W W j


  (9)

where
=1

= 2 ( ),i ii
W t VA see for instance Mathai and Provost (1992, Section 3.3). The

joint moments, 1
1 1 1

[( ( )) ( ( )) ] , ,
ss

sE Q E Q Q E Q s


  
    , (in this case,

( ) = tr( )i iE Q AV = 1, ,i  ) can then be determined from the joint cumulants by making
use of the following recursive relationship derived for instance by Smith (1995) :
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where 0,0, ,0 = 1  and
1 1, , m

Ka a  denotes the joint cumulant of 1 1, , mQ Q  of orders

1 1, , ma a  , which is equal to
1 1

1 11 111
1 1
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For example, on applying Corollary 1 of Appendix 1, the thh moment of 2
ˆ| |R is

determined by evaluating
( 1) 3 2 2 2

0 0 1 1 2 0 2( / 2) / 2 ( ( 1) / 2) ( 2 2 ) .h m hn h m n E Q Q Q Q Q Q Q      

In particular, in order to obtain the second moment when = 3,n one has
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6
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and
2 3

2,0,4 2 ,0,4 ,0,
=0 =0

2 3
= = 1287.i k i k
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K
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  
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Thus the second moment of 2
ˆ| |R when = 3n is equal to 24412 / 45045 . The moments so

obtained are of course identical to those determined by means of the symbolic
computational approach. We found the recursive formula to be computationally more
efficient. When neither of these approaches is applicable, the moments can be determined
by simulation or numerical integration.

4. Polynomially-Adjusted Beta Density Approximants

It is shown in this section that given the moments of ˆ| |mR , its distribution can be
approximated in terms of an initial beta distributed approximant.

Let Y be a random variable defined in the closed interval [ , ]a b , whose raw moments
( )hE Y are denoted by ( )Y h , = 0,1,h  . First, the support of Y is mapped onto the

interval [0,1] by means of the transformation
= ( ) / ( ).X Y a b a  (12)

Accordingly, the thj moment of X is

=0

( )( ) = ( ) .
( )

j
j hY

X j
h

hj a
b a
 
 (13)

Then, on the basis of the first d moments of X , a density approximation of the
following form is assumed for X :

=0
( ) = ( ) ,

d
j

j
j

g x x x  (14)

where ( )x is a base density function and
=0

d j
jj
x is a polynomial adjustment. In this

case, the base density is assumed to be that of a ( 1, 1)beta    random variable. Thus
( 2)( ) = (1 ) , 0 < < 1,

( 1) ( 1)
x x x x  
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(1) (2)= (1) 1
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X X
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X X
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



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and
1= (1 (1)) 1.

(1)X
X

 



  (17)
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Its thj moment is given by

=0

=0

( 2) ( 1 )( ) =
( 1) ( 2 )

( 1 )
= .

( 2 )

j

k
j

k

jm j
j

k

k

  
  



 

     
     

 

  





The coefficients j are determined by equating the thh moment of X to the thh moment
obtained from the approximate distribution specified by ( )g x . That is,

1

0
=0

1

0
=0

=0

( ) = ( ) d

= ( )d

= ( ), = 0,1, , ,

d
h j

X j
j

d
h j

j
j

d

j
j

h x x x x

x x x

m h j h d

  

 









 

 

which yields a system of linear equations whose solution is
1

0

1

1(0) (1) ( 1) ( )
(1)(1) (2) ( ) ( 1)

= .

( )( ) ( 1) (2 1) (2 )

X

d X

m m m d m d
m m m d m d

dm d m d m d m d


 

 

    
        
    
    

     




     


(18)

Finally, in light of the transformation specified by (12) , the beta polynomial density
approximant of Y is given by

1
( )

y ag
b a b a

 
   

(19)

for < <a y b .

5. Simulation Studies
Five types of processes are being considered:

Gaussian =t tX  ;
AR (1) 1= 0.5t t tX Y  ;
MA (1) 1= 0.5t t tX    ;
ARMA (1,1) 1 1= 0.7 0.4t t t tX Y    ;
ARMA (2, 2) 1 1 1 2= 0.9 0.4 1.2 0.3t t t t t tX Y Y         ;

where the t 's are independently distributed standard normal variables.
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Note that for non-Gaussian processes with associated covariance matrix V , the quadratic
forms iQ defined in Section 3 are in fact equal to 1/2(V   1/2) (iA V   ) , where V is the
covariance matrix associated with a given process. The covariance matrices associated
with MA (1) and AR (1) processes can be obtained for instance from Box and Jenkins
(1976) p.57 and p.69, respectively, while those associated with ARMA (1,1) and ARMA
(2, 2) processes are available for example from the Mathematica package
InverseCovarianceMatrixARMA prepared by McLeod (2005).

After obtaining the moments of ˆ| |mR either from the techniques described in Section 3 or
by simulations (or numerical integration), we determined a polynomially-adjusted density
approximant as defined in Section 4—with = 0a and = 1b .

In order to compare our approximation to the distribution of ˆ| |mR with Peña and

Rodríguez's two-parameter gamma approximations to the density functions of ˆ
mD as

defined in Equation (2), we apply a certain change of variables to the latter ones.

Peña and Rodríguez's (2002) proposed approximating the density function of ˆ
mD with

1

ˆ ( ) = , > 0,
( )

x

Dm

x ef x x
  


 


where  and  are specified by (22) and (23) . Since, according to Equation (2),

ˆˆ| |= (1 ) ,mm
m

DR
n

 (20)

one has the following density approximation for ˆ| |mR :

  ( 1)

11 1 1[ (1 )]
ˆ

1= [ (1 )] | ( ) |,
( )m

mn ym m
R

g y n y e n y
m







   


(21)

where
23 [( 1) 2( )]=

2[2( 1)(2 1) 12 ( )]
m m p q

m m m p q
   

   
(22)

and
3 [( 1) 2( )]= ,

2( 1)(2 1) 12 ( )
m m p q

m m m p q
   

   
(23)

which will be referred to as the first transformed gamma density.

Similarly, one has from the approximation proposed in Peña and Rodríguez's (2002) as
given in Equation (3)

1ˆ| |= exp{ }.m m
mR D

n


  (24)

Since mD follows a gamma distribution, one has

 
[ log( )]( 1) 1

ˆ
1= [ log( )] | |,

( ) 1 1m

n y
m

R

n nh y y e
m m y

 


   
  

(25)
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which will be referred to as the second transformed gamma density, where
23( 1){ 2( )}=

2{2 (2 1) 12( 1)( )}
m m p q

m m m p q
   

   
(26)

and
3 ( 1){ 2( )}= .

2 (2 1) 12( 1)( )
m m m p q

m m m p q
   

   
(27)

Figure 1: First transformed gamma CDF approximation (black line), second transformed
gamma CDF approximation (dots) and proposed polynomially adjusted beta CDF
approximation (large dots) superimposed on the simulated CDF (in grey) for = 10n and

= 3m [Normal process]

Figure 2: First transformed gamma CDF approximation (black line) and proposed
polynomially adjusted beta CDF approximation (large dots) superimposed on the
simulated CDF (in grey) for = 10n and = 3m [MA (1) process]
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Figure 3: First transformed gamma CDF approximation (black line) and proposed
polynomially adjusted beta CDF approximation (large dots) superimposed on the
simulated CDF (in grey) for = 10n and = 3m [AR (1) process]

Figure 4: First transformed gamma CDF approximation (black line), second transformed
gamma CDF approximation (dots) and Proposed Polynomially Adjusted Beta CDF
approximation (large dots) superimposed on the simulated CDF (in grey) for = 36n and

= 12m [Normal process]
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Figure 5: First transformed gamma CDF approximation (black line), second transformed
gamma CDF approximation (dots) and beta CDF approximation (large dots)
superimposed on the simulated CDF (in grey) for = 36n and = 12m [MA (1) process]

Figure 6: First transformed gamma CDF approximation (black line), second transformed
gamma CDF approximation (dots) and beta CDF approximation (large dots)
superimposed on the simulated CDF (in grey) for = 36n and = 12m [AR (1) process]
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Figure 7: First transformed gamma CDF approximation (black line), second transformed
gamma CDF approximation (dots) and beta CDF approximation (large dots)
superimposed on the simulated CDF (in grey) for = 36n and = 12m [ARMA (1,1)
process]

Figure 8: First transformed gamma CDF approximation (black line) and beta CDF
approximation (large dots) superimposed on the simulated CDF (in grey) for = 36n and

= 12m [ARMA (2, 2) process]

Figures 1 through 8 include plots of the proposed polynomially adjusted beta cdf
approximation (with = 8d ) superimposed on the simulated cdf based on 100,000
replications and the Peña-Rodríguez transformed gamma approximations ˆ|

( )|Rm
g  and

ˆ|
( )|Rm

h  for various types of processes with = 10n , = 3m and = 36n , = 12m . Note that
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in light of (22) and (23), one needs ( ) < ( 1)(2 1) / (6 )p q m m m   . Accordingly, ˆ|
( )|Rm

g 

is not defined for ARMA (1,1) and ARMA (2, 2) processes when = 3m . The second
transformed gamma approximation which follows from that proposed in Peña and
Rodríguez (2006) requires that ( ) < (2 1) / (6( 1))p q m m m   , so that this
approximation is unavailable for the ARMA (2, 2) process when = 12m .

Tables 1, 2 and 3 indicate that the polynomial adjustment yields even more accurate
results, although the two-moment beta approximation already proves quite adequate.

CDF Simulation Beta Approximation Adjusted Beta
0.01 0.13566 0.14968 0.13626
0.05 0.26905 0.27704 0.26962
0.10 0.36126 0.36273 0.36076
0.25 0.52649 0.52235 0.52686
0.50 0.70134 0.69799 0.70125
0.75 0.83881 0.84012 0.83869
0.90 0.92009 0.92476 0.91986
0.95 0.95144 0.95637 0.95117
0.99 0.98413 0.98729 0.98440

Table 1: Percentiles under a normal process (n = 10 and m = 3)

CDF Simulation Beta Approximation Adjusted Beta
0.01 0.04764 0.04168 0.04850
0.05 0.11851 0.11288 0.11838
0.10 0.17862 0.17473 0.17815
0.25 0.31556 0.31680 0.31581
0.50 0.50941 0.51280 0.50860
0.75 0.70621 0.70601 0.70635
0.90 0.84562 0.84209 0.84544
0.95 0.90447 0.89989 0.90459
0.99 0.96862 0.96456 0.96805

Table 2: Percentiles under an MA(1) process (n = 10 and m = 3)

CDF Simulation Beta Approximation Adjusted Beta
0.01 0.02417 0.01537 0.02420
0.05 0.06924 0.06045 0.06979
0.10 0.11402 0.10958 0.11397
0.25 0.23988 0.24373 0.23998
0.50 0.45444 0.45798 0.45395
0.75 0.68768 0.68430 0.68745
0.90 0.84452 0.84258 0.84485
0.95 0.90732 0.90648 0.90664
0.99 0.96887 0.97188 0.96934

Table 3: Percentiles under an AR(1) process (n = 10 and m = 3)
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Appendix 1.  The Moments of Certain Ratios of Quadratic Forms
It is shown that R , the ratio of quadratic forms as defined in Theorem 1, is distributed
independently of its denominator.

Theorem 1.   Let = ' / 'R PAP PX X X X where P is an idempotent matrix of rank r p ,
A is a symmetric matrix and ( , )pN IX 0 ; then R is distributed independently of

'PX X .

Proof: Since P is idempotent, the matrices PAP and P commute, they can be
diagonalized by means of the same orthogonal matrix. Let T be such an orthogonal
matrix. Then

=P T T  (28)

=1
  = ' ,

p

i i i
i
 t t (29)

where the columns of T are the normalized eigenvectors corresponding to the
eigenvalues of P and 1= Diag( , , ),p   1, , p  being the eigenvalues of P . We
note that in light of the representation of P given in (28), the i 's can be reordered
(along with the it 's). Since P is an idempotent matrix of rank ,r r of the i 's will be
equal to one while p r will be equal to zero. Thus we can take  to be Diag
(1, ,1,0, ,0)  where the first r elements of the diagonal are equal to one.

Now, consider the representation of PAP obtained from the spectral decomposition
theorem, that is,

= .PAP TDT  (30)

Since =P T T  , we also have
= .PAP T T AT T   (31)

Then clearly, the diagonal matrix =D T AT  will be of the form Diag
1( , , ,0,r  , 0). Since T is an orthogonal matrix, =  ( , ),pT N IZ X 0 and we have

2
* *

=11
* *

2

=1

' '= =
' '

Diag( , , )' = = ,
'

r

k k
kr

r

k
k

PAP TDTR
P T T

Z
D

Z


 












X X X X
X X X X

Z ZZ Z
Z Z Z Z


(32)

with *
1= ( , , ) ( , ).r rZ Z N IZ 0 

From a representation of spherically symmetric random vectors given by Cambanis,
Huang and Simons (1981), we can express *,Z which has a spherically symmetric
distribution, as the product of *|| ||Z and ( ) ,rU a random vector that is uniformly
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distributed on the unit hypersphere in r , *|| ||Z and ( )rU being independently

distributed. We note that ( )rU can be expressed as
*

*|| ||
Z
Z

since

*
* *

*=|| || .
|| ||

ZZ Z
Z

(33)

Thus, * * * 2=|| ||Z Z Z where * * 'PZ Z X X and 2
=1

,r
k kk

R Z which is a function of the

squares of the components of * */ || ||,Z Z are independently distributed.

Corollary 1. Under the assumptions of Theorem 1,

 ' '' = '
' '

h h
hPAP PAPE P E E P

P P
                         

X X X XX X X X
X X X X

(34)

and thus,
' [( ' ) ]= .

' [( ' ) ]

h h

h

PAP E PAPE
P E P

  
  
   

X X X X
X X X X

(35)
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Appendix 2.  Mathematica Code to Obtain the Moments of | |mW Symbolically

ClearAll[ , , ];A K m
A[w_,n_]:= [ , ] =A w n
If[w 0 Table[If[Abs[i ]==w&&w 0,1 2,0] { } { , }] [ ]];j i n j n IdentityMatrix n> , > / , , , ,

j_RVQ[ ] = True;IntegerX

ClearAll[ ] ;
RVQ[g _[a __ ]]:=RVQ[ ];RVQ[aa _ , b __ ]:=If[RVQ[ ],True, RVQ[ ]];a b
RVQ[z _ ]:=False;
SetAttributes[ ,{Listable}] [c ; _ ]:= /;!RVQ[ ];c c
HoldPattern[ [Plus[a __ ]]]:=Map[ , Plus[ ]];a
[c _ v _ ]:= [ ]/;!RVQ[ ];c v c

HoldPattern[ [Times[a __ ]]]:=Map[ ,Times[ ]];a
[RV _ k _ .] :=(2 / Pi) (1/ 2)Gamma[( 1) / 2](2IntegerPart[ / 2] 1);k k k k    

Q1[s _ , n _ , k _  2=1 =1
]:=Q1[ , , ] = [ , ][[ , ]] ;

sn n
i jj i

s n k A k n i j X X 

DiscreteMath<< Combinatorica
c1[r _ , m _ ]:=Compositions[ , ]r m
Q1[ c1[2, 2][[3,1]] ,3,3]( )

 41 2 2 3X X X X
Expand[Product[Q1[ c1[2 2][[3 ]] 3 ] c1[2 2][[3 ]] ! { 2 2}]]i i i i( , , ), , / ( , , ) , , ,

4 4 3 4 2 4 2 4 3 4 4
1 2 1 2 3 1 2 3 1 2 3 2 3

1 12 3 2
2 2

X X X X X X X X X X X X X   

ClearAll[S6e];
S6e[r _ , n _ , m _ ]:=

  S6e[ ] !Gamma[n 2] 2 Gamma[2 2]

Sum[ [Expand[Product[Q1[ c1[r ][[ ]] ] c1[r ][[ ]] !
1 ]]] 1 Length[c1[ ]]

r n m r r n

e m j i n i m j i
i m j r m

2r, , = / / /

( , , ), , / ( , , ) ,
{ , , } ,{ , , , }]
mf6 Table[S6e[ 10,3] { ,0, 4}];r r= , ,
mf6

1 149 6529 7624931, , , ,
5 2240 201600 35481600

 
 
 
mom Table mf6[[j]]10 { 1 5}j  

j 1= , , ,

745 32645 190623251, 2, , ,
112 1008 88704

 
 
 

The Mathematica code for the other calculations is available from the authors upon

request.


