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Abstract
We investigate the conditional power under the framework of linear regression models so that it can be
applied to most actual clinical trials in which multiple treatment effects and covariate effects are included.
It is well known that the standard power of a regular test for a treatment contrast depends on unknown
parameters only through the contrast itself. However it is not true in general for conditional power.
Conditions for this to happen are established here and some instances are illustrated. We also show that
similar arguments can be made about the sufficient statistics for the conditional power.
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1. Introduction
For ethical and financial reasons, early modifications or in rare cases early termination of
the study is often desirable in a long-term clinical trial if the accumulated data during the
study has already shown overwhelming evidence of efficacy or the null result seems
inevitable. This concern has motivated many statisticians to investigate when and how
the accrued data should be examined and under what conditions the clinical trial should
be terminated. Such a statistical inferential process performed at interim stages in a trial
is called interim analysis. It has attracted more and more attention of both academic and
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industrial researchers over the past decades, and a number of statistical approaches have
been developed and are made available in the literature.

One class of these general methods is identified as group-sequential procedures.
Armitage, Mcpherson and Rowe (1969) first introduced a sequential method using
repeated significance testing. The idea is that after every observation, a two-sided
significance test is conducted. If a nominal significance level   is obtained, stop the trial
in favor of the alternative hypothesis. Here   and the maximum number of observations
are chosen so that the overall significance level  and the power are maintained at the
pre-specified levels. However, this method is criticized for its need for continuous
unblinding of the data and assessment after every observation, which is very difficult to
meet in practical clinical trials. To circumvent this disadvantage, Pocock (1977) modified
Armitage's scheme and proposed a group sequential method in which the data are tested
at equally-spaced intervals, that is, after every equally divided group of patients enrolled
in the trial. The sample size of each group and the nominal significance are determined to
control the overall type I and type II error rate as required. Later, DemMts and Ware
(1980) extended Pocock's results to trials with a one-sided hypothesis. Gould (1982)
further generalized these procedures by bringing two-end stoping boundaries to allow
early termination of a trial with acceptance of null hypothesis. Following the above
fundamental contributions on this topic, additional theory has also been developed for
more complex models in recent years. Lee and DeMets (1991) obtained group sequential
tests for a linear mixed-effects model. Tsiatis (1982) worked on parametric survival
models. Gu and Ying(1995) investigated Cox's proportional hazards regression model.
Gange and DemMets (1996) considered the sequential analysis of correlated response
with non-normal distributions using the generalized estimating equations. For a more
comprehensive review of these developments, the interested reader may refer to Jennison
and Turnbull (2000).

In most cases, sequential approaches will require less patients to be enrolled than a fixed
sample size design. However, the complexity in design and realization as well as the
administrative burden obscured this advantage so that their application are relatively
limited in many clinical trials, especially those conducted in multiple centers.
Practitioners prefer methods which are simple to be implemented and interpreted. We
will not discuss the sequential family further in this paper, turning our main interest to
another important class of strategies adopted in interim analysis.

The second cluster of statistical tools arise from a very natural question:"Based on the
data accrued so far, what is the likelihood of a significant result if the trial is completed?"
Unlike those sequential procedures which are purely driven by interim data, these latter
approaches combine the current data and the potential future outcome together. The key
consideration lies in the calculation of the conditional power, which is the probability of
rejecting the null hypothesis at the planned end of study given the existing data at the
interim stages, along with certain speculation about future data. If this probability equals
to or exceeds a pre-specified threshold, a termination of the trial is made in favor of or
against the null hypothesis. These procedures are called conditional power methods, also
well known as stochastic curtailment methods termed by Lan, Simon and Halperin
(1982), who initiated studies on this class.
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In their thought-provoking paper, Lan, Simon and Halperin (1982) developed an elegant
theory on stochastic curtailment for Brownian motion. The test statistic in a fixed-
sample-size trial for testing 0 : = 0H  versus 1 1 1: = ( > 0)H    with significance level
 and power 1  is expressed as ( ) = ( ) ,0 1S t B t t t   , where ( )B t is a standard
Brownian motion process. It immediately follows that the conditional distribution of

(1)S given ( )S t is normal with mean ( ) (1 )S t t  and variance 1 t , and the
conditional probability of rejecting 0H upon completion of the trial given ( )S t ,

expressed as { (1) > | ( )}P S z S t  , is equal to ( ) (1 )( )
1

S t t z
t

  



, where  is the c.d.f

of the standard normal and ( ) = 1z   . A stopping rule based on the above probability
is then defined as: accept 0H if

1
< 1P  , which results in a type II error rate bounded

by /  . A similar rule in favor of 1H is obtained as well but less utilized due to its
practical demands.

The simplicity as well as flexibility of the this method is very attractive to practitioners,
but it also raises a problem on how to choose the value of the tested parameter  under
which the conditional power is calculated. As Pepe and Anderson (1992) has argued, it is
debatable for Lan, Simon and Halperin (1982) to compute the conditional power only
under the alternative hypothesis 1=  , which is often chosen in discretion. Jennison and

Turnbull (1990) suggested replacing 1 with ̂ which is equal to /nS n , the sample mean
of the interim data. Pepe and Anderson (1992) considered a similar approach but used a
more pessimistic value of ( ) /nS n n for  . Finally, Betensky (1997) modified

( ) /nS n n to ( ) /nS a n n to obtain a less conservative result. In these three
procedures, the conditional probability is independent of the alternative hypothesis.
Although many procedures based on conditional power have been developed for interim
analysis, possibly for the purpose of convenience, only trials of one or two arms are
considered.

In this article, we will discuss the conditional power under the framework of linear
regression models so that it can be applied to most actual clinical trials in which multiple
treatment effects and covariate effects are included. It is well known that the standard
power of a regular test for a treatment contrast depends on unknown parameters only
through the contrast itself. However it is not true in general for conditional power.
Conditions for this to be true for conditional power are established here and some
instances are illustrated. We also show that similar arguments can be made about the
sufficient statistics for the conditional power.

2. Models without covariate effects

2.1 Model description and the full analysis plan
Let us start with a commonly used clinical trial discussed by many researchers as listed in
the previous section. It consists of two arms, one arm for treatment A and another arm for
treatment B. We are interested in comparison of main effects of treatment A and
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treatment B. The responses obtained from subjects are supposed to follow the model
described below:

=ij i ijY e  (1)
where = ,i A B , index of treatment; = 1,... ij n , index of subject; ijY is the response of the

thj subject assigned to the thi treatment; i is the main effect of the thi treatment; ije are

i.i.d random variables from a 2(0, )N  ,  being known.

At the scheduled end of the study, a z-test is conducted for testing 0 0: A BH d  

versus 1 0: >A BH d  . Let AY and BY be the mean responses based on treatment A and
B respectively. Then, we reject the null hypothesis if >A B vY Y c ; otherwise, we accept
it. Here vc is the critical value and will be discussed next.

Let us denote by AN and BN , the respective sample sizes needed for treatment A and B
in order to ensure the prescribed significance level  and power 1  ( at pre-specified

1d ). Then we have

1 0

2
1 0

2 2

=

( )1 1 =
( )

v

A B

d z d z
c

z z

d d
N N z z

 

 

 










(2)

where 1= (1 )z   and 1= (1 )z   . (3)

Remark 2.1.1

1. Both type I and type II errors are controlled for any ,A Bn n as long as
1 1 1 1

A B A Bn n N N
   .

2. If 1 1 1 1

A B A Bn n N N
   , then vc is given by

0
1 1= .v

A B

c z d
n n   (4)

The actual power will be greater than 1  if 1 1 1 1

A B A Bn n N N
   .

3. If = =A BN N N , then
2 2

2 2
1 0 1 0

2 2

2 ( )2= =
( ) ( )

( )

z z
N

d d d d
z z

 

 






 


(5)

which minimizes A BN N given 1 1

A BN N
 as in (3) .
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Note: 0d is set to 0 in the rest of this paper.

2.2 Conditional power
At a certain stage during the trial, the interim analysis is performed. Without loss of
generality, we assume that the whole study consists of just two stages, stage 1 and stage
2.

Notations:
Let 1 2, ,i i in n n be the number of observations under treatment i at stage 1, stage 2 and the
full study respectively.

Let 1 2, ,i i iY Y Y be the average response for treatment i at stage 1, stage 2 and the full study
respectively.

Let 1 2ˆ ˆ ˆ, ,i i i   be the estimators for i at stage 1, stage 2 and the full study respectively.

Let 1 1= , =A B
A B

A B

n nr r
n n

.

Let = A B   .

Let 1D and 2D be the set of responses at stage 1 and stage 2 respectively.

The conditional power, cP , which is the probability of rejection of the null hypothesis at
the end of the study conditional on the data 1D obtained at stage 1 is formulated as

1= ( > | ).c A B vP P Y Y c D (6)

Note that for = ,i A B , 1 2= (1 )i i i i iY rY r Y  . So (6) can be written as

1 1 2 2 1

2 2 1 1 1

= ( (1 ) (1 ) ) > | )
= ((1 ) (1 ) > | ).

c A A B B A A B B v

A A B B v A A B B

P P r Y r Y r Y r Y c D
P r Y r Y c r Y r Y D

    

    
(7)

Note that 1D and 2D are independent. The following theorem is immediate.

Theorem 2.2.1Under normality assumption, cP , the probability of rejecting the null
hypothesis upon completion of the study conditional on the interim data 1D is given by

1 1(1 ) (1 )= ( ) = ( ), .
1 1

A A A A B B B B v
c

A B

A B

r Y r r Y r cP T say
r r

n n

 



     
 

 


(8)

Further, the following corollary follows immediately.
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Corollary 2.2.1The conditional power, cP , depends on 1, ,A B AY  and 1BY only through

A B  and 1 1A BY Y if and only if =A Br r . And in that case,
( )= ( )

1 1
v

c
A B

A B

v r cP
r r

n n

 



  


 


(9)

where = =A Br r r , = A B   and v is the value of 1 1A BY Y .

2.3 Conditional probability on the observed difference
The purpose of the interim analysis is to explore the possibility of early termination of an
experiment. This is usually done by examining the difference 1 1A BY Y and carrying out a
test for 0H at that stage. We, therefore, take the view that the conditional probability

1( > | )A B vP Y Y c D also needs to be evaluated when 1D provides information only on

1 1A BY Y above, and we denote it by odP . To simplify the notation, let = A BU Y Y ,

1 1= A BV Y Y and 1= AW Y , then the joint distribution of U and V is bivariate normal.

*2
2

*

1 1
( , )11

U
N

V
r






                

 (10)

where,

*

1 1

*2 2

1 1

= 1 1

1 1= ( ) .

A B

A B

A B

n nr

n n

n n
 







The conditional distribution of U given V is also normal with
*

* *2

( | = ) = ( )
( | = ) = (1 ) .

E U V v v r
Var U V v r

 



 



So we have

*

* *

*

* *

= ( > | = )

( )= 1 ( )
1

( )= ( ).
1

od v

v

v

P P U c V v
c v r

r
v r c

r

 


 



  



  


 (11)

Now, we may ask ``what is the connection between cP and odP ? " This is answered by
the following theorem.
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Theorem 2.3.1The conditional expectation of cP given V is odP , namely,
= ( | )od cP E P V (12)

Proof.Since conditioning on 1 1( , )A BY Y is equivalent to conditioning on ( , )W V , we have

1 1= ( > | , ) = ( > | , ).c v A B vP P U c Y Y P U c W V

Thus,
( | ) = ( > | , ) ( | )

= ( | , ) ( | )

= ( | , ) ( | )

= ( , , ) ( , ) ( , ) ( )

= 1 ( ) ( , , )

= ( , ) ( )

= ( | )

= ( > | = )
=

c v

cv

cv

cv

cv

cv

cv

v

od

E P V P U c W V f w v dw

f u v w duf w v dw

f u v w f w v dwdu

f u v w f v w f w v f v dwdu

f v f u v w dwdu

f u v f v du

f u v du

P U c V v
P































 

 

 

 





(13)

In Corollary 2.2.1, we have observed that cP coincides with odP when =A Br r . Further in
Theorem 2.3.1, we have established that ( | ) =c odE P V P . It remains to be seen how close
is cP to odP when A Br r . Towards this end, we first examine the properties of T such
that = ( )cP T , given 1 1A BY Y .

From (8), we can rewrite T in terms of V and W as
( )( ) ( )= .

1 1
A B A B v

A B

A B

r r W r V cT
r r

n n

  



     
 


(14)

Then the following useful observations can be made.

Fact 2.3.1Conditional on V , T has normal distribution with mean T and variance 2
T ,

where T and 2
T are given by

1 1 1 1( )= ( | = ) =
1 1

A B B A A B v
T

A B

A B

v n r n r n n cE T V v
r r

n n

 


    
 


(15)
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and,
2 2

1 1= ( | = ) = ( ) (1 ) (1 ) .T A B B A A B A B A BVar T V v r r n r n r n n n n       (16)

Proof.Note that the joint distribution of W and V is bivariate normal.

1 1 2
2

1 1 1

1 1

( , )
1 1 1
A AA

A A B

n nW
N

V
n n n






 
                
 

 (17)

with

1

1 1
2

1 1

( )( | = ) =

( | = ) = .

A B

A B

A B

v nE W V v
n n

Var W V v
n n

 



 




(18)

1

1 1
2

1 1

( )( | = ) =

( | = ) = .

A B

A B

A B

v nE W V v
n n

Var W V v
n n

 



 




(19)

Then, (15) and (16) follow.

Fact 2.3.2 If = =A Bn n n , then (15) and (16) can be simplified as
2 ( )=

2
A B A B v

T
A B

r r v r r c
r r
n

 


   
 

(2)

and,
2 2= ( ) / (2 )( ) .T A B A B A Br r r r r r     (3)

Fact 2.3.3 If = =A Bn n n , the variance of cP conditional on V can be approximated by
2

2
2( )( | )

(2 )( )

T
A B

c
A B A B

r rVar P V e
r r r r









  

(4)

where T is given by (20) .

This can be obtained by the standard delta-method. For completeness, the proof is given
in the Appendix.

Theorem 2.3.2 If = =A Bn n n , given  and (< 1) , there exists a choice of rd such that
if | |<A B rr r d , then (| |> ) <c dP P P   , and rd is given by:

2

2= 2 (2 )( )
T

r A B A Bd e r r r r


      (5)
where T is as in (20) .
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3. Model containing a covariate with common coefficient
3.1 Model description and the full analysis plan
The trial we consider here still consists of two arms, one arm for treatment A and another
for treatment B; but the response differs from (1) and is expressed below:

=ij i ij ijY x e   (6)
where = ,i A B , index of treatment; = 1,... ij n , index of subjects; ijY is the response of the

thj subject in the thi treatment; i is the main effect of the thi treatment;  is the
common coefficient of covariate; ijx is the covariate value on the thj subject in treatment

i ; ije 's are i.i.d random variables from a 2(0, )N  ,  being known.

As in Section 2.1, a z-test for testing the null hypothesis 0 0: A BH d   is conducted at
the planned end of the study. But the test statistic is ˆ ˆA B  rather than A BY Y . ˆA and
ˆB are the least square estimators for A and B respectively and are computed as

=1 =1

2 2

=1 =1

ˆˆ =
ˆˆ =

( ) ( )
ˆ = ,

( ) ( )

A A A

B B B
n nA B

Aj A Aj Bj B Bj
j j

n nA B

Aj A Bj B
j j

Y x

Y x

x x Y x x Y

x x x x

 

 







  

  

 

 

(7)

where ̂ is the least square estimator for  ; AY and BY are the mean responses for
treatments A and B respectively; Ax and Bx are the means of covariates for treatments A
and B respectively. For convenience in notation, we let XSS denote the denominator in
(25), namely,

2 2

=1 =1
= ( ) ( )

n nA B

X Aj A Bj B
j j

SS x x x x   
which is the sum squares of covariates within arms.

Remark 3.1.1
1. Recall that, ˆA , ˆB and ̂ are the BLUEs for A , B and  respectively and their

variance expressions are as follows:
2

2

2

1ˆ( ) = ( ) = ,

ˆ( ) = .

i
i

i X

X

xVar i A B
n SS

Var
SS

 





It is easily seen that the variances of ˆA , ˆB under this model are larger than those
under model without covariates, and the two expressions will be closer if the C.V of
covaritates goes to  . Further, the variance of ̂ will shrink to 0 as XSS becomes
sufficiently large.
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2. ˆA and ̂ as well as ˆB and ̂ are independent, but ˆA and ˆB are correlated,
and the covariance is given by

2

ˆ ˆ( , ) = .A B A B
X

Cov x x
SS
 

3. The variance of ˆ ˆA B  is given by
2 2ˆ ˆ( ) = {1/ 1/ ( ) / } .A B A B A B XVar n n x x SS      (8)

Obviously, this variance does not depend on  and is minimized when =A Bx x ,
and remains the same as the one under the model without the covariate.

With (26), the critical value vc and required sample size under this setup can be obtained
as

1 0

2 2
1 0

2 2

=

( ) ( )1 1 = .
( )

v

A B

A B X

d z d z
c

z z

d d x x
N N z z SS

 

 

 





 
 



(27)
1 0

2 2
1 0

2 2

=

( ) ( )1 1 = .
( )

v

A B

A B X

d z d z
c

z z

d d x x
N N z z SS

 

 

 





 
 

 (28)

Remark 3.1.2

1. Both type 1 and type 2 errors are controlled for any ,A Bn n as long as
1 1 1 1

A B A Bn n N N
   .

2. When 1 1 1 1A B A Bn n N N   , then vc is given by
2

0
( )1 1= .A B

v
A B X

x xc z d
n n SS


   (29)

3. Given 1 1A BN N , A BN N is minimized when = =A BN N N , and N is given by

2 2
1 0

2 2

2= .
( ) ( )

( )
A B

X

N
d d x x

z z SS 
 




(30)

4. By comparing (4) with(29) and (5) with (30), we see that both vc and N here are
greater than or equal to those under model without covariate and further, the two are
equal if and only if =A Bx x . Therefore, in design of this trial, it is prudent to adopt a
design where the variance of the covariate within treatments remain as large as
possible while the difference of the means of the covariate values between
treatments remains as small as possible.
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5. If 2( )A Bx x is appreciably large, then no matter what the sample size is, the
expected power will be hard to achieve.

3.2 Conditional power

As in the previous section, the conditional power is evaluated when 1An and 1Bn patients
are enrolled in arms A and B respectively at stage 1.

Notations:

Let 1 2, ,i i in n n be the number of observations under treatment i at stage 1, stage 2 and full
study.

Let 1 2, ,i i iY Y Y be the average response for treatment i at stage 1, stage 2 and full study.
Let 1 2, ,i i ix x x be the average of covariate for treatment i at stage 1, stage 2 and full study.
Let 1 2ˆ ˆ ˆ, ,i i i   be the estimators for i at stage 1, stage 2 and full study.

Let 1 2
ˆ ˆ ˆ, ,   be the estimators for  at stage 1, stage 2 and full study.

Let 1 2,D D be the set ( ijY ) in stage 1 and stage 2 respectively.
Let 1 2,J J be the set of indices of subjects in stage 1 and stage 2 respectively.

Let 2 21 1
1 1 1=1 =1

= ( ) ( )n nA B
X Aj A Bj Bj j

SS x x x x    .

Let 2 22 2
2 2 2=1 =1

= ( ) ( )n nA B
X Aj A Bj Bj j

SS x x x x    .

The conditional power, cP , is formulated as

1ˆ ˆ= ( > | ).c A B vP P c D  (31)

Note that for = ,i A B , ˆˆ =i i iY x  and 1 2= (1 )i i i i iY rY r Y  . So we have

1 1 2 2 1

2 2 1 1 1

ˆ= ( (1 ) (1 ) ( ) > | )
ˆ= ((1 ) (1 ) ( ) > | ).

c A A B B A A B B A B v

A A B B A B v A A B B

P P r Y r Y r Y r Y x x c D

P r Y r Y x x c r Y r Y D





      

       (32)

Before further simplification for (32), let us first introduce the following facts.

Fact 3.2.1 The conditional expectation and variance of ̂ on 1D are given by

1 2 2

2 1

2 2

2 1

2 2
22 2 2 2 2

1 2

1ˆ( | ) = { ( ) ( ) ( )

( ) ( ) ( ) }

( ) ( )ˆ( | ) = .

A A A A Aj Aj A Aj A Aj
j J j JX

B B B B Bj Bj B Bj B Bj
j J j J

X A A A B B B

X

E D n x x x x x x x Y
SS

n x x x x x x x Y

SS n x x n x xVar D
SS

  

 

 

 

 

    

     

   

 

 
(33)
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Proof. Notice that,

1 1

2 2

1ˆ = { ( ) ( )

( ) ( ) }.

Aj A Aj Bj B Bj
j J j JX

Aj A Aj Bj B Bj
j J j J

x x Y x x Y
SS

x x Y x x Y


 

 

  

   

 

 
(34)

and that for 1j J , AjY and BjY are constants given 1D ; for 2j J , because of
independence,

2 1 2

2 1 2

2
2 1 2

( , | ) = ( , ) =

( , | ) = ( , ) =

( , | ) = ( , | 1) = .

Aj Aj A Aj

Bj Bj B Bj

Aj Bj

E Y j J D E Y j J x
E Y j J D E Y j J x

Var Y j J D Var Y j J D

 

 



  

  

 

(35)

Remark 3.2.1

1. From (33), we see that 1
ˆ( | )E D is a function of  and 1D as well as of A and

B . However, 1
ˆ( | )E D depends only on A B  if and only if

2 2 2 2( ) = ( )A A A B B Bn x x n x x  . Moreover, 1
ˆ( | )E D is a function of just  and 1D if

and only if 1 2= =A A Ax x x and 1 2= =B B Bx x x .

2. (33) can also be written as
1 2 1 1 1 1 1 1

1 1

2 2 2 2 2 2

( ) ( )ˆ ˆ( | ) =

( )( ) ( )( ) .

X X A A A A B B B B

X X X X

A A A A A X B B B B B X

SS SS n x x Y n x x YE D
SS SS SS SS

n x x x SS n x x x SS

  

   

 
  

     
(36)

So from (36), it follows that:
(i) 1 1

ˆ ˆ( | )E D  ;

(ii) 1
ˆ( | )E D  .

However, as expected, ˆ( ) =E   regardless of the values assumed by the other
parameters. Moreover, in case 1 2= =A A Ax x x , 1 2= =B B Bx x x , (36) simplifies to

1 1 1 2
ˆ ˆ( | ) = .X X X XE D SS SS SS SS   (37)

3. 1
ˆ( | )Var D does not depend on 1D , A , B and  .

Fact 3.2.2 The covariance between ̂ and 2AY , ̂ and 2BY conditional on 1D are given
by:

2
2 1 1

2
2 1 1

ˆ( , | ) = ( )
ˆ( , | ) = ( ) .

A A A

B B B

Cov Y D x x

Cov Y D x x

 

 




The proof readily follows from equation(35).
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Lemma 3.2.1 Let 2 2
ˆ= (1 ) (1 ) ( )A A B B A BT r Y r Y x x     so that we rewrite (32) as

1 1 1= ( > | )c v A A B BP P T c r Y r Y D  . Then we have

1 2 2

1

2 2
1 1

2
2 2

( | ) = (1 ) (1 ) {(1 ) (1 ) }
ˆ( | )( )

1 1 ˆ( | ) = { } ( ) ( | )

( ){(1 )( ) (1 )( )}

A A B B A A B B

A B

A B
A B

A B

A B A A A B B B

E T D r r r x r x

E D x x
r rVar T D x x Var D

n n
x x r x x r x x

  



 



      

 
 
  

      

(38)1 2 2

1

2 2
1 1

2
2 2

( | ) = (1 ) (1 ) {(1 ) (1 ) }
ˆ( | )( )

1 1 ˆ( | ) = { } ( ) ( | )

( ){(1 )( ) (1 )( )}

A A B B A A B B

A B

A B
A B

A B

A B A A A B B B

E T D r r r x r x

E D x x
r rVar T D x x Var D

n n
x x r x x r x x

  



 



      

 
 
  

       (39)
where 1

ˆ( | )E D and 1
ˆ( | )Var D are as in (33) and (34) respectively.

Now it is easy to conclude the following.

Theorem 3.2.1Under the model (24), with normality assumption, cP , the probability of
rejecting null hypothesis upon completion of study conditional on the interim data 1D is
given by

1 1 1

1

( | )= ( )
( | )

A A B B v
c

r Y r Y E T D cP
Var T D

  
 (40)

where 1( | )E T D , 1( | )Var T D are given by (38) and (39) respectively.

Corollary 3.2.1The conditional power, cP , depends on A and B through their
difference A B  if and only if

2 2 2 2( ) ( )= ( ).A A A B B B
A B A B

X

n x x n x xr r x x
SS

  
  (41)

Remark 3.2.4 If =A Bx x , then condition (41) will reduce to =A Br r .

cP is a function of A , B ,  and 1D . In practice, we may simplify (40) by making
some assumptions or controlling the covariates.

Case 1 If =A Bx x , (40) is simplified to:

1 1 1 1( (1 ) (1 ) {(1 ) (1 ) }= ).
1 1

A A B B A A B B A A B B v
c

A A B B

r Y r Y r r r x r x cP
r n r n

  


          
  

(42)

Case 1.1 If =A Bx x and = =A Br r r , cP is given by

1 1 1 1( ( ) (1 )( ) (1 )( )= ),
1 1

A B A B A B v
c

A B

r Y Y r r x x cP
rn rn
  


        

  
(43)

which depends on 1D only through 1 1A BY Y and on ( , )A B  only through A B  .
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Case 1.2 If =A Bx x and 2 2(1 ) = (1 )A A B Br x r x  , cP is given by

1 1( (1 ) (1 )= ),
1 1

A A B B A A B B v
c

A A B B

r Y r Y r r cP
r n r n

 


      
  

(44)

which is independent of  .

Case 2 If 1 2 1 2= = , = = , = =A B A A A B B Br r r x x x x x x , cP is given by

1 1
1 1 1 1 1 1 1

2 2
2

ˆ( ) ( ) (1 ) ( )(1 )
= ( ).

1 1 ( )

X X
A B A B A B v

X X
c

X
A A B B A B

X

SS SSr Y Y x x r x x r c
SS SSP

SSr n r n x x
SS

  



         


    
(45)

This result can also be obtained by noting that, since 1 =A AX x , 1 =B Bx x , we have

1 2
1 1

22
1 2

2 2 1

ˆ ˆ( | ) =

ˆ( | ) =

ˆ( , | ) = 0.

X X

X X

X

X

A B

SS SSE D
SS SS

SSVar D
SS

Cov Y Y D

  

 







(46)

Case 2.1 In (45), with additional constraints 1 2= 1 =X X XSS r SS r SS , cP is given by

1 1
2

2

2 2 1

ˆ ˆ( ) (1 )( )= ( )
(1 )( )1 1(1 ) ( )

A B A B v
c

A B

A B X

r r cP
r r x xr

n n SS

   



    


 
  

(47)

which depends on 1D only through 0 0ˆ ˆA B  and on ( , )A B  only through A B  .
This is a fairly reasonable assumption in practice.

Case 2.2 In (45), with additional constraints =A Bx x , cP is given by

1 1
2 2

1 1= ( ( ) (1 )( ) (1 ) ).c A B A B v
A B

P r Y Y r c r
n n

         

which is the same as cP under model without covariates' effect.

3.3 Extension to multiple treatments
In practical clinical trials, there are often more than two treatments involved, as in dose-
response finding trials. Therefore, in this section, we extend our work to these situations.
We still use the model (24), but k treatments are considered. The model is as follows:

= .ij i ij ijY x e   (48)

All the notations have the same meaning as in section 3.2, except = 1,... , > 2i k k .
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Without loss of generality, we are interested in comparing the main effects of treatment 1
and treatment 2. As in previous section, the final test will be based on the LS-estimators
for i and  as follows:

=1 =1

2

=1 =1

ˆˆ =

( )
ˆ =

( )

i i i
nk k

ij i ij
i j

nk k

ij i
i j

Y x

x x Y

x x

 













(49)

=1 =1

2

=1 =1

ˆˆ =

( )
ˆ =

( )

i i i
nk k

ij i ij
i j

nk k

ij i
i j

Y x

x x Y

x x

 












(50)

Note that the difference between (50) and (25) is that ̂ comes from the response in all
treatment groups rather than just treatment 1(A) and treatment 2(B), which results in the
changes in 1

ˆ( | )E D and 1
ˆ( | )Var D as follows:

1 1 1
=1 2

1

2
2 1 1

2=1
1 2

1ˆ( | ) = { ( ) ( )

( ) }

( )
ˆ( | ) = .

k

i i i i ij ij i
i j JX

ij i ij
j J

k

X i i i
i

X

E D n x x x x x
SS

x x Y

SS n x x
Var D

SS

  

 





  

 

 

 




(51)

1 1 1
=1 2

1

2
2 1 1

2=1
1 2

1ˆ( | ) = { ( ) ( )

( ) }

( )
ˆ( | ) = .

k

i i i i ij ij i
i j JX

ij i ij
j J

k

X i i i
i

X

E D n x x x x x
SS

x x Y

SS n x x
Var D

SS

  

 





  

 

 

 





(52)
With similar arguments as in section 3.2, we have the following theorem.

Theorem 3.3.1Under model (48), cP , the probability of rejecting null hypothesis

0 : 0A BH    upon completion of study, conditional on the interim data 1D , is given
by

1 1 1
1

= ( ( | ) )
( | )

v
c A A B B

cP r Y r Y E T D
Var T D

    (9)

where 1( | )E T D , 1( | )Var T D are given by

1 2 2

1

2 2
1 1

2
2 2

( | ) = (1 ) (1 ) {(1 ) (1 ) }
ˆ( | )( )

1 1 ˆ( | ) = { } ( ) ( | )

( ){(1 )( ) (1 )( )},

A A B B A A B B

A B

A B
A B

A B

A B A A A B B B

E T D r r r x r x

E D x x
r rVar T D x x Var D

n n
x x r x x r x x

  



 



      

 
 
  

      

(54)

1 2 2

1

2 2
1 1

2
2 2

( | ) = (1 ) (1 ) {(1 ) (1 ) }
ˆ( | )( )

1 1 ˆ( | ) = { } ( ) ( | )

( ){(1 )( ) (1 )( )},

A A B B A A B B

A B

A B
A B

A B

A B A A A B B B

E T D r r r x r x

E D x x
r rVar T D x x Var D

n n
x x r x x r x x

  



 



      

 
 
  

       (55)
in which 1

ˆ( | )E D and 1
ˆ( | )Var D are given by (51) and (52) respectively.

It is obvious that cP depends on 1 2 3( ), ( ), ,..., ,A B k       and 1D .
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Corollary 3.3.1The conditional power, cP , depends on A and B through their
difference A B  if and only if

2 2 2 2( ) ( )= ( )A A A B B B
A B A B

X

n x x n x xr r x x
SS

  
  (56)

and, cP is independent of 3 ,..., k  if and only if 2 = , = 3,...i ix x i k or =A Bx x .

4. Model containing a covariate with possibly different coefficients

4.1 Model description and the full analysis plan
In the previous section, we assumed that all treatment groups share the same coefficient,
which may not hold in practice. In this section, we do not make that assumption and the
model of interest is described below:

=ij i i ij ijY x e   (57)
where all notations have the same meaning as in (24) except that i denotes the
coefficient of covariate for treatment i . For simplicity, we first consider a trial consisting
of two arms, A and B. At the planned end of the study, the test is based on ˆA and ˆB
given by

=1

2

=1

=1

2

=1

ˆˆ =
ˆˆ =

( )
ˆ =

( )

( )
ˆ = .

( )

A A A A

B B B B
nA

Aj A Aj
j

A nA

Aj A
j

nB

Bj B Bj
j

B nB

Bj B
j

Y x

Y x

x x Y

x x

x x Y

x x

 

 
























It is readily seen that ˆ ˆˆ ˆ, , ,A A B B    are mutually independent and

2 2 2ˆ ˆ( ) = {1 1 }A B A B A XA B XBVar n n x SS x SS      . The critical value and the required
sample size are given by

1 0

2 2 2
1 0

2 2
2 2

=

( )1 1 =
( )

v

A B

A B XA XB

d z d z
c

z z

d d x x
n n z z SS SS

 

 

 






  



(58)
1 0

2 2 2
1 0

2 2
2 2

=

( )1 1 =
( )

v

A B

A B XA XB

d z d z
c

z z

d d x x
n n z z SS SS

 

 

 






  

 (59)

Remark 4.1

1. Both type 1 and type 2 errors are controlled as long as 1 1 1 1A B A Bn n N N   .
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2. If 1 1 1 1A B A Bn n N N   , then vc is given by
2 2

0
2 2

1 1= ,A B
v

A B XA XB

x xc z d
n n SS SS     (60)

which is larger than the corresponding vc in (4) and (29).

3. Given 1 1A BN N , A BN N is minimized when = =A BN N N , and N is given by

2 2 2
1 0

2 2

2= ,
( )

( )
A B

XA XB

N
d d x x

z z SS SS 


 


(61)

which is also larger than N in (5) and (30).

4.2 Conditional Power
To obtain the conditional power, let us first state the following facts.

1 2 2

2

1

1 2 2

2

1
2

22 2 2
1 2

2
2 2 2

1

1ˆ( | ) = { ( ) ( )

( ) }

1ˆ( | ) = { ( ) ( )

( ) }

( )ˆ( | ) =

( )ˆ( | ) =

A A A A A A Aj Aj A
j JXA

Aj A Aj
j J

B B B B B B Bj Bj B
j JXB

Bj B Bj
j J

XA A A A
A

XA

XB B B B
B

E D n x x x x x
SS

x x Y

E D n x x x x x
SS

x x Y

SS n x xVar D
SS

SS n x xVar D
S

  

  

 











  

 

  

 

 

 









2
2

2
2 1 1

2
2 1 1

2 1 2 1

ˆ( , | ) = ( )
ˆ( , | ) = ( )
ˆ ˆ( , | ) = ( , | ) = 0.

XB

A A A A

B B B B

A B B A

S

Cov Y D x x

Cov Y D x x

Cov Y D Cov Y D



 

 

 





Remark 4.2.1

1. From (62), we see that 1
ˆ( | )AE D is not only a function of A and 1D but also of

A . The same holds for 1
ˆ( | )BE D as well.

2. Expressions (62) and (63) can also be written as
1 2 1 1 1

1 1

2 2 2

1 2 1 1 1
1 1

2 2 2

( )ˆ ˆ( | ) =

( )( )

( )ˆ ˆ( | ) =

( )( ) .

XA XA A A A A
A A A

XA XA XA

A A A A A A

XA

XB XB B B B B
B B B

XB XB XB

B B B B B B

XB

SS SS n x x YE D
SS SS SS

n x x x
SS

SS SS n x x YE D
SS SS SS

n x x x
SS

  

 

  

 


 

 



 

 


(69)

62

63

64

65

66

67

68
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1 2 1 1 1
1 1

2 2 2

1 2 1 1 1
1 1

2 2 2

( )ˆ ˆ( | ) =

( )( )

( )ˆ ˆ( | ) =

( )( ) .

XA XA A A A A
A A A

XA XA XA

A A A A A A

XA

XB XB B B B B
B B B

XB XB XB

B B B B B B

XB

SS SS n x x YE D
SS SS SS

n x x x
SS

SS SS n x x YE D
SS SS SS

n x x x
SS

  

 

  

 


 

 



 

 


(70)

So from (69) and (70), it follows that:

(i) 1 1
ˆ ˆ( | )A AE D  , 1 1

ˆ ˆ( | )B BE D  ;

(ii) 1
ˆ( | )A AE D  , 1

ˆ( | )B BE D  .

However, as expected, ˆ( ) =A AE   , ˆ( ) =B BE   regardless of the values assumed by the
other parameters. Moreover, in case 1 2= =A A Ax x x , 1 2= =B B Bx x x , (69) and (70)
respectively simplify to

1 2
1 1

1 2
1 1

ˆ ˆ( | ) =

ˆ ˆ( | ) = .

XA XA
A A A

XA XA

XB XB
B B B

XB XB

SS SSE D
SS SS
SS SSE D
SS SS

  

  





(71)

1 2
1 1

1 2
1 1

ˆ ˆ( | ) =

ˆ ˆ( | ) = .

XA XA
A A A

XA XA

XB XB
B B B

XB XB

SS SSE D
SS SS
SS SSE D
SS SS

  

  




(72)

Lemma 4.2.1 Let 2 2
ˆ ˆ= (1 ) (1 ) )A A B B A A B BT r Y r Y x x      so that we rewrite

1ˆ ˆ= ( > | )c A B vP P c D  as 1 1 1= ( > | )c v A A B BP P T c r Y r Y D  . Then we have

1 2 2

1 1

2 2 2
1 1 1

2 2

( | ) = (1 ) (1 ) (1 ) (1 )
ˆ ˆ( | ) ( | )

1 1 ˆ ˆ( | ) = ( ) ( | ) ( | )

ˆ ˆ(1 ) ( , ) (1 ) ( , ).

A A B B A A A B B B

A A B B

A B
A A B B

A B

A A A A B B B B

E T D r r r x r x

E D x E D x
r rVar T D x Var D x Var D

n n

r x Cov Y r x Cov Y

   

 

  

 

      

 
 
  

   

(73)
1 2 2

1 1

2 2 2
1 1 1

2 2

( | ) = (1 ) (1 ) (1 ) (1 )
ˆ ˆ( | ) ( | )

1 1 ˆ ˆ( | ) = ( ) ( | ) ( | )

ˆ ˆ(1 ) ( , ) (1 ) ( , ).

A A B B A A A B B B

A A B B

A B
A A B B

A B

A A A A B B B B

E T D r r r x r x

E D x E D x
r rVar T D x Var D x Var D

n n

r x Cov Y r x Cov Y

   

 

  

 

      

 
 
  

    (74)
where 1 1 1 1 2 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ( | ), ( | ), ( | ), ( | ), ( , | ), ( , | )A B A B A A B BE D E D Var D Var D Cov Y D Cov Y D     
are as given in (62) through (68).

The following theorem is immediately obtained.

Theorem 4.2.1 Under model (57), with normality assumption, cP , the probability of
rejecting null hypothesis upon completion of the study conditional on the interim data

1D , is given by

1 1 1

1

( ) ( | )= ( )
( | )

A B v
c

r Y Y E T D cP
Var T D

  
 (75)

where 1( | )E T D , 1( | )Var T D are given by (73) and (74) respectively.
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Corollary 4.2.1The conditional power, cP , depends on A and B through their
difference A B  if and only If

2 2 2 2( ) ( )= .A A A A B B B B
A B

XA XB

x n x x x n x xr r
SS SS
 

  (76)

Remark 4.2.2 If 1 =A Ax x and 1 =B Bx x , then the condition (76) reduces to =A Br r .

Corollary 4.2.2 If 1 1
1 2 1 2= = , = = , = , =XA XB

A A A B B B A B
XA XB

SS SSx x x x x x r r
SS SS

, cP is given by

1 1
2 2
1 1

1 1

ˆ ˆ (1 ) (1 )= ( ),
1 1 (1 ) (1 )
A A B B A A B B v

c

A B A A A B B B

A B XA XB

r r r r cP
r r r r x r r x

n n SS SS

   



     


   
  

(77)

which depends on 1D only through 1 1ˆ ˆA A B Br r  .

Corollary 4.2.3In corollary 4.2.2, if = =A Br r r , cP is given by

1 1
2 2
1 1

2 2 1 1

ˆ ˆ( ) (1 )( )= ( ).
1 1(1 )( )

A B A B v
c

A B

A B XA XB

r r cP
rx rxr

n n SS SS

   



    


   

(78)

4.3 Extension to multiple arms

In case the trial consists of more than two arms, the results about cP remain the same for
all pairwise comparisons, taken separately. This is because the existence of other arms
have no effects on expressions (62) through (68).

5. Concluding Remarks
In this paper we have studied some aspects of evaluation of conditional power in the
context of interim analysis, involving two stages of analysis, under a simple linear
regression model. We have extended available results in the framework of linear
regression with / without a common regression parameter. Additional studies involving
more than one regressor / other design-set are to be found in the Doctoral Dissertation of
Li (UIC, Unpublished Thesis, 2007).
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Appendix

Let 1Z be a random variable, having the normal distribution of mean  and variance 2 .
Let 2 1= ( )Z Z .

Theorem A.1 The expectation of 2Z is given by:

2 1 2
( ) = ( ( )) = .

1
E Z E Z 





(79)

Proof. Let Z be a random variable which follows (0,1)N and is independent of 1Z .
Then we have

1 1

1

1 2 2

2

( ( )) = ( < )
= ( < 0)

(0 )= ( < )
1 1

= ( ) .
1

E Z P Z Z
P Z Z

P Z Z  
 








 

 



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Corollary A.1 If 3 1= ( )Z a bZ  , where a and b are constants, then the expectation of

3Z is given by
2 2

3( ) = ( 1 ) .E Z a b b    (80)

Theorem A.2 Let
1Zf be the density of 1Z , then the density of 2Z is given by

1
21

2 1
2

( ( ))
( ) = .

( ( ))
Zf z

f z
z








(81)

Proof.Taking the first derivative of both sides of equation 2 1= ( )z z with respect to

1z , we have

2
1

1

= ( ),dz z
dz



so
1

2 1

1=
( )

dz
dz z

and
1

2 11
2

1
21

1
2

( ) = ( ) | |

( ( ))
= .

( ( ))

Z

Z

dzf z f z
dz

f z

z









Theorem A.3 The density 2( )f z has the following property:
If 2 > 1 , 12 22

( ) = ( ) =lim lim0z vf z f z  , and 2( )f z is minimized when
2

2 = ( 1 )z    .
If 2 < 1 , 2 22 2

( ) = ( ) = 0lim lim0 1z zf z f z  , and 2( )f z is maximized when
2

2 = ( 1 )z    .

if 2 = 1 and = 0 , 2( ) 1f z  .
if 2 = 1 and > 0 , 2 22 2

( ) = 0, ( ) =lim lim0 1z zf z f z   , and 2( )f z keeps increasing.

if 2 = 1 and < 0 , 2 22 2
( ) = , ( ) = 0lim lim0 1z zf z f z  , and 2( )f z keeps decreasing.

Theorem A.4 The variance of 2Z is given by
2 2

2 1 1 1 21

2 2
1 1 11 2

( ) = ( ) ( ) ( )

= ( ) ( ) ( )
1

Z

Z

Var Z z f z dz E Z

z f z dz 


 

 





(82)

and, by the standard delta-method, it can be approximated by
22

2 1
1 11

22

( ) ( )( | )= ( )

= .
2

z

dzVar Z Var Z E Zdz

e 





(83)


