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Abstract
In the current work, some well-known inference procedures including testing and estimation are adjusted to
accommodate noisy data that lead to nonidentically distributed sample.  The main two cases addressed are
the Poisson and the normal distributions. Both one and two sample cases are addressed.  Other cases
including the exponential and the Pareto distributions are briefly mentioned.  In the Poisson case, the
situation when the sample size is random is mentioned.

Keywords: Noisy samples, Hypothesis testing and estimation, Poisson, Normal,
Exponential, and Pareto.

1.Introduction
Statistical inference with its estimation and hypothesis testing routes is usually based on
the concept of “random samples”.This means that the data framework is assumed to be
“independent identically distributed” (iid) random variables. Although this setting is
becoming less and less practical, it is still the way inference is presented to statistics
students via textbooks even at the graduate level, see Rohatgi and Saleh (2001) and
Casella and Berger (2002). When the iid structure is violated, there are no guarantees that
standard accepted procedures will continue to hold and often modifications result in only
partial and or weaker solutions. This need not be the case in some noisy sampling
schemes that are now in use. In the current work, it is shown that for some non-iid
sampling schemes in the Poisson and normal cases, standard procedures can be modified
keeping the main characteristics of the estimates or test statistics intact.  The sampling we
discuss here includes the now popular rate sampling, cf. Thode (1997) and Ng and Tang
(2005) for Poisson distribution and Moser et al. (1989), and Sprott and Farewell (1993)
for the normal distribution, among others.

Rate sampling discussed here means that we have either a Poisson or Gaussian process
and that we observe the sum of readings during adjacent time slots of lengths nCC ,...,1 ,
where 0iC , ni ,...,1 . Thus in the Poisson case, the observations are non-iid random
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variables iX such that ii CXE )( , ni ,...,1 . While in Gaussian case, we have
ii CXE )( and 22)( ii CXV  or in the homogeneous variance case is just 2 .

Variations of the rate sampling in the Poisson case have been researched in the literature
including work by Detre and White (1970), Sichel (1973), Thode (1997),
Krishnamoorthy and Thomsons (2004), and Ng and Tang (2005).  Rate sampling in the
normal case with homogenous variance is known as the regression through the origin
case.  The celebrated Behrens-Fisher problem is a two-sample variation and solutions for
several different forms of it were discussed by Bernard (1982), Moser et al.  (1989),
Sprott and Farewell (1993), and Moser and Stevens (1992).

2. Poisson Inference

Let nXX ,...,1 denote a random sample from Poisson distributions such that )(~ ii PX 
with  ii C , ni ,...,1 , where 0iC is a known constant. Our task is to do inference
about . The usual iid case falls at 1......1  nCC .
The likelihood function is:
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This estimate is complete and sufficient for  as well as unbiased, so it is the uniformly
minimum variance unbiased estimate (UMVUE) of  . This estimate suggests the
following class of unbiased estimates for :
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But since 1̂ is the UMVUE, we have
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Hence as a by product we have a simple proof of the inequality:
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where 0iC , i=1,…, n. Note also that in the Poisson case   )( ii XVXE  , ni ,,1  .
Thus we might try to find an unbiased estimate of  based on the sample variance.
Precisely we have:

THEOREM(1): The following estimate is an unbiased estimate of  :
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The result now follows.

Let us briefly discuss the relations between  ˆ
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We may combine ̂ and ̂̂ to obtain yet another unbiased estimate of .
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Hence
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is an unbiased estimate of .

Sometime in sampling from Poisson distribution we do inverse sampling where the
sample size is random. Let N be an integer-valued random variable not necessarily
independent of iX ’s. We then estimate by
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To test 00 :  H vs. 01 :  H or 0  or 0  , set any of the following test
statistics that are all asymptotically normal:
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Next, let us consider the two-sample case: let miCPX ii ,,1),(~ 1  and
njDPY jj ,,1),(~ 2  .  Assume the iX ’s and the jY ’s are independent. We want to test

2010 :  RH  , where 0R is a known constant. Again,  ii CX1̂ and

 ii DY2̂ . Further, under 0H , we have the likelihood function (with  2 ) given
by:
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Reject 0H when ZZ || 3 or 2/Z according to the alternative. If we would like an
unbiased variance null estimate for  we use the following:

THEOREM (2): Under 0H , the following is an unbiased estimate for the common
parameter 0
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where 0̂ is as given in (17).
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The result follows by noticing that:
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The result follows from (21) to (24).
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Reject 0H if ZZ || 4 or 2/Z according to the alternative.

3. Normal Inference

Let nXXX ,,, 21  denote a random sample from normal distribution such that
),(~ 2ii CNX , ni ,,1 . Then the likelihood function is given by
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Clearly, ̂ is sufficient, complete and unbiased for  so it is the UMVUE, while,
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To test 00 :  H , we use the modified )1( nt statistic Ci SCT /)ˆ( 0
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Let us turn our attention to a general setting of the two sample case: let ),(~ 2
1 ii CNX ,

mi ,,1 and ),(~ 2
2 ji DNY , nj ,,1 , where mCC ,,1  , nDD ,,1  and  are

known constant. We want to test   210 :H for given values  and  . Note that
the above setting include most known cases where: (i) 0,1   is testing 210 :  H ,
(ii)  ,1 given in testing   210 :H , (iii) 0 and given  is testing

210 :  H . As shown above the UMVUE’s for 1 and 2 are, respectively,
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Taking the log of L and differentiating with respect to  results in (28). Then
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4. Other Examples and Final Remarks

(A) Other examples:

Extending the MLE’s and the hypotheses testing presented earlier for the non-iid samples
from the Poisson and the normal distributions can be used in various other cases. We
illustrate this by two further examples.
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Thus the likelihood function is

  iCCXL  );,( , iC
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1
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
 . (36)

Hence the MLE of is
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To find the UMVUE of we need to adjust for bias. Note that
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 is the UMVUE of .

(B) Some Final Remarks:
(i) In the normal two-sample case, there is a major outstanding problem known as the
“Behrens-Fisher” which is that when there is no estimate for that
can lead to a t-statistic, cf, Rohatgi and Saleh (2001). There are many suggestions of
partial solutions. In this context, we offered one when we can assume 2

2
2
1   , see

Section 2. Intermediate, approximate or partial solutions have been offered in the
literature. For example, when one is known, say , or in the general case of ,
both unknown, Satterthwaite (1941) and (1946) proposed a method that provides an

approximate 2 for with

. Hence could be estimated by replacing

and by and , respectively, see also Ames and Webster (1991) and Moser
and Stevens (1992). The case when is given was discussed by Maity and Sherman
(2006). The value of is obtained via matching
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*  nnnm  . Then one replaces with its estimate . The
above method is based on matching the variance of the proposed estimate of

(standardized) to the variance of a Chi-square and solving for
the induced parameter and then estimate it. Needless to say matching variance is not
enough to guarantee matching of distributions. In a subsequent work we will provide a
new method based on matching the distributions.
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(ii) Note that the essence of the Behrens-Fisher problem for testing ,

, known constants is that the estimate of
nn

YYV
2
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2
1)(   which is a

weighted sum of the and Chi-squares with unknown weights
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nmnn
nmK 


 . When

we replace  nmK ,1 , by their estimates based on and we losethe
independence and the problem becomes intractable. We shall provide in the near future
some plausible solutions based on what the weighted sum of Chi-squares looks like.

(iii) There are situations where even for the model we discussed above, namely that the
parameters are known to beproportionate, there may not be an explicit solution. However,
in some of these cases approximate solutions may be possible. Let us illustrate this via
the example of nonidentical Bernoulli trials: let nXX ,...,1 be n independent Bernoulli rv’s
such that nipCpXP iii ,...,1,)1(  . As before assume 0iC , ni ,...,1 to be
known. Thus, the likelihood function is:
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Taking the log of ),,( pCXL and differentiating with respect to p we get
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It is not difficult to show that the MLE of p exists and is unique but it is not explicit. If
we need an explicit solution, we can use the approximation nipCipC

pC
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i ,...,1,1  , thus
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unbiased if K=0 while it is positively biased if K>0 in which case, the estimate
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is asymptotically unbiased. Finally, using the well known formula
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