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Abstract
Rank-deficient data are not uncommon in practice. They result from highly collinear variables and/or high-
dimensional data. A special case of the latter occurs when the number of recorded variables exceeds the
number of observations. The use of the BACON algorithm for outlier detection in multivariate data is
extended here to include rank-deficient data. We present two approaches to identifying outliers in rank-
deficient data based on the original BACON algorithm. The first algorithm projects the data onto a robust
subspace of reduced dimension, while the second employs a ridge type regularization on the covariance
matrix. Both algorithms are tested on real as well as simulated data sets with good results in terms of their
effectiveness in outlier detection. They are also examined in terms of computational efficiency and found to
be very fast, with particularly good scaling properties for increasing dimension.

Keywords: High-dimensional data, Mahalanobis distance, Outlier detection, Spatial
median.

1. Introduction
Most statistical data analysis methods customarily assume that the available pn data
matrix X is of full-column rank, where n is the number of observations and p is the
number of variables. For example, most multivariate analysis techniques assume a non-
singular covariance matrix while in the regression setting, least squares regression
assumes that XX is non-singular. This assumption automatically does not hold if the
number of observations n is less than the number of variables p . This situation is often

1The opinions and conclusions of the authors are their own and do not necessarily reflect Philip Morris International's
position.
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encountered in high-dimensional data. There are practical situations when the available
data sets have np > and sometimes even np > ( p is much larger than n ). For
example, recent development in communication and information technology, mostly in
data instrumentation, have given rise to the availability of hyperdimensional data where
there are a large number of often interrelated variables but a fewer number of
observations. Examples of real-life data where np > include chemometrics and Near
Infra-Red experiments in spectroscopy, image analysis and computer vision, gene
expression experiments, and others. These types of data sets invalidate most multivariate
and regression techniques. Note that the matrix XX may be singular even when pn  ,
as in the case where the columns of X are linearly dependent. Such data sets very often
arise in environmental studies, econometrics and finance, so that the case pn  with less
than full rank is also of interest.

Much can be found in the statistical literature for the case where pn > . By comparison,
fewer statistical techniques deal with the case of np > , despite the constantly growing
interest during the last years. Most of these techniques attempt to regularize the statistical
problem and usually approximate the solution on lower dimensional subspaces. In
regression, for instance, principal components (PC) and partial least squares (PLS) (see
Tenenhaus, 1998) truncate the least squares solution to a few suitably extracted
orthogonal directions. Another commonly used regularization method in Statistics is
ridge regression (see Hoerl and Kennard, 1970), which regularizes the regression
problem by adding a suitable constant in XX . Similar to ridge regression, seen as an 2L
penalization method, other penalized estimation techniques have been used in order to
solve statistical problems in high dimensions; for an excellent overview see Izenman
(2008) and Hastie et al. (2009).

Another problem that arises in data analysis is the presence of outliers. Real-life data sets
often contain outliers, whether or not np > . The presence of outliers in the data can have
dramatic effects on the results of the analysis. The aforementioned PC and PLS
algorithms, for example, are not at all robust against outliers (see Kondylis and Hadi,
2006). It is therefore important to identify the outliers when they exist in the data.
Outliers identification has a venerable history; see, for example, the books by Belsley et
al. (1980), Cook and Weisberg (1982), Atkinson (1985), Rousseeuw and Leroy (1987),
Chatterjee and Hadi (1988), and the articles by Gray (1986), Kianifard and Swallow
(1989), Rousseeuw and van Zomeren (1990), Paul and Fung (1991), Hadi (1992a,b),
Hadi and Simonoff (1993), Atkinson (1994), Hadi (1994), and Billor et al. (2000).

Yet, rank-deficient and high-dimensional data sets invalidate most outlier detection and
robust estimation techniques (see, for example, Li and Chen (1985), Maronna and Zamar
(2002) and the references therein). For example, despite the well-known robust properties
(high breakdown point, affine equivariance, efficiency, etc.) of a wide range of robust
variance-covariance estimates, most of them break down in high dimensions. Robust
variance-covariance estimation in such data sets has been developed relatively recently,
see for example Locantore et al. (1999) , Maronna and Zamar (2002), Croux and Ruiz-
Gazen (2005), as well as Filzmoser et al. (2008) and the references therein.
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A well established and effective method that deals with the identification of outliers and
robust estimation in full-rank data is BACON (Blocked Adaptive Computationally-
Efficient Outlier Nominators), proposed by Billor et al. (2000). This algorithm can be
used in a variety of situations, such as the adaption for incomplete survey data by Beguin
and Hulliger (2008). The BACON approach, however, assumes not only that the
available data set is of full-column rank, but also that pn/ is sufficiently large (e.g.

4>/pn or 5). In this paper we adapt the BACON approach to obtain two procedures for
outlier identification that can be used in cases where the data matrix is rank-deficient,
which includes both pn  and pn  cases. This will allow the users to identify
outliers in these types of difficult but increasingly common situations, while still
maintaining the computational efficiency of the BACON algorithm so that the proposed
procedures are suitable for large, high-dimensional data sets. This latter situation is
especially challenging for many classical algorithms since computational effort grows
rapidly with increasing p .

The rest of the paper is organized as follows. Section 2 gives a brief description of the
BACON approach for full-column rank data. Section 3 extends the BACON approach to
the case where the data matrix is rank-deficient. We refer to it as the rank-deficient or
RD-BACON approach. Two versions of the RD-BACON approach, RD1-BACON and
RD2-BACON, are presented in this section. Section 4 gives illustrative examples of
applications using two real data sets. In Section 5, a simulation study is used to assess the
performance of the RD-BACON. In Section 6 the performance of the RD-BACON
approach is compared to existing methods. Section 7 concerns the computational time for
the proposed method, compared to the computational effort of its competitors. Finally,
conclusions are given in Section 8.

2. The BACON Approach for Full-Rank Data
The BACON algorithm can be applied to multivariate data as well as to regression
problems. We will focus on the former. The BACON algorithm assumes that the matrix
X is of full-column rank and also comes from an elliptically symmetric distribution. The
algorithm starts by selecting an initial basic subset, bX , of size pr > . There are two
versions for selecting bX . In Version 1, the initial basic subset bX consists of the r
observations with the smallest values of the Mahalanobis distances,

,,1,=,=),( 1 nid iii )x(xS)x(xSx   (1)
where ix is the i th row of X , and x and S are the respective mean and variance-
covariance matrix of the variables in X . In Version 2, bX consists of the r observations
with the smallest values of the Euclidean distances from the median,

,,1,=,=),( nid iii mxmx  (2)

where  denotes the Euclidean vector norm. In the original BACON algorithm, m is
taken to be the vector containing the coordinatewise medians. Of course, other medians
could also be used, such as the multivariate 1L median or the spatial median (see Hössjer
and Croux, 1995 for theoretical properties and computation). The latter is the 1L location
estimator m that solves the minimization problem
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,,1,=for,min nii mx
m

 (3)

Using the 1L median enables BACON to be equivariant regarding orthogonal
transformations, but not with respect to changes in scale (i.e. it is not affine equivariant).
The distances from the median provide a robust initial subset compared to the
Mahalanobis distances, but the Mahalanobis distance is affine equivariant.

The initial basic subset bX includes the m observations with the smallest distances id .
The size of the initial basic subset is cpr  , where c is a multiplier, that is, at least c
observations per parameter are used. Billor et al. (2000) suggest setting c equal to 3, 4, or
5. Let bx and bS be the mean and covariance matrix of the observations in the current
basic subset bX . Compute the robust distances

,,1,=,=),( 1 nid bibbibbi )x(xS)x(xSx   (4)
The BACON algorithm lets the current basic subset bX increase until it no longer
changes. At each iteration, the basic subset includes the observations with

npnprbbi cd /,),( Sx (5)

where 2
, p is the 1 percentile of the chi-square distribution with p degrees of

freedom, and
21= cccnpr  (6)
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and r is the size of the current subset. The use of a chi-square cut-off value follows
directly by the approximately normal distribution of the score vectors, assuming of
course the original data are normally distributed.

The BACON algorithm for identifying outliers in full-rank data is given in Algorithm 1.

Algorithm 1: BACON for Full-Rank Data

Input: A full-rank matrix pnX of multivariate data.
Step 1. Select the initial basic subset bX of size pr > using (1) or (2).
Step 2. Compute the distances ),( bbid Sx in (4).
Step 3. Set the new basic subset to all points satisfying (5).
Step 4. Iterate Steps 2 and 3 until the size of the basic subset no longer changes.
Step 5. Nominate the observations excluded from the basic subset as outliers.
Output: A set of observations nominated as outliers, if any.

Robust estimates of the location and scale bx and bS , respectively.

The observations excluded from the final subset are nominated as outliers. The distances
),( bbid Sx at the final step can be used as robust distances. Furthermore, the mean and
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covariance matrix of the final basic subset, bx and bS , can be viewed as robust estimators
of location and scale, respectively.

As can be seen from (4), the BACON distances assume that the covariance matrix bS is
non-singular, or equivalently, that the subset bX is of rank p , a condition which will not
hold when np > . Note that the matrix bS could be singular even when pn > . Of
course, if np > , then the entire data matrix X and well as all subsets of X are rank-
deficient and hence the corresponding bS matrix is singular. Thus, when the matrix bS is
singular, the BACON algorithm can't be used. In Section 3 we extend the BACON
approach to cases where bS is singular.

3. Rank-Deficient Data
High-dimensional data where np > are automatically rank-deficient; the covariance
matrix S as well as all subset matrices bS are not invertible. Therefore, the initial
distances in (1) as well as the distances in (4) cannot be computed. But rank-deficient
data can also appear for pn  when the dependence among the predictors is very high.
For example, the Ionosphere data discussed in Section 6.3 has 351 observations in 31
variables, but is highly collinear.

The BACON algorithm for full-rank data can be extended to deal with rank-deficient data
by regularizing the statistical problem in two main ways. The first, which we refer to as
RD1-BACON, is based on applying the BACON algorithm to a subset of robust scores,
denoted by kxx ~,,~

1  with pk  . This is done using the eigen decomposition of a
robust scatter estimate. The second approach, which we refer to as RD2-BACON, is
based on a ridge-like regularization of the matrices S and bS by adding a small positive
constant  to its diagonal in order to solve singularities and recover the robust distances.
Hence, the first technique is based on truncation on a small subset of robust orthogonal
directions, while the second is based on a ridge-like regularization. The details of these
two alternatives are given below.

3.1  The RD1-BACON Algorithm

The RD1-BACON algorithm is based on projecting the data along robust directions so
that the outliers can be more easily detected. This set of robust directions is derived from
the spatial sign covariance matrix, which is defined below. Of course, there are a variety
of choices for a robust covariance matrix. We chose the spatial sign covariance matrix C
because it is fast to compute, and is highly robust against outliers without totally
discounting them. Its computational efficiency renders our algorithms suitable for large,
high dimensional data sets. Other robust covariance matrices such as the MCD are clearly
not suitable for high dimensional data, while computationally efficient covariance
estimates that rely on special characteristics of the data such as sparsity or other features
are not generally robust. More information about the spatial sign covariance estimate can
be found in Visuri et al. (2000) and Locantore et al.(1999), among others.
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Let mx=y  , where m denotes the multivariate 1L median or the spatial median (see
Hössjer and Croux, 1995, for more information). Let )(yg denote the spatial sign vector
computed according to
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with 0 the zero vector. Then the spatial sign covariance matrix is defined as
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As stated by Locantore et al.(1999), )( mx ig is the projection of the p -dimensional
vector ix onto the unit sphere centered at m to yield a robust projection. The core of this
projection is given by the matrix C , which is not affected by the outliers in X .

Having obtained a robust covariance matrix, let p  21 be the eigenvalues of
C , and let V be the corresponding matrix of normalized eigenvectors. Then, we have

VΛV=C  , where Λ is a diagonal matrix containing the eigenvalues on its diagonal.
For pk  , we compute the kn robust scores matrix as follows

  ,~
kk Vm1XX  (10)

where m is the coordinatewise median or the 1L median from equation (3), 1 is the
1n vector of 1's, and kV is the matrix containing the first k vectors of V .

The ordinary BACON presented in Algorithm 1 is then applied to kX~ in (10) to give the
RD1-BACON algorithm. It worth noting that since BACON is computationally very
efficient, it is expected that the RD1-BACON is computationally very efficient, as well.
Indeed, in our experience, two or three iterations are sufficient for RD1-BACON to
converge.

A parameter to be further defined in the RD1-BACON is the dimension reduction
parameter k . A common way to determine k involves inspection of the eigenvalues

),,( 1 p  and choice of k so that for 0>k the truncated sequence ),,( 1 k  gives
sufficient dimension reduction. Screeplots or barplots of the eigenvalues are quite often
applied for such investigations. Yet, this is time consuming and for the purposes of
reporting and comparison, could give different results due to subjectivity. Therefore, we
propose to let k be the value such that the first k eigenvalues contribute to a
predetermined high percentage of the total variation   , that is,
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Based mainly on personal experience and empirical investigation we chose k such that
= 97.5%  This has the effect of automatically eliminating components that contribute

very little to the total variance, which is very important if np > . We have obtained very
good results using this automated selection rule, as will be demonstrated in the
simulations in Section 5.

The RD1-BACON can thus be seen as an attempt to remove the directions with very
small robust scales, as indicated by the eigenvalues of the positive semi-definite, robust
covariance matrix C .

In order to classify the observations of the basic subset as outlying or non-outlying, the
regular BACON algorithm uses the cut-off value given by expression (5). In the rank-
deficient case, we replace p by k , that is, the size of the initial basic subset ckr = . Note
that the smaller the value of k , the larger the initial selection parameter c should be. In
such cases, in order to make the algorithm more effective, one should compromise
between k and c . However, sometimes k is still fairly large, so that even 3 nk > . We
therefore select r as the minimum of ck and  1)/2(= knh . We cap the initial
subset at h since if it contains more than half the observations, there is increased
likelihood that it might contain some outliers. Therefore, in order to make the algorithm
more effective, we use

.< ),(/, npmaxknkri cd  (12)
The RD1-BACON algorithm is given in Algorithm 2.

Algorithm 2 RD1-BACON for Rank-Deficient Data
Input: A rank-deficient matrix pnX of multivariate data.

Step 1. Compute the robust scores matrix kX~ in (10).

Step 2. Apply the ordinary BACON Algorithm 1 to kX~ but using the
critical value in (12) instead of (5).

Output: A set of observations nominated as outliers, if any.
Robust estimates of the location and scale bx and bS , respectively.

3.2  The RD2-BACON Algorithm
The RD2-BACON algorithm is based on a ridge type regularization in the covariance
matrix (see Hoerl and Kennard (1970) and Engl et al. (1996), Chapters 4 and 5). Using
the same robust location estimate m as before, let the robustly centered data matrix be

m1X=Y  . The spectral decomposition of this robustly centered covariance matrix
YY=S  can be computed as

,VΛV=S  (13)
where Λ is a diagonal matrix containing the eigenvalues of S , and V is the
corresponding orthonormal matrix of eigenvectors. Using expression (11), let k be such
that * = 0.975 . In addition, set  equal to the thk largest eigenvalue and let pI be the
identity matrix of order p . Then the matrix in (13) is replaced by
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,VVΛS  (14)
where pIΛΛ * . Accordingly, the Mahalanobis distances in (1) can be replaced by

        nid iii ,,1,, 1** 
 mxSmxSC (15)

The RD2-BACON algorithm starts by ordering the observations according to their
distances in (15). The subset of pr  with the smallest distances forms the initial basic
subset. As before, we select r to be the minimum of ck and h . The spectral
decomposition of bS is computed and the distances in (4) are replaced by

        nid bibbibbi ,,1,, 1** 
 xxSxxSx (16)

wherze bbbb VΛVS  ** and pbb IΛΛ * . Note that since we now have an assumed
outlier-free basic subset, we can use its mean bx rather than the coordinatewise median
m (a robust mean is usually preferred to the median due to its higher statistical and
computational efficiency).

Similar to the ordinary BACON algorithm, points are iteratively added to the basic subset
if their distances are below the cutoff value, with convergence occurring when the basic
subset no longer changes. However, since the distribution of the distances in equation
(16) would be difficult to determine, we employ a nonparametric approach. The basic
subset is thus chosen to include all observations satisfying

),(IQR)(med dcdd i  (17)
where c is a suitable constant chosen to control the desired null size  , and )(med d
and IQR( d ) are the median and the interquartile range, respectively, of the distances in

},,,{= 21 ndddd  . The subsets of RD2-BACON algorithm grow rapidly and according
to our experience just a few iterations are sufficient to converge.

Note that when np > , the computational burden of eigenvalue decomposition with large
p reduces due to the n -dimensional observations space. That is, instead of computing

the eigen decomposition of the matrix YY=S  , which is pp , one can compute the
eigen decomposition of the much smaller (in dimension) matrix

,*UUΛYY  (18)
which is of order nn , where the matrix Λ in (13) and (18) are identical, and

),,(= 1 puuU  is an pn orthonormal matrix with columns corresponding to the
eigenvectors of YY  . The eigenvectors V are then obtained according to

.1/2 ΛUY=V (19)
We shall see in Section 7 that both algorithms scale very well with increasing dimension,
although RD2-BACON does not scale quite as well with increasing n , since it has to
perform the eigen decomposition for each iteration. Fortunately though, it usually
converges within a few iterations.

The RD2-BACON algorithm is given in Algorithm 3.
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Algorithm 3 RD2-BACON for Rank-Deficient Data
Input: A rank-deficient matrix pnX of multivariate data.
Step 1. Select the initial basic subset bX of size [pr  using (2) or (15).
Step 2. Compute the distances  *, bbid Sx in (16).
Step 3. Set the new basic subset to all points satisfying (17).
Step 4. Iterate Steps 2 and 3 until the size of the basic subset no longer changes.
Step 5. Nominate the observations excluded from the basic subset as outliers.
Output: A set of observations nominated as outliers, if any.

Robust estimates of the location and scale bx and bS , respectively.

Finally, we note that the RD2-BACON algorithm is a natural generalization of the
ordinary multivariate BACON algorithm. To see this, consider the case where pn  and
no collinearity appears on the predictors. The ordinary multivariate BACON will not be
able to give an inverse for matrix S and the final distances id . Therefore the RD2-
BACON adds a constant  in order to get *S and id  . When no collinearity is present,
the id  are proportional to id and almost any value of j can play the role of  .

4. Experience with Real Data
In this section, we apply the rank-deficient BACON algorithm for outlier detection on
two real-life examples: the Climatological data (see Ramsay and Silverman, 2005) and
the Octane data (see Tenenhaus,1998).

4.1  Climatological Data

The temperatures taken from 35 weather stations across Canada over a year (365 days)
have been registered and are accessible through the FDA homepage at http://ego.psych.
mcgill.ca/misc/fda/index.html, as well as in the fda package (Ramsay et al.,2009) of the
R statistical software (R Core Team, 2012). The 35 weather stations represent Pacific,
Continental, Atlantic, and Arctic climates. The temperatures for the latter are
distinguished from the rest of the stations by their cold temperatures throughout the year.

This data set is a typical example of np > data which are are functioonal data (see
Ramsay and Silverman, 2005). Data are essentially discretized curves rather than
ordinary vectors. Our approach for outlier detection does not take into account the special
functional form of the data but it identifies observations which are declared as outliers
throughout the whole year.

The RD1-BACON and RD2-BACON algorithms are tested on these Canadian
temperatures data based on daily records that constitute a 36535 data matrix X . It is
not completely clear exactly which points should be outliers, but at least, the three Arctic
stations Inuvik, Iqaluit, and Resolute are good candidates.
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Figure 2 illustrates the final distances of the RD1-BACON algorithm in the left panel and
the final distances of the RD2-BACON algorithm in the right panel. Together with these
distances, the critical limits are depicted by a dashed line. The observations which lie
above the latter are the detected outliers. The RD1-BACON detected 1 outlier, the most
extreme (coldest) station of Resolute. The RD2-BACON detected the 3 Arctic stations
(Inuvik, Iqaluit, and Resolute) as well as Churchill, which could also be reasonably
viewed as an outlier, very cold winters but relatively warm summers.

Figure  1: Temperature data. Temperatures over 365 days for 35 weather stations in Canada.

4.2  Octane Data
The octane data set consists of the Near Infra-Red spectra of 39 gasoline samples for
which the octanes have been measured at 225 wavelengths in the spectral range 1102-
1552 nm in steps of 2 nm. The resulting data are stored in a 22539 data matrix. The
octane data are commonly used in partial least squares regression (PLSR) (see Helland,
1988) and principal components regression (PCR) (see Jolliffe, 2002). Given a response
vector, both methods construct predictive models relating the NIR spectra to chemical
compounds. In this case these are the octanes. The spectra for the the 39 samples are
illustrated in Figure 3, from which it can be clearly seen that there are 6 outliers --- the
six curves with substantial deviations at the higher wavelength, to which alcohol has been
added. From Figure 4 it is clear that the outliers are the observations with index numbers

38,37,36,26,25, and 39 .

Both implementations of the BACON for rank-deficient data have detected the six
outlying samples ( 38,37,36,26,25, and 39 ) in the data. These are illustrated by the points
above the critical value given by the dashed line in Figure 4.
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5. Simulation Study
In this section we want to obtain a broader understanding of the proposed methods, based
on a large scale simulation study. Our simulation experiments are described below,
followed by a discussion of the simulation results.

Figure  2: Temperatures data. (a) RD1-BACON robust distances indicated by points and the critical
value given by the dashed line. (b) RD2-BACON robust distances indicated by points and the critical value
given by the dashed line.

Figure  3: Octane data. Near Infra-Red spectra for 39 gasoline samples in the spectral range 1102-1552
nm in steps of 2 nm.
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5.1. Design of the Experiments

The experimental design is described as follows: For the pn matrix X we generate
pp <* columns of random observations according to

*
* * ~ (0,10), = 1, , = 1, , .

ij
x U where i n and j p 

Figure  4: Octane data. (a) RD1-BACON robust distances indicated by points and the critical value given
by the dashed line. (b) RD2-BACON robust distances indicated by points and the critical value given by
the dashed line.

For the remaining )( *pp  columns linear dependencies were introduced in the
following manner. For ppj ,1),(= *  and )(,1,= ** ppj  we generate

   .1,0~and1,0~settingby,* NUgg jj eexx 

We then contaminate the data set by randomly replacing 10%, 15% and 20% of the
observations. We denote by " % cont" the proportion of the contaminated units. These
were generated according to * ~ (12, 20)

ij
x U , with collinearity induced in exactly the

same way with the non-contaminated data. We set the number of observations equal to
50 and we created moderately high-dimensional data ( pn  ) by setting 50=p , and
high-dimensional data ( pn  ), by setting 100=p . Finally, we fix a high level of
induced linear dependencies among the predictors by setting /10=* pp .

We run M = 1,000 simulations for all the combinations of these parameters. As
performance measures, we report the average proportion of false negative, false positives,
and Pr=1P (correctly classifying the entire data set). The latter is a very strict measure
that gives the percentage of data sets (out of the 1,000 simulation runs) that were
perfectly classified.
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5.2 Simulation Results
We start with the null case of non-contaminated data, to see the performance of the
algorithms without any outliers. Table 1 gives the average number of false positives for
data sets without any outliers, measured over 1,000 simulations. It is clear that lack of
outliers does not "force" the algorithm to classify some of the regular data as outliers.

Now we consider contaminated data. Table 2 shows that both RD1-BACON and RD2-
BACON do a very good job of detecting outliers and regular data for the given
simulation conditions. RD1-BACON generally has slightly higher average number of
false negatives than RD2-BACON, but a slightly lower number of false positives. RD1-
BACON generally has a higher probability 1P of classifying the entire data set correctly
than RD2-BACON. That is, there are more instances (of the 1,000 simulations) when
RD1-BACON gets everything exactly correct, but for those data sets for which it doesn't
get everything exactly correct, it makes relatively more mistakes than RD2-BACON.
This implies that RD2-BACON consistently makes only a few mistakes whereas RD1-
BACON is more variable. The difference in performance, however, is very small.

Table 1: Simulation Results (Null case): The probability of falsely declaring any point
an outlier in data sets without any planted outliers.

p RD1 RD2
50 0.001 0.007

100 0.004 0.008

Table 2: Simulation Results (Contaminated Cases): False negatives, false positives and
Pr=1P (correctly classifying the entire data set). Note that 0.000 indicates an

average less than 0.001, while 0 indicates no mistakes were made over any of
the 1,000 simulations.

Contamination Rate
10% 15% 20%

p RD1 RD2 RD1 RD2 RD1 RD2
FN 50 0.027 0 0.014 0.000 0.005 0.001

100 0.012 0 0.001 0 0 0
FP 50 0.000 0.002 0.000 0.001 0.000 0.000

100 0.001 0.002 0 0.000 0.000 0.000
1P 50 0.964 0.927 0.976 0.962 0.986 0.976

100 0.989 0.929 0.996 0.966 0.994 0.997

6. Benchmarking to Other Robust Methods
The alternative approaches for outlier detection and robust location-scatter estimation that
we consider are the robust location and dispersion given in Maronna and Zamar (2002),
and the ROBPCA algorithm presented in Hubert et al.(2005). The latter is mainly used in
Principal Components Analysis and it robustly estimates location and scatter by
combining projection pursuit ideas with the MCD covariance estimator (see
Rousseeuw,1984) ; it is indeed suitable for high-dimensional data. The OGK Maronna-
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Zamar estimate, where OGK stands for Orthogonalized Gnanadesikan-Kettenring, is
based on the approximately uncorrelated score vectors of a pseudo-correlation matrix.
The latter is built by enforcing variances of all variables to be 1, while for the off-
diagonal elements they use a robust measure of dispersion (denoted generally by  ) and
determine the correlations in pairwise fashion iX and jX based on the identity

 ,)()(
4
1=),( 22

jijiji XXXXXXCov  

popularized by Gnanadesikan and Kettenring (1972).

Various arguments can be used inside the ROBPCA and the OGK functions. We will try
in what follows to simplify the calculation of both estimates by taking the appropriate
arguments as suggested by the authors and our knowledge of the data to which we apply
them. For example, we do not use the median and the MAD (where MAD denotes the
median absolute deviation) as location and scale estimates in the OGK procedure since,
as suggested by the authors, it worsens results, especially for high-dimensional data. We
also use one reweighing step for OGK estimate and we detect outliers based on
Mahalanobis distances (see Maronna and Zamar, 2002, page 308-309). For the ROBPCA
algorithm we use prior knowledge concerning the value of the k components and we set
the parameter  equal to its default value, that is 0.75. We take as outliers the
observations which are finally flagged in the ROBPCA algorithm.

We revisit here the octane and the weather data in order to compare outlier detection
results provided by the RD-BACON algorithms and its robust competitors. We display in
Table 3 the detected outliers for each method together with the true outliers. The results
are analyzed separately for the octane data and the weather data.

6.1  Octane Data
For the octane data, the ROBPCA method was run on three principal components with 
set by default to 0.75. The OGK estimate was run based on a weighted mean for location
and a truncated standard deviation for scale estimates as it is described in their paper (see
Maronna and Zamar, 2002, page 310). We have, moreover, used one reweighing step.
The detected outliers have had Mahalanobis distances larger than 0d , where

,
(0.5)

),,(med)(
= 2

1
2

0
p

np dd
d


 

where )(2  p denotes the th quantile of a chi-square random variate with p degrees of
freedom. Following Maronna and Zamar (2002) we set 0.9= .

6.2  Weather Data
We followed the same steps concerning the OGK robust location and dispersion estimate.
We investigated the ROBPCA method for 2 to 5 components. Generally, the fewer the
number of components, the fewer outliers detected. Table 3 shows results from the
ROBPCA method with 2 components, and 0.9= to increase efficiency.
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Table  3: Detected outliers in the real data sets for all robust methods. True outliers
correspond to observations which have, to our knowledge, been referred to as
outliers in previous analysis.

Octane data Weather data
TRUE MZ ROBPCA RD1 RD2 MZ ROBPCA RD1 RD2

25 25 25 25 25 35 35 35 35

26 26 26 26 26 34 34 - 34

36 36 36 36 36 33 33 - 33

37 37 37 37 37 31 31 - -

38 38 38 38 38 30 30 - -

39 39 39 39 39 29 - - -

- 3 3 - - 25 - - -

- 18 - - - 19 19 - 19

- 27 - - - 7 7 - -

- 34 - - - - - - -

6.3  Ionospheric Data
The Ionospheric data set contains 351 observations on 35 variables. The first 34
continuous variables are used for the prediction, while the 35th variable classifies the
observations into "good" or "bad" observations. The Ionospheric data set is available in
package dprep (Acuna et al., 2009) in R (R Core Team, 2012), as well as from the UC-
Irvine Machine Learning Repository(Asuncion and Newman, 2007). We did not include
this data set in Section 4 because it is not rank-deficient, so any robust algorithm could be
used.

This data set has already been analyzed in Maronna and Zamar (2002), among many
others. It provides an excellent pn > data set with extreme collinearity, where the use of
the RD-BACON algorithm is necessary. In our analysis we followed Maronna and Zamar
(2002), that is, we retained the 225 "good" observations while we removed variables 1, 2,
and 27. These variables were removed because their 0=MAD . For the RD-BACON
algorithms this poses no problem, yet variables 1,2, and 27 were removed in order to
make results comparable to the ones given in Maronna and Zamar (2002).

Table 4 displays the observations with the largest Mahalanobis distances for various
algorithms, and is essentially the same as the table given in Maronna and Zamar (2002).
The first row shows the distances for the FMCD estimator (see Rousseeuw and van
Driessen, 1999) with 500 subsamples for the MCD algorithm.  The second and third rows
display the distances from the OGK estimate with and without reweighing and for

0.9= . For more details, see Maronna and Zamar (2002). The last 2 rows show the
distances we obtained from the RD1-BACON and the RD2-BACON algorithms. We do
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not list the ROBPCA results here since they are essentially the same as the FMCD
results.

We note that the Ionospheric data set is indeed quite complicated and lacking a gold
standard, not possible for any method to claim superiority. We merely aim to show that
our method produces results in line with other established methods. As noticed by
Maronna and Zamar (2002), further research as well as subject matter knowledge are
essential in order to understand this data set.

Table  4: Ionospheric data: Observations with the largest distances id from left to the
right.

Estimate Observations with largest distances
FMCD 99 121 226 148 348 349 100 3 173

(0.9)OGK 264 121 324 99 257 163 173 157 110
(0.9)OGK (2) 121 99 148 349 242 264 173 4 358

BACONRD1 121 99 208 173 148 264 349 3 121
BACONRD2 121 99 148 349 4 208 302 348 3

6.4  Discussion
It is not our goal to compare the performance of the proposed method to other robust
alternatives. If it was the case, we would have definitely prefered to do so in a simulation
experiment where data generation and contamination would be under our control. For
some of the given data sets, however, the notion of "true" outlier is not well defined.
Nevertheless, our method should at least in principle agree with the other methods; these
being well known and established robust methods in statistical practice. Therefore we
would like to benchmark our proposal to these methods and briefly discuss the main
results obtained from the three data sets under study.

For the octane data, the six outliers are known and easily identified by both versions of
RD-BACON without any false positives, as can be seen in Table 3. The method of
Maronna and Zamar (2002) identifies some false positives in addition to the correct ones,
while the ROBPCA also correctly identifies the outliers as well as one false positive.

The true outliers for the Canadian weather stations have not been definitively declared as
such in the literature, according to our knowledge. As can be seen in Table 3, RD1-
BACON identifies the most extreme outlier, while RD2-BACON additionally identifies a
few other unusual stations. ROBPCA identifies the same outliers as RD2-BACON as
well as one additional station. The method of Maronna and Zamar (2002) identifies a few
additional stations as outliers. Note that the general trend is in line with the Octane data
example, where ROBPCA found only one additional outlier while the method of
Maronna and Zamar (2002) found quite a number of additional outliers. Based on this,
we think it is possible that some of the stations identified by Maronna and Zamar (2002)
as outliers could be false positives.
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Our results seem to be in line with other methods, particularly ROBPCA. This is also
verified in the Ionospheric data where there is sufficient evidence that the robust methods
agree, assigning large distances to the same suspected outliers.

7. Computation Times
It is helpful to compare the computation times of our algorithms with those of other
established routines. Already examined in the preceding section, FMCD (Rousseeuw and
van Driessen,1999) is one algorithm that has become very popular as a robust estimation
technique. It is always helpful to compare a new algorithm against one that is well-known
and for which standardized routines exist. We therefore compare the computation times
of RD1-BACON and RD2-BACON with FMCD. We compared two implementations of
FMCD in the R statistical software system (R Development Core Team, 2009): FMCD a

is the covMcd routine in the rrcov package (Todorov and Filzmoser, 2009) , while
FMCD b is the cov.rob routine in the MASS package (Venables and Ripley, 2002).

We examine the effect of p and n separately. Note that FMCD requires np < while the
cov.rob implementation requires 50p , so we split the investigation into two parts. In
Table 5 we include FMCD in the comparison and restrict the dataset size accordingly.
We thus maintain n = 1,000 and investigate p = 10, 20, 30, 40, and 50. Then hold

50=p and investigate n = 1,000, 2,000, 5,000, and 10,000. We exclude FMCD from
the comparisons in Table 6, for which we set n =100 and 500 and let p vary from the
given value of n up to p = 1000. The results shown in these two tables are the average
values from 10 simulations from a PC with 2 Ghz processing speed and 32-bit operating
system.

It is clearly evident that not only are RD1-BACON and RD2-BACON very fast, but they
also scale well with increasing dimension. RD1-BACON is always faster than RD2-
BACON, which can be explained by the former's use of only the k most important
eigenvalues/vectors regardless of the actual dataset dimension. That is, for high p and
not so high n , RD1-BACON projects the data onto a subspace with dimension pk  ,
whereas RD2-BACON still utilizes all p dimensions during the computation of the
covariance matrix and its inverse (as well as for other computations). As expected,
FMCD is very slow for practical use in large datasets, and does not scale well with
increasing dataset size (either n or p ). Although a lot faster than FMCD, the OGK
method is also rather slow and does not scale well with increasing p . This is likely due
to its pairwise computation of the covariance matrix, which can become very burdensome
in high dimensions. ROBPCA is generally pretty fast, although for certain configurations
it can be unexpectedly slow, which we presume is due to it having difficulty finding the
optimum parameters to investigate a given dataset. Nevertheless, it does scale very well
with increasing dimension and is sometimes even faster than RD2-BACON, which is not
as fast in high dimensions. ROBPCA is also faster than RD1-BACON for 100=n and
p = 500 and 1,000, but not when n is increased to 500=n .
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8. Concluding Remarks and Further Research
The multivariate BACON algorithm for outlier detection has been extended here to
include rank-deficient data. These arise from highly collinear variables as well as from
high-dimensional data sets. Outlier detection in such cases commonly breaks down. Two
algorithms have been presented and tested on real and simulated data sets. Both
implementations regularize the statistical problem following rather different approaches.

Table  5: Computation time (seconds): np < . FMCD a is the covMcd routine in the
rrcov package (Todorov and Filzmoser, 2009) and FMCD b is the cov.rob
routine in the MASS package (Venables and Ripley, 2002) are two
implementations of FMCD in the R statistical software system.

n p RD1 RD2 FMCD a FMCD b OGK ROBPCA

1,000 10 0.038 0.041 0.535 11.6 0.051 13.100
20 0.050 0.060 1.394 43.2 0.230 2.674
30 0.061 0.840 3.368 81.1 0.510 2.800
40 0.059 0.114 6.121 123.6 0.889 2.985
50 0.070 0.170 11.600 177.7 2.009 4.990

2,000 50 0.125 0.342 11.410 410.0 2.395 7.530
5,000 50 0.368 0.990 16.550 935.8 5.424 22.020

10,000 50 0.773 1.868 11.560 1,810.0 9.282 50.870

Table  6:   Computation time (seconds): np 

n p RD1 RD2 OGK ROBPCA
100 100 0.032 0.124 3.074 0.599

200 0.098 0.473 12.735 0.692
500 0.885 4.728 80.032 0.738

1,000 7.425 33.065 409.429 0.967
500 500 1.325 6.593 107.918 8.768

1,000 9.082 53.747 469.593 11.906

The RD1-BACON implementation reduces the dimension of the data by projecting it
onto a k -dimensional subspace, where pk < . The ordinary multivariate BACON can
then be run in this subspace. The RD2-BACON algorithm is based on a ridge type
operation in order to get a "pseudo"-inverse and calculate robust distances. Since the
distribution of the latter is hard to determine, a nonparametric decision criterion has been
utilized.

Both RD1-BACON and RD2-BACON demonstrate good performance at classifying both
outliers and regular data for a range of parameters. Both algorithms are also very fast and
are particularly good at handling high-dimensional data. RD1-BACON is somewhat
faster than RD2-BACON, although this difference is small compared to other established
algorithms. For datasets with dimension greater than a few hundred, though, RD1-
BACON is noticeably faster than RD2-BACON. The simulation results justified the
above remarks. Finally, in order to benchmark the proposed method to other well
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established robust techniques. To do so we used three real world examples. The resulting
features demontrated that the BACON results have been in line with the other methods,
particularly with ROBPCA.

Our goal has been rather limited, that is, extending the BACON algorithm for outlier
detection in the rank-deficient setting. The proposed methods could be further used for
robust estimation, but, this will be the goal of a following paper. In addition, the
extension of the proposed methods to robust regression is undoubtedly very appealing,
since the original BACON algorithm includes both robust multivariate estimation and
robust regression.
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