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Abstract

Two independent random samples are drawn from two Binomial populations with parameters 1 and 2
respectively. Ahmed (1991) considered a preliminary test estimator based on maximum likelihood
estimator for estimating 1 when it is suspected that 1 2= .  In this paper we combine minimum phi-
divergence estimators as well as phi-divergence test statistics in order to define preliminary phi-divergence
test estimators. These new estimators are compared with the classical estimator as well as the pooled
estimator.
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1. Introduction
Pooling data is an old classical problem that has been studied for many authors in
different context. If we have a random sample of size n from a random variable X and a
random sample of size m from a random variable Y (the distributions of X and Y
belong to the same family of probability distributions) how shall estimate the mean,
 ,E X of the random variable X ? Shall we merely take the sample mean of the random

sample X , or shall we attempt to combine the means of the two random samples in order
to improve our estimation of  E X in some sense? From a historical point of view
Mosteller (1948) presented for the first time the analysis of pooling univariate normal
data with variance known. Kale and Bancroft (1967) extended the study to discrete data
by using proper transformations. For unknown variances the problem was studied by Han
and Bancroft (1968). The problem for multivariate normal data was studied by Han and
Bancroft (1970) with known covariance matrix and by Ahmed (1992) with unknown
covariance matrix. Other interesting papers in pooling data are Ahmed (1993, 1997),
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Ahmed et al. (1989, 1997, 1999), Mehta and Srinivasan (1971), Raghunandanan (1978)
and references therein.

It is advantageous to utilize a linear combination of the two sample means ponderated by
the sample size of them if  E X coincides with  E Y , i.e., to use the restricted

estimator. In many situations it is not clear if    = .E X E Y In order to tackle this
uncertainty we can perform a preliminary test and then choose between a restricted and
an unrestricted estimator. This line of thought was first proposed by Bancroft (1944). For
a wide study of preliminary test estimators in different statistical problems see Saleh
(2006) and references therein.

In this paper we focus on the problem of pooling proportions of two independent random
samples taken from two possibly identical binomial distributions (see Ahmed (1991)).
This author considered a preliminary test based on restricted maximum likelihood
estimator and classical Pearson's test statistic. In this paper instead of considering the
restricted maximum likelihood estimator we shall consider the restricted minimum phi-
divergence estimator and instead of Pearson's test statistics a family of phi-divergence
test statistics. Therefore in this paper we introduce a family of preliminary test estimators
for the problem of pooling binomial data that contains as a particular case the preliminary
test estimator considered by Ahmed.

The behaviour of phi-divergence measures in the definition of preliminary test estimators
can be seen in Menéndez et al (2008, 2011), Pardo and Martin (2011) and references
therein.

Section 2 is devoted to introduce the family of preliminary test estimators considered in
this paper and in Section 3 we obtain some asymptotic distributional results that are
necessary in the next Section. Finally, Section 4 is devoted to get the asymptotic bias as
well as the asymptotic mean squared errors of the family of estimators introduced in the
paper.

2. Estimation strategies in pooling binomial data based on phi-divergence measures

Let 1,..., nX X and 1,..., mY Y be two independent random samples of sizes n and m from
two Bernoulli random variables of parameters 1 and 2 , respectively. The main
problem in which we are interested is in the estimation of 1 when we suspect that

1 2= .  Maximum likelihood estimator (MLE) of 1 (unrestricted MLE) based on

1,..., nX X is given by 1 1= /y n ( 1y  number of successes associated with the random
sample 1,..., nX X ) and the MLE of 1 (restricted maximum likelihood estimator) under
the assumption that 1 2=  is given by

  
1 2

1 = n m
n m
  


(1)

being  2 2= /y m ( 2y number of successes associated with the random sample

1,..., mY Y ).



Preliminary Test Estimators and Phi-divergence Measures in Pooling Binomial Data

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp331-343 333

We consider the two following probability vectors:

 1 1 2 2= , , ,
Ty n y y m yn n m m

n m n n m n n m m n m m
  

     
p (2)

1 2 1 1 2 2( , ) = , (1 ) , , (1 ) .
Tn n m m

n m n m n m n m
            

p (3)

If we denote = mnN
m n

it is clear that

   1 1
1

( , ) ,
L

N
N N


  

    
 
p

p p 0,

with

 
   1 2

1

( 1 2

,
=, ) 1 ,




 

 
 

 
 
  
 


 

p

p
p

0

0

and
   
   

1 1 1 1

( 1 2 1 1 1 1

1 1
= ., ) 1 1 

   
   
   

    
 p

It is not difficult to see that


1 1 2 1 1log ( ; , ) = ( , ( , ))KullbackL y y k D   p p (4)

where 1 1 2( ; , )L y y is the likelihood function associated with our model when 1 2= , 
i.e.,

1 1 2 2
1 1 2 1 1 1 1

1 2

( ; , ) = (1 ) (1 )y n y y m yn m
L y y

y y
       

   
  

and 
1 1( , ( , ))KullbackD  p p is the Kullback-Leibler divergence measure between the

probability vectors p and 1 1( , ), p i.e.,

 1 1 2 2 1 1 2 2
1 1

1 1 1 1

( , ( , )) = log log log log .
(1 ) (1 )Kullback

y y y y n y n y m y m yD
n m n n m m n m n n m m

 
   

   
  

     
p p

For more details about Kullback-Leibler divergence measure see Kullback (1985) or
Pardo (2006).

Based on equation ((4)) we have

 
1 1 1 2 1 1

11

= arg ( ; , ) = arg ( , ( , )).max min
(0,1)(0,1) KullbackL y y D


   


p p
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If we replace Kullback-Leibler divergence measure by a more general divergence
measure we obtain a new estimator. In the following we shall consider the family phi-
divergence measures defined in the model under consideration by

 1 2
1 1 1

1 1

1 2
1

1 1

( , ( , )) =

(1 )
(1 ) (1 )

y yn mD
n m n n m m

n y m yn m
n m n n m m

     
 

  
 

    
          

     
              

p p

(5)

where   and  is the class of all convex functions   ,x > 0,x such that at

   = 1, 1 = 1 = 0'x   ,  1 > 0.'' For more details about phi-divergence measures see
Pardo (2006). Based on the phi-divergence measures defined in (5) we consider in this
paper the restricted family of minimum phi-divergence estimators defined as

 
1 1 1

1

= arg ( , ( , ).min
(0,1)

D





  


p p (6)

If we consider in (6) ( ) = log 1x x x x   we obtain the restricted maximum likelihood
estimator (MLE), therefore the restricted MLE can be obtained as a special case of the
restricted minimum phi-divergence estimator or we can say that the restricted minimum
phi-divergence estimator is a natural extension of the restricted MLE.

From a practical point of view the restricted minimum phi-divergence estimator can be
obtained as a solution of the equation


1 1

1

( , ( , ))
= 0,

D  






p p

that is, solving for 1 the equation

1 1 1 1 1 1

1 1 1 1 1 1(1 ) (1 ) (1 )
' 'y y y n y n y n yn

n m n n n n n n
   
     

                                     

2 2 2 2 2 2

1 1 1 1 1 1

= 0 .
(1 ) (1 ) (1 )

' 'y y y m y m y m ym
n m m m m m m m

   
     

                                      

If we consider the power divergence measures introduced and studied by Cressie and
Read (1984), obtained from (5)  when we consider the family of functions,

 
 

1 1
, 0, 1

1
( ) = log 1, = 0 .

log 1, = 1

x x x

x x x x
x x








 
 



   
  

  
   


the corresponding minimum power divergence estimator is given by
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 
   

1/( 1)1 1
1 2

11 1/( 1)1/( 1) 1 11 1
1 21 2

= , 0, 1.

y y
n m

n y m yy y
n m n m

 

 
 

   

   

  

 

   

 
 

   
   

         

On the other hand the classical test statistic for testing
0 1 2: =H   (7)

is given by
   22

2 1= ( ) /NZ N   

where   2
1 1= (1 )   and = / ( ).N nm m n Its asymptotic distribution is chi-squared

with one degree of freedom.

If we consider the function 21( ) = ( 1) ,
2

x x  we can see that the test statistic NZ can be

written as

  1 1
2= ( , ( , )), ( = )

(1)N ''

nZ D n m n  



 p p (8)

where  1 1( , ) p is obtained from (3) replacing 1 and 2 by 1 given in (1).

A first extension of ((8)) is obtained if we consider a general function 1 instead of the

function 21( ) = ( 1) ,
2

x x 

  1 1
1 1

1

2= ( , ( , ))
(1)''

nnT D   



 p p

and a more general extension if we consider the minimum 2 -divergence estimator
 2

1 1 12
1

= arg ( , ( , )).min
(0,1)

D





  


p p

In this case we have a new family of phi-divergence statistics defined by

  2 2
1 111 2 1

2= ( , ( , ))., (1)''

nnT D
 


  


 p p

Based in Morales et al. (1995) the asymptotic distribution of
1 2,
nT
 
 is chi-squared with

one degree of freedom. For more details see Pardo (2006).

It is well-known that 1 has a smaller asymptotic risk under quadratic loss than 1 when

1 2=  holds, but as 2 moves away from 1, 1 may be both asymptotically biased and
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inefficient, while the performance of 1 remains constant over such departure. For this
reason Ahmed (1991) developed an estimator which is a combination of 1 and 1 which
is less sensitive to the departure from 0 1 2: =H   because incorporates a preliminary test
on the null hypothesis 0 1 2: =H   versus 1 1 2: .H   This estimator was termed

preliminary test estimator and defined as

 
 


 1 1 12 20, 1, 1,

= ( ) ( ),N NZ Z
  

  


 I I

where NZ was introduced in (8) and by ( )AI x we are denoting the indicator function

taking the value 1 if x A and 0 if x A

In this paper we consider the minimum 2 -divergence estimator  2
1

 instead of 1 and

the statistic
1 2,
nT
 
 instead of .NZ Then we shall consider the preliminary phi-divergence

test estimator based on  2
1

 and

1 2,
nT
 
 given by

 
 


 

2
11 2 20,1 2 1 2 1 21, 1,

Pre = ( ) ( )., , ,,
n nT T



    
    

  I I (9)

3. Asymptotic distributional results

Our problem is the estimation of 1 when it is suspected but one is not sure that 1 2= 

holds. By the definition of 
1 2

Pre
,  we must pay special atention when 2 is close to 1 .

For this reason we are going to assume that 1/2
2 1= ,N     , being = /N nm n

and we consider the contiguous alterntive hypotheses
1/2

1, 2 1: = ,NH N     (10)

The null hypothesis 0 1 2: =H   given in (7) can be writen as  1 2 1 2, =   g We

denote    
1

/ = 1, 1 ,  
q=q

B = g q  1 2= , T   and  0 1 1= , .T   By Pardo J. A. et al.

(2003) (see also page 246 in Pardo 2006) we have, denoting    2 2 2
1 1 1= ,

T  
   that

        
      1/212

1 0 0 0 0 0, 0

1/ 2= T
Pn F n n

o n



     

 
  

  
p

H I A D p p

where p and  0p were defined in (2) and (3), respectively and  0p
D represents the

diagonal matrix with elements  0p . The matrices  0 ,
n
A  0n

H and  0,F n
I are

defined respectively by
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   
   

 

     
  

  

1/2
1/2

1

1/2
1/2

1

0 1/20
1/20

1

1/2
1/2

1

1
1 1

0 0 0, 1
1 1

0

1 0
1/ 2= =

0

0 1

1 0
= =

0 1

n

T

F n n n

n
n m

n
n m

m
n m

m
n m

n
n m

m
n m


 













 
  

 













  


  
    
          

       
    

       
   
   

p
=

p
A D

I A A

and

       11 1
0 2 2 0 0, ,

= ,T

n F n F n

n m
n m n m

n m
n m n m

  
 

   

 
    
    

H I I B BI B B = (11)

where by 2 2I we are denoting the identity matrix of order 2.

If we denote by    1 2= ,
T

   the MLE of  1 2= ,   we can write

      
   1 1/2

,
= .T

F n n
     

  p qI A D p p (12)

Therefore by (11) and (12) we get

       1/22
1 0 0 0= .pn

o n

    


  H (13)

In the following theorem we present the distributional asymptotic results that are
necessary in the following Sections.

Theorem 1. 1Under the contiguous alternative hypotheses
1/2

1, 2 1: = , .NH N    
we have,

a)      1 1 1 10, 1 1
L

N
N     


    where = .lim N

n
n m

  

b)        2
1 1 1 11 , 1 1 .

L

N
N


       


    

c)     2
1

L

N
N


 


  m,S , where
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        
 

2

1 1 2

1 11 , and 1 .
1

T   
    

  

   
       

m = S =

d) The symptotic distribution of the phi-divergence test statistic 1 2,
n

T  is a noncentral

chi-square with a degree of freedom and noncentrality parameter

 
2

1 1

= .
1

 

Proof. Under 1/2
1, 2 1: = ,NH N   

     1 1 1 10, 1 1
L

N
N     


    (14)

and
    2 1 1 1, 1 ,

L

N
N      


  

because
   2 21 2= .N N      

They are also asymptotically independent.Based on (12) on (13) we have
     2

1 1 1(1 ), 1 1 .
L

N
N


       


     (15)

From (12) and (14)
      2

2 2 0 0= ( ) (1)Pn
N N o


        I H

and taking in account that

2 2 0
1( ) =x n

m m
n nn m


 

    
I H

we get

          
 

2
2

1 1 2

1 1 1, 1 .
1

L

N
N

     
   

   

       
              



It  is not difficult to see that
       2 21 2

1,

, = (1)

= (1)

T

Pn F n

T
N N P

n m n mT N N o
nm nm
o

        

 
  



I

X X
where

    1/2 2
1,

1 (1 )1
= , .

(1 )

L

N F n N

n m N
nm

     
   

 

                      
X I 

The matrix
1 (1 )

(1 )

  

  

   
    
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is idempotent of rank 1. Therefore T
N NX X is asymtotically distributed as a chi-square

with a degree of freedom and noncentrality parameter

 
2

2

1
= 1 , = .

   
  

  
    

 
d

Note that 2
1 1= (1 ).  

4 Asymptotic bias and asymptotic mean squared errors of the estimators

Let 


be an estimator of 1 and F the asymptotic distribution of the random variable

 1N  

 . We understand by the asymptotic bias of 


the expression

  ( ) = .B xdF x



In the following theorem we get the asymptotic bias of 1,  2 and 

1 2

pre ., 

Theorem 2Under 1/2
1, 2 1: =NH N   the asymptotic bias of 1,  2 and 

1 2

pre
,  is

given by:
a) 

1( ) = 0.B 

b)   2( ) = 1 .B

  

c)       2
1,21 2 3

pre = 1 ,,B G  
    
   
 

where    2
3

G c
 

represents the distribution

function of a noncentral chi-square random variable with three degrees of freedom and
noncentrality parameter  2

1 1= / 1    evaluated at .c

Proof. Parts a) and b) follow by previous Theorem. We observe that 
1 2

pre
,  can be written

as
      

2
1 1 20,1 2 1 21,

pre = ( )., ,
nT



  
    

  I

Therefore,
       

2
1 11 1 20,1 2 1 21,

pre = ( )., ,
nN N N T



  
      

     
 

I (16)

Let Y be a normal random variable with mean  1 1/ 1   and variance 1. The

distribution of 2Y coincides with the asymptotic distribution of
1 2

.,
nT
 
 We denote
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 1 1=NU N   and by U the random variable verifying
L

N N
U U


 where U is a

normal random variable with mean zero and variance    1 11 1 .    We can write,

    
 

  2 2
1 11 1

1 1

1= 1 .
1

mN Nmm n
m n

 
     

 
  

 


It is clear that

 
  2

1

1 1

1 .
1

L

N
N Ym

m n


 

 


 




Therefore,

        

     

2
1 1 20,1 2 1,

2
1 1 20, 1,

pre = 1 1 ( ),

= 1 1 ( ) .

B E U E Y Y

E Y Y

  

 

   

  

           
 

   
 

I

I

If  is a normal random variable with mean  and variance 1 ,

     
2

0, 22
3

( ) = .cE G c


  


 
 I

For more details see Judge and Bock (1978) or Saleh (2006). Then,
    

     2
1 1 1,21 2 31 1

pre = 1 1 ., 1
B G  

      
    
  

Let 


be an estimator of 1 and F the asymptotic distribution of the random variable

 1N  

 . We understand by the asymptotic mean squared error of 


the expression

  2( ) = .MSE x dF x




In the folowing theorem we get the asymptotic mean square error of 1,  2 and 
1 2

pre ., 

Theorem 3. 3Under 1/2
1, 2 1: =NH N   the asymptotic mean squar error of 1,  2

and 
1 2

pre
,  is given by:

a)      1 1 1= 1 1MSE     

b)        2 22
1 1= 1 1 1MSE


        
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c)               2 2 2 2 2
1 1 1, 1,2 21 2 3 5

pre = 1 1 1 2,MSE G G   
         

          
    
       2

1 1 1,2
3

1 1 .G 


   


  

Proof. Parts a) and b) are immediate on the basis of (14) and (15). We denote
 2 1=NW N   and we have

L

N N
W W




where W is a normal random variable with mean  and variance  1 11 .   It is easy

to see that the random vector  , TU W U is normal with mean vector  0, T and
variance-covariance matrix

       
     

1 1 1 1

1 1 1 1

1 1 1 1
.

1 1 1
     
    

     
     

Based on this result we have,
      / = = 1 .E U W U w u w u       

We denote   2
1=NV N


  and by V the random variable verifying ,

L

N N
V V


 then

we have,


 

2
2

20,1 2 1,

pre = ( ) .,MSE E U V Y
  
 

         
     

I

We know by (14) that
       2

1 2 1= 1 .p
mN N o

n m

     


Therefore,

  = 1V W U 
and

     

     

     

2
2

20,1 2 1,

2 22 2
20, 1,

2
20, 1,

pre = 1 ( ),

= 1 ( )

2 1 ( ) .

MSE E U W U Y

E U E W U Y

E U W U Y

  

 

 

 





           
     

 
      

 
 

   
 

I

I

I

We are going to get the expression of    
2

20, 1,
= ( ) .l E U W U Y

 

 
 

 
I We have,
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     

          

           

2
20, 1,

22 2
2 20, 0,1, 1,

22 2
2 20, 0,1, 1,

= ( ) /

= 1 ( ) 1 ( )

= 1 ( ) 1 ( ) .

l E W U Y E U W U

E W U Y E W U Y

E W U Y E W U Y

 

  

  

  

  

 
    

 
   
       

   
   

       
   

I

I I

I I

Then we get,

            
2 2 22 2 2

2 20, 0,1 2 1, 1,

pre = 1 ( ) 2 1 ( ) .,MSE E U E W U Y E W U Y
   
   

                       
I I

Now applying: "If  is a normal random variable with mean  and variance 1 , then

         
2 2 2

0, 2 22 2
3 5

( ) = ".cE G c G c
 

  
 

   I

We get

              

       

2 2 2 2
1 1 1, 1,2 21 2 3 5

2
1 1 1,2

3

pre = 1 1 1 2,

1 1 .

ECM G G

G

   




         

   


          
    

  

Acknowledgement. This work was partially supported by Grant MTM 2009-10072.

References
1. Ahmed, S. E. (1991). To pool or not to pool: The discrete data. Statistics and

Probability Letter, 11, 233-237.
2. Ahmed, S. E. (1993). Pooling means under uncertain prior information with

application to discrete distributions. Statistics,24 , 3, 265-277.
3. Ahmed, S. E. and Ullah, B. (1999). To pool or not to pool: the multivariate data.

Sankhya Ser. B, 61, no. 2, 266-288.
4. Ahmed, S. E. and Rohatgi, V. K. (1996). Shrinkage estimation of the proportion

in randomized response. Metrika, 43 , 3, 17-30.
5. Ahmed, S. E. and Saleh, A. K. Md. E. (1989). Pooling multivariate data. J. Statist.

Comput. Simulation, 31, 3, 149--167.
6. Ahmed, S. E. and Tomkins, R. J. (1997). On pooling means from two lognormal

populations with unequal variances. J. Appl. Statist. Sci., 6 , no. 2-3, 125--143.
7. Ahmed, S. E., Zafaryab, K, M. and Abdul Kadir A. (1997). Pooling slopes of

several regression lines. Pakistan J. Statist., 13 , no. 1, 79-86.
8. Bancroft, T. A. (1944). On biases in estimation due to use of preliminary tests of

significance. Ann. Math. Statist., 15 , 190-204.
9. Cressie, N. and Pardo, L. (2002). Phi-divergence statistics, in Encyclopedia of

Environmetrics. (A. H. ElShaarawi and W. W. Piegorich, Eds). Volume 3,
1551-1555, John Wiley & Sons, New York.



Preliminary Test Estimators and Phi-divergence Measures in Pooling Binomial Data

Pak.j.stat.oper.res. Vol.VIII No.3 2012 pp331-343 343

10. Csiszár I. (1963). Eine Informationtheorestiche Ungleichung und ihre Anwendung
anf den Beweis der Ergodizität Markoshen Ketten. Publications of the
Mathematical Institute of Hungarian Academy of Sciences, Series A, 8, 84-108.

11. Ferguson T. S. (1996). A Course in Large Sample Theory. Texts in Statistical
Science, Chapman & Hall, New York.

12. Han, Chien-Pai and Bancroft, T. A. (1968). On pooling means when variance is
unknown. J. Amer. Statist. Assoc. , 63, 1333--1342.

13. Judge, G. G. and Bock, M. E. (1978). The Statistical Implications of Pretest and
Stein-Rule Estimators in Econometrics. North Holland. Amsterdam.

14. Johnson, J. P. and Bancroft, T. A. and Han, Chien Pai (1977). A pooling
methodology for regressions in prediction. Biometrics, 33, no. 1, 57-67.

15. Kale, B. K. and Bancrof, T. A. (1967). Inference for some incomplete specified
models involving normal approximations to discrete data. Biometrics, 23,
335-348.

16. Kullback, S. (1985). In Encyclopedia of Statistical Sciences, Volume 4 (editors S.
Kotz and N. L. Johnson), 421-425, John Wiley, New York.

17. Mahdi, T. N.,  Ahmed, S. E. and Ahsanullah, M. (1998). Improved prediction:
pooling two identical regression lines. J. Appl. Statist. Sci., 7 , no. 1, 63-86.

18. Menéndez, M. L., Pardo, L. and Zografos, K. (2010). Preliminary test estimators
in intraclass correlation model under unequal family sizes. Math. Methods Statist.,
19, no. 1, 73-87.

19. Menéndez, M. L., Pardo, L. and Pardo, M. C. (2008). Preliminary test estimators
and phi-divergence measures in generalized linear models with binary data. J.
Multivariate Anal., 99, 10, 2265-2284.

20. Mosteller F. (1948). On pooling data. Journal of the American Statistical
Association, 43, 231-242.

21. Mehta, J. S., Srinivasan, R. I. (1971). On pooling data. Estimation of the mean.
Ann. Inst. Statist. Math. 23, 211-224.

22. Pardo L., Statistical Inference Based on Divergence Measures. Chapman &
Hall/CRC, New York, 2006.

23. Pardo, L. and Martin, N. (2011). On the comparison of the pre-test and shrinkage
phi-divergence test estimators for the symmetry model of categorical data. J.
Comput. Appl. Math., 235, no. 5, 1160--1179.

24. Raghunandanan, K. (1978). On pooling data to estimate variance. Sankhya Ser. B
40, no. 1-2, 94--104.

25. Saleh, A. K. Md. E. (2006). Theory of Preliminary Test and Stein-Type
Estimation with Applications, Wiley.

26. Stein C. (1956). Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability 1, 197-206 (University of California
Press, Berkeley, CA).


