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Abstract  

In this article, process capability and system availability analyses are discussed for the inverse Rayleigh 

lifetime distribution. Bayesian approach with a conjugate gamma distribution is adopted for the analysis. 

Different types of loss functions are considered to find Bayes estimates of the process capability and system 

availability. A simulation study is conducted for the comparison of different loss functions. 

Keywords:   Inverse Rayleigh Distribution; Loss Function; Process Capability; System 

Availability Analysis. 

1. Introduction 

In probability and statistics, the Rayleigh distribution is commonly used to study the life 

of electronic components and wind speed. Similarly, in physics and signal processing, it is 

used in the study of various types of radiations, sounds and lights. Due to its diverse 

applications in different fields and special case of the Weibull distribution, many 

statisticians consider it for different types of data sets. For example, Soliman and Al- 

Aboud (2008) used Bayesian and non-Bayesian approaches to obtain the estimators of the 

parameters for upper record data set. However, Rayleigh distribution has an inherent defect 

i.e. it has a monotone increasing failure rate, which make is unsuitable for many 

applications. An alternative to this model is an inverse Rayleigh distribution which has an 
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increasing or decreasing failure rate depending upon the 1.069543/X   or 

1.069543/X  . 

 

In existing state of the art, Howlader et al. (2008) used the Bayesian approach for finding 

prediction bounds for Rayleigh and inverse Rayleigh lifetime models. Soliman et al. (2010) 

discussed Bayesian and classical estimation of the unknown parameter for the inverse 

Rayleigh distribution based on the lower record values. Rosaiah and Kantam (2010) 

discussed the acceptance sampling plan when the life test is truncated at a pre-assigned 

time for the inverse Rayleigh model. Dey (2012) studied the Bayes estimates of inverse 

Rayleigh distribution using squared error and LINEX loss functions while Aslam and Jun 

(2009) designed acceptance sampling plan from a truncated life test.  

 

The rest of the article is organized as follows: The posterior distribution by considering 

gamma distribution as a prior is derived in Section 2. A simulation study for the parameter 

estimation under different loss functions, is also given in the same section. In Section 3, 

the process capability analysis for inverse Rayleigh distribution is discussed. The system 

availability analysis is given in Section 4. Finally, the last section has some concluding 

remarks and future proposals.  

2.   Posterior Distribution 

The posterior distribution summarizes available probabilistic information on the parameter 

in the form of prior distribution and the sample information. The Bayes theorem is used to 

obtain a posterior distribution. Since the posterior distribution is an updated version of 

information, so the inference of posterior is challenging due to its complexity. In this 

section, we will use the inverse Rayleigh distribution as sampling distribution and combine 

it with the informative gamma prior. Let 1 2, ,........, nX X X  be a random sample taken from 

the inverse Rayleigh distribution. The probability distribution of inverse Rayleigh is: 
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The likelihood function of the inverse Rayleigh distribution with unknown parameter   

is: 
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From Eq. (1), one can easily observe that it looks similar to a gamma distribution. A 

conjugate prior can be easily constructed by replacing data with hyperparameters in Eq. 

(1). However, this conjugate will be gamma distribution. The gamma prior (GP) with 

hyperparameters 1' 'a  and 1' 'b , has the following density: 
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The posterior distribution of the parameter   is:  
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So  | ~ ,Gammax   , where 1a n    and 
12
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i i

b
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
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Remark 

If we put 1 1 0a b  in Eq. (2), then the posterior distribution for uniform prior can be 

easily obtained. If 1 11, 0a b  , we have the posterior distribution for Jeffreys' prior. 

Similarly, by using 1 2 12, 0.5a a b  , the expression for the chi-square prior can be 

obtained. 

2.1.   Bayes estimates under different Loss Functions 

In this section, we consider different loss functions for the computation of Bayes estimate 

and posterior risk. In the usual Bayesian framework, the squared error loss function is 

commonly used. However, it does not reflect the reality because it gives equal weightage 

to over estimation and under estimation. For example, consider an example of dam 

construction where underestimation is forbidden, because if construction is underestimated 

then it will damage the nearby city. So to deal with such a situation, asymmetric instead of 

symmetric loss function is needed to consider.  Therefore, for the analysis purpose, here 

we are comparing six loss functions given in the Table [1] (see Ali (2013), Ali et al. (2012) 

and references cited therein). Note that the general form of the first five loss functions can 

be written as: 

 
2

( , ) ( , ) 1L a w a a     

where ( , )w a is a weight function. 

Table 1:   Bayes estimators and posterior risk under different loss functions 

Loss Function 

Name 
Mathematical Form Bayes Estimator Posterior Risk 

QLF  
2

11 a   
   1 2| |E E  

x x

 
   2 1 21 | |E E   x x  

WSELF  
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


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1| |E E 


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SELF  
2

3a    |E  x  ( | )Var  x  

MSELF   
2

5 5   a a   
2( | ) ( | )E E x x

 

2Var( | ) ( | )E x x

 

PLF  
2

6 6a a    2 |E  x     22 | |E E  
  

x x  

ELF  4 4log 1a a     1 1 |E  
x     1log | log |E E  x x  
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2.2   Simulation study of the Bayes estimates (BE) and posterior risks (PR) 

A simulation study is designed to see the effect of loss functions on the Bayes estimate. As 

in classical side the choice of an estimator is usually accomplished by using the minimum 

mean square error, therefore on Bayesian side, we are using posterior risk for the choice of 

Bayes estimator. A loss function which has a minimum posterior risk will be considered as 

the most suitable one for the further analysis related to process capability and system 

availability. The samples of different sizes for the selected value of  , are generated from 

the inverse Rayleigh distribution using inverse transformation i.e. ln(u)x   , where 

u ~ [0,1] . Following hyperparametrs values are considered in the analysis:  

1 13; 9, 4a b   
 

1 120; 171, 9a b   
 

1 125; 145, 6a b     

 

For each selected sample size; 10,000 independent simulations were generated and average 

results are presented in the Tables [2-4]. 

Table 2:   BEs and PRs for different loss functions when 3   

n SELF QLF WSELF ELF PLF MSELF 

25 
2.7586 

(0.22382) 

2.5963 

(0.03030) 

2.6774 

(0.08113) 

2.6774 

(0.02080) 

2.7988 

(0.08054) 

2.839586 

(0.028573) 

50 
2.8485 

(0.13753) 

2.7520 

(0.01724) 

2.8003 

(0.04828) 

2.8003 

(0.01724) 

2.8726 

(0.04807) 

2.896904 

(0.016667) 

100 
2.9117 

(0.07778) 

2.8582 

(0.00925) 

2.8850 

(0.02671) 

2.8850 

(0.00919) 

2.9250 

(0.02665) 

2.938361 

(0.009091) 

500 
2.9814 

(0.1746) 

2.9697 

(0.00196) 

2.9756 

(0.00585) 

2.9756 

(0.00190) 

2.9844 

(0.00585) 

2.987403 

(0.001963) 

1000 
2.9897 

(0.008858) 

2.9837 

(0.00099) 

2.9867 

(0.00296) 

2.9867 

(0.00098) 

2.9911 

(0.00296) 

2.992501 

(0.000990) 

Table 3:   BEs and PRs for different loss functions when 20   

n SELF QLF WSELF ELF PLF MSELF 

25 
19.1253 

(1.86621) 

18.9301 

(0.00512) 

19.0277 

(0.09757) 

19.0277 

(0.00510) 

19.1740 

(0.09745) 

19.22282 

(0.005076) 

50 
19.2190 

(1.67136) 

19.0451 

(0.00455) 

19.1320 

(0.08696) 

19.1320 

(0.00450) 

19.2624 

(0.08686) 

19.30590 

(0.004505) 

100 
19.3498 

(1.38160) 

19.2070 

(0.00370) 

19.2784 

(0.07140) 

19.2784 

(0.00365) 

19.3854 

(0.07133) 

19.42107 

(0.003676) 

500 
19.7591 

(0.58185) 

19.7002 

(0.00149) 

19.7296 

(0.02944) 

19.7296 

(0.00147) 

19.7738 

(0.02943) 

19.78851 

(0.001488) 

1000 
19.8414 

(0.33619) 

19.8075 

(0.00084) 

19.8244 

(0.01694) 

19.8244 

(0.00081) 

19.8498 

(0.01694) 

19.85820 

(0.000853) 
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Table 4:   BEs and PRs for different loss functions when 25   

n SELF QLF WSELF ELF PLF MSELF 

25 
24.7449 

(3.46631) 

23.9893 

(0.00591) 

24.1321 

(0.14279) 

24.1321 

(0.00589) 

24.3462 

(0.14258) 

23.95392 

(0.005848) 

50 
24.3771 

(3.04740) 

24.1271 

(0.00515) 

24.2521 

(0.12501) 

24.2521 

(0.00511) 

24.4395 

(0.12485) 

24.50206 

(0.005102) 

100 
24.4807 

(2.44603) 

24.2803 

(0.00409) 

24.3802 

(0.09998) 

24.3802 

(0.00407) 

24.5300 

(0.09981) 

24.57940 

(0.004065) 

500 
24.8134 

(0.95458) 

24.7364 

(0.00155) 

24.7749 

(0.03847) 

24.7749 

(0.00152) 

24.8326 

(0.03845) 

24.85181 

(0.001548) 

1000 
24.8821 

(0.54071) 

24.8386 

(0.00087) 

24.8603 

(0.02173) 

24.8603 

(0.00082) 

24.8929 

(0.02127) 

24.90370 

(0.000873) 

 

From the Tables [2-4], it is clear that as the sample size increases, the Bayes estimate 

approaches to the nominal value of  . The squared error loss function has the highest value 

of posterior risk as compared to other loss functions. On the base of posterior risk, we 

categorized the loss function as 

ELF QLF MSELF PLF WSELF SELF      

 

Using the data set given in Howlader et al. (2008), we have: 
86

2
1

1
8.658513

i ix

 
 

 
 , n= 86, 

1 19, 4a b  . 

Table 5:   Bayes estimates (BE) and posterior risks of a real data set under different 

loss functions 

Loss 

Function 
SELF QLF WSELF ELF PLF MSELF 

BE 
7.50483 

(0.59286) 

7.34683 

(0.01052) 

7.42583 

(0.07899) 

7.50483 

(0.034210) 

7.54422 

(0.07879) 

7.583817 

(0.010417) 

 

In case of a real data set, the relationship ELF QLF MSELF PLF WSELF SELF    

still holds. Therefore, we prefer the ELF, QLF and MSELF for the inverse Rayleigh 

distribution.  

3.   Process capability analysis of the inverse Rayleigh model 

Process capability indices (PCIs) are statistical process control techniques, which are used 

to quantify the process behavior; and identify any discrepancies between the actual process 

performance and the desired specifications. These are very effective quality improvement 

tools and practitioners use them to analyze the process output(s) under certain conditions 

of independence and normality of the quality characteristic(s) under study. However, 

dealing with a practical situation, it is quite hard to meet all the ideal conditions such as 

normality, and we come across non-normal (skewed) distributions. In such a situation, we 
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need to look for some suitable probability models to correctly capture the true process 

variations with reference to the characteristic(s) of interest.  

 

There are different capability indices available in the quality control literature, which are 

used under different process scenarios, e.g. , ,Np Npk NpmC C C
 
and 

NpmkC  Chen and Pearn 

(1997) and Tong and Chen (1988). For a recent comprehensive review on PCIs, one may 

see Yum and Kim (2011) and the references cited therein.  

 

There are two main branches of Statistics namely Bayesian and Classical, and statistical 

methods to deal with practical situations, are generally developed under both approaches. 

Thus, the same is true about PCIs which are worked out in both, i.e. the Bayesian and 

classical setups, under normal and non-normal process distributions. Fan and Kao (2006) 

considered Taguchi capability index using Bayesian approach for estimation and testing 

concerns. Maiti et al. (2010) discussed about generalized process capability indices 

(GPCIs). Followed by Maiti and Saha (2012), this study is planned to investigate the GCPIs 

(cf. Maiti et al. (2010) and Maiti and Saha (2012)) from a Bayesian viewpoint under 

different symmetric and asymmetric loss functions for the inverse Rayleigh lifetime model. 

 

Maiti et al. (2010) suggested a generalized measure defined as: 
0py

C p p , where p is the 

process yield (p=F(U)-F(L)), p0 is the desirable yield (p0=F(UDL)-F(LDL)), F(.) is the 

cumulative distribution function , LDL and UDL the lower and upper desirable limits 

respectively. When the process is off center, then F(L)+ F(U) 1, and the index is defined 

as min( , )
pyk pyu pyl

C C C where
2

( ) ( )

0.5
pyu

F U F u
C 





1

( ) ( )

0.5
pyl

F u F L
C 





. Here u is the median 

(skewed distribution) of the distribution and the process center is to be located such that 

 ( ) 0.5 ( ) ( )F u F L F U

  , 

1
( )P X LDL    and 

2
( )P X UDL   . If the process target is T, 

then  ( ) 0.5 ( ) ( )F T F L F U   (known as symmetric tolerance), while if 0.5( )T L U   and  
 ( ) 0.5 ( ) ( )F T F L F U 

 
(known as asymmetric tolerance). For such a situation, the index is 

defined as: 
2 1

( ) ( ) ( ) ( )
min ,

0.5 0.5
pTk

F U F T F T F L
C

 

 


 

 
 
 

. 

 

The probability model for the inverse Rayleigh distribution is given as: 

  3 2

2
exp , 0f x

x x

 


 
  

   

and its cumulative distribution function (cdf) is given by

2
( ) expF x

x

 
  

 
. For the process which is modeled by the inverse Rayleigh distribution, 

the generalized process capability index Cpy is given by: 

0

02 2
exp exp

py

p
C

p
p

U L

 
 

      
    

    
. Figures [1-4] is the graphical presentation of 

generalized capability index Cpy against   for varying choices of L and U. Note that in 

Figures [1 and 4], we assumed that U< L, otherwise the PC becomes negative as 

indicated in Figures [2-3]. 
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Figure 1:   Graphical Display of Cpy for Varying Choices of L and U (p0=0.9) 

 

 
Figure 2:   Graphical Display of Cpy for Varying Choices of L and U (p0=0.9, 3  ) 

 

 
Figure 3:   Graphical Display of Cpy for Varying Choices of L and U (p0=0.9, 20   ) 
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Figure 4:   Graphical Display of Cpy for Varying Choices of L and U (p0=0.9, L=1) 

 

 

To evaluate the Bayes estimate and respective posterior risk, we shall use SELF, PLF and 

MSELF loss functions. The reason to choose these three loss functions is: SELF is 

commonly used and accepted while PLF is asymmetric loss function and MSLF has 

posterior risk which is approximately equal to QLF (indicated from Tables [2-5]. To 

evaluate the Bayes estimate of Cpy under SELF, one needs to solve:  

2 2

00
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py
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p U L
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Therefore, the posterior risk will be    *
2

ˆ ( | ) ( | )
py py pyC E C E Cx x   . Similarly for other 

loss functions, one can find the Bayes estimators and posterior risks. To see whether the 

inverse Rayleigh distribution is sensitive to either lower limit or upper limit, we used the 

net sensitivity analysis (cf. Maiti et al. (2010)). Net sensitivity analysis is defined as  

(p0)
-1(f(U)-f(L)), where p0 is desirable yield in the proportion of nonconforming output, 

F(UDL)+F(LDL)=1- . For the inverse Rayleigh distribution, the Table [6] contains the 

net sensitivity analysis. 

Table 6:   Net sensitivity analysis of the inverse Rayleigh distribution 

p0=0.90 L=0.5,U=8, 
=0.5 

L=2,U=8, 
=3 

L=2,U=8, 
=20 

L=5,U=8, 
=20 

L=8,U=6, 
=20 

L=10,U=2, 
=5 

NS -1.20083 -0.381214 0.0260753 -0.0962531 0.054548 0.387354 

 

The negative values of net sensitivity imply that the distribution is more sensitive to lower 

specification rather than to upper side for the specified value of  . A large parameter value 
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will result in a small value of net sensitivity (in an absolute sense), which implies that 

distribution is less sensitive/robust with respect to L and U respectively. We noticed that if 

U< <L, distribution is more sensitive toward the upper specification limit. However, if 

L<U<  then the distribution is sensitive to lower specification limit and the same is true 

about L< <U. 

 

For simulation study, we considered different parameter values, i.e. 3,20and25 . For 

3  we have PC nominal value 0.264084, 20  we have 0.692497 and for 25  we 

have PC value 0.683043. Note that these nominal values are calculated by assuming U=8 

and L= 3. Table [7-9] presents the process capability indices under SELF, MSELF and PLF 

by using gamma prior. For large parameter’s value, we observed higher posterior risk 

which reduces with the increase of sample size. The Bayes estimates of process capability 

using SELF have smaller posterior risk value. This behavior is opposite to the Bayes 

estimates given in Section 2 where we observed

ELF QLF MSELF PLF WSELF SELF     . Thus, for the process capability index, 

the loss function can be categorized as SELF PLF MSELF  . 

Table 7:   Bayes estimates and posterior risks of the process capability for 3   

n SELF PLF MSELF 

25 
0.246447 

(0.060736) 

0.348529 

(0.204163) 

0.492895 

(0.499998) 

50 
0.253081 

(0.064050) 

0.357911 

(0.209659) 

0.506163 

(0.499999) 

100 
0.257698 

(0.066408) 

0.364440 

(0.213483) 

0.515396 

(0.499998) 

500 
0.262745 

(0.069035) 

0.371578 

(0.217665) 

0.525491 

(0.499999) 

1000 
0.263343 

(0.069349) 

0.372423 

(0.218159) 

0.526685 

(0.4999997 

Table 8:   Bayes estimates and posterior risks of the process capability for 20   

n SELF PLF MSELF 

25 
0.691394 

(0.478025) 

0.977778 

(0.572769) 

1.382786 

(0.5) 

50 
0.691563 

(0.478259) 

0.978018 

(0.572909) 

1.383127 

(0.499999) 

100 
0.691777 

(0.478556) 

0.978321 

(0.573087) 

1.383556 

(0.5) 

500 
0.692296 

(0.479274) 

0.979055 

(0.573517) 

1.384594 

(0.5) 

1000 
0.691394 

(0.478025) 

0.979164 

(0.573581) 

1.384746 

(0.5) 
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Table 9:   Bayes estimates and posterior risks of the process capability for 25   

N SELF PLF MSELF 

25 
0.683747 

(0.467510) 

0.966964 

(0.566435) 

1.367493 

(0.5) 

50 
0.685133 

(0.469407) 

0.968924 

(0.567583) 

1.370265 

(0.5) 

100 
0.684752 

(0.468885) 

0.968385 

(0.567267) 

1.369502 

(0.5) 

500 
0.683478 

(0.467143) 

0.966584 

(0.566213) 

1.366956 

(0.500001) 

1000 
0.683206 

(0.466770) 

0.966199 

(0.565986) 

1.366411 

(0.5) 

4.   System availability analysis with the inverse Rayleigh distribution 

Since the real world situations are dynamic, so the organizations in almost all parts of the 

world are becoming dependent on their systems. We (as a human) and companies heavily 

depend on different kinds of reliable systems. A system gives a performance until its failure 

is “available” before its failure. After the system failure, if we maintain them it will 

function again. Hence, the production of an item is available except for the period during 

which it is under repair. However, when the data on a complete system is not available, it 

is better to use the operational data about the system’s performance.  

 

Availability of system has various meanings and different ways of its computation 

depending upon its use. It is defined as a percentage of the degree to which extent 

machinery and equipment is in an operable and a committable state at the point in time 

when it is needed. We can also declare it as a performance criterion for repairable systems 

that accounts for both the reliability and maintainability properties of a component or 

system. If somebody considers two kinds of information, i.e. the probability that the item 

will not fail (reliability) and the probability that the item is successfully restored after 

failure (maintainability); then an additional metric (availability) is needed for measuring 

the operational probability at the given time (cf. Khan and Islam (2012)).  

 

Let us consider an example of an air conditioning system, we often see that after some 

years of use, cooling becomes slow in conditioning system and takes more time than that 

for the new one. It is due to the compressor’s function’s ability or low level of gas pressure, 

but if we do maintenance after a fixed time interval; we find that it would be, once again, 

performing cooling like a new one. Maintaining high or required level of availability is 

often a vital requirement for improving the system availability. To fulfill this aim, it is very 

important to reduce the number of failures to avoid unexpected sudden breakdowns. Thus, 

maintenance is not only important for these reasons, but its successful implementation also 

leads to maximize capacity utilization, improved product quality, customers’ satisfaction, 

equipment’ adequate life span, etc. 
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Let the failure time X of each component be distributed as inverse Rayleigh with 

probability function:   

 
3 2

2
exp , 0.f x

x x

 


 
  

 
 0 .x    

where the mean time between failure (MTBF) is  . Also, let the repair time Y of each 

component is distributed as the inverse Rayleigh model with density:   

   3 2

2
exp , 0.f y

y y

 


 
  

 
 , 0 .y    

and the mean time to repair (MTTR) is  . The steady state component availability, 

denoted by Ac, is the probability that the component is available in the long run and is given 

as
MTBF

A
MTBF+MTTR +

c



 
  . If the system components are connected in a series, then 

the availability of a series system is As = (Ac)
m. The graphical presentation of system 

availability is given in Figure [5], which is clearly an increasing function of the failure 

distribution’s parameter by keeping the small value of repair distribution’s parameter and 

vice versa. 
 

 

Figure 5:   System availability of the inverse Rayleigh distribution 

 

 

For the system availability analysis, we consider different sample sizes, i.e. 25, 50, 100, 

500 and 100; and three sets of parameter value, i.e. θ = 3, λ = 20; θ = 20, λ = 25 and θ = 

25, λ = 3, however here we are presenting results only for θ = 3, λ = 20. The simulation 

study’s results are presented in Figure [6-7]. These results advocate that as the number of 

failure increases, the availability of the system decreases, and when repairs are performed, 

the availability of the system increases. In other words, we can say that when the value of 

MTBF is smaller than the MTTR, the availability of the system will be lower. From Figure 

[6], it is clear that the Bayes estimates of system availability using MSELF converge 
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rapidly to a nominal value as compared to SELF and PLF. It is also worthy to mention that 

in case of system availability, the MSELF outperforms on the base of minimum posterior 

risk (cf. Figure [7]).  

 
 

Figure 6:   Bayes estimate comparison for the system availability analysis 

 

 

 
 

Figure 7:   Posterior risk comparison for the system availability analysis 

5.   Conclusion 

In this article, the process capability and system availability analysis of the inverse 

Rayleigh distribution is given. We used the Bayesian method for the unknown parameter 

estimation. Different types of loss functions are also used for the Bayesian estimation. A 
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detailed simulation study using different sample sizes is given in this article. It is observed 

that the posterior risks of the estimates of the parameters are large for the larger values of 

the parameters and vice versa. However, the posterior risk of parameters is reduced as the 

sample size increases. In case of Bayes estimates, we categorized the loss function as 

ELF QLF MSELF PLF WSELF SELF      by using posterior risk as a comparative 

measure. However, in case of process capability analysis, the ordering of loss function is 

SELF PLF MSELF  and vice versa for system availability analysis. We considered 

SELF, PLF and MSELF in case of system availability and process capability analysis; 

because SELF is widely used and accepted, PLF is an asymmetric loss function while 

WSELF has a minimum posterior risk for the Bayes estimates (discussed in Section 2). In 

future, this work can be extended using inverse Rayleigh truncated distribution. 
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