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Abstract  

High-grade gliomas (HGG) are invasive brain tumours characterized by abnormal growth patterns and poor 

prognoses. Aware and precise prediction of tumour growth helps improve both treatment protocols and patient 

medical outcome. The quick replicating and diverse nature of HGGs in children makes their predictive progression 

highly difficult to determine. This research utilized a modified exponential regression approach to study glioma 

progression in children's brains with predicted accuracy reaching 73.68% for all tumours but elevating to 77.7% 

for small tumours under 100 mm³. Statistical analyses revealed significant negative correlations between tumour 

growth and tumour size, along with pre-radiotherapy performance status (PS Before RT), as determined by Kendall’s 

Tau test.  The Mann-Whitney U and Kruskal-Wallis H tests were employed for bivariate analysis of categorical data, 

demonstrating a significant association (𝑝 < 0.05) among tumour growth rate, the extent of surgical resection, and 

survival status.  The child's age, the occurrence of headaches, and edema were independently associated with the 

progression of tumour growth. These findings enhance the understanding of paediatric HGGs development, 

facilitating more accurate prognostic evaluations and improving personalized treatment strategies. 

 

Key Words: High-grade gliomas; Paediatric; Modified exponential regression model; Glioma progression; 

Prediction.  
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1. Introduction 

Glioma is a malignant brain tumour distinguished by its aggressiveness and poor prognoses (Ma et al., 2020). These 

tumours arise from glial cells, the supporting cells in the brain and nervous system, and are extremely difficult to treat 

due to their rapid growth and invasive nature. They infiltrate surrounding brain tissue, rendering complete surgical 

removal difficult and increasing the likelihood of recurrence. Understanding the evolving dynamics of glioma 

proliferation, particularly the factors influencing tumour growth, is essential for developing effective treatment 

strategies and improving patient outcomes.  

 

Paediatric gliomas are among the most common and severe types of cancer in children, significantly contributing to 

cancer related mortality and disability. High-grade gliomas (HGGs) are especially aggressive, posing major challenges 

to both treatment and long-term survival. HGGs account for approximately 8 − 12% of all paediatric brain tumours, 

with an average incidence of about 0.85 cases per 100,000 children annually (Ostrom et al., 2022). The occurrence of 
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these tumours mainly affects children of older age ranges who are between ages 10 and 14, especially seen in this 

adolescent group. Brainstem tumours called diffuse midline gliomas frequently develop within the brainstem tissue 

and affect younger patients especially while presenting as DIPGs (Louis et al., 2016). Paediatric HGGs have an 

unfavourable survival outlook because the 5-year survival chance amounts to only 10 − 20% and patients with DIPGs 

have a median survival duration of 9–11 months and often survive less than 10% beyond two years (Jones et al., 

2017).  

 

Olsson et al. (2024) explored the long-term cognitive impacts of paediatric brain tumours, emphasizing the importance 

of considering cognitive development when evaluating outcomes for children with HGGs. Treatment efforts are 

complicated by tumour resistance and the potentials of brain damage. Consequently, accurate predictive models and 

reliable indicators are critical for assessing disease progression, treatment selection, and survival prediction. Despite 

advancements, there remains a pressing need for improved tools to aid clinical decision-making and personalize 

treatment (Obeagu & Obeagu, 2024). Statistical models have therefore become essential for enhancing prognostic 

accuracy and understanding tumour growth in HGG patients. These models support clinicians in risk stratification, 

personalized treatment planning, and trend forecasting.   

 

Existing literature has predominantly utilized linear and hierarchical regression models to study HGG progression. 

For instance, Rees et al. (2009) used semi-automated segmentation together with hierarchical regression to track 

tumour volume patterns through which they proved tumour volume functions as the primary indicator of cancer 

development. Their research model demonstrated that the brain tumour volume grew by 56% each year from six 

months before transformation. A study utilized linear mixed-effects modelling to study biomarker impact on 

aggressive HGG growth rates and determined 63.4 days doubling period and 51.6 mm annual diameter expansion 

(Fan et al., 2020). The prognostic analysis through Cox regression has found four main risk factors that harm patient 

outlook in paediatric HGGs including pathological grade IV status, thalamic invasion, poor performance status 

alongside tumours larger than 3.3 cm (Muhammed et al., 2019). The application of multivariate logistic regression 

predicted post-radiation endocrine dysfunctions in children with successful discrimination power (𝐴𝑈𝐶 =  0.883) 

using a clinical threshold of 0.3 (Hua et al., 2012). The use of radiomics in logistic regression models provides 

excellent accuracy for preoperative glioma grading assessment which enables clinical decision tools for healthcare 

professionals (Sun et al., 2021). 

 

Despite these advances, current regression frameworks have limited capacity to detect the precise growth patterns of 

paediatric HGGs, primarily due to tumours rapid and nonlinear proliferation characteristics. To address this limitation, 

Otunuga (2024) introduced tumour population dynamical methods that incorporate shape parameters, allowing 

flexible representation of diverse tumours growth trajectories. Modified exponential curves have also been employed 

to describe and predict the nonlinear progression of real-world phenomena (Lu et al., 2012; Zuo et al., 2022) and 

studies suggest that certain tumours, including glioma, follow modified exponential growth patterns during 

development. Feucht et al. (2024) observed that glioblastomas often exhibit exponential growth in their early stages, 

with a median volume doubling period of 31 days as confirmed by an exponential regression model. The utilization 

of baseline tumour volume together with heterogeneous clinical data remains inconsistent for improving prognostic 

accuracy. 

 

Dynamics of HGG and development are not always linear; in most cases it has an exponential or sigmoid asymptote 

due to their rapid proliferation. Where the rate of change accelerates, such as is the case in malignant tumours, the 

linear regression approach fails to characterize this accelerating growth. Logistic and Cox regression models can be 

used in classification and survival analysis models but cannot be used in nonlinear modelling growth trajectories. 

Exponential regression (Mahanty et al., 2022), in contrast, more closely corresponds to the biological reality of 

nonlinear glioma growth because each cell division leads to tumour expansion in a multiplicative approach. Clinically, 

this gives better prediction of tumour burden outcome which can be used in the timely planning of treatment. 

 

This study presents a generalized exponential regression model tailored for paediatric high-grade gliomas, adept at 

identifying both rapid growth and decrease patterns that traditional linear regression models overlook. This approach 

combines tumour growth evaluation with clinical and patient-specific factors. These coefficients can aid clinical teams 

in optimizing the timing of surgical resections and treatment measures. The model provides physicians with an 

interactive instrument for enhancing the accuracy of intervention decisions, potentially reducing developmental 

difficulties in paediatric patients. 
 



Pak.j.stat.oper.res.  Vol.21  No. 3 2025 pp 395-402  DOI: https://doi.org/10.18187/pjsor.v21i3.4987 
 

 
A Generalized Exponential Regression Model for Predicting High-Grade Glioma Growth in Paediatric Patients  

 

397 

 

2. Data Resource 

This study utilizes open-source data acquired from the Kaggle database (2024). This collection contains clinical and 

tumour size data for 57 paediatric cancer patients aged 2 to 17 years. The tumour volumes of each patient will be 

recorded as 𝑣𝑖, indicating the tumour size, followed by the calculation of the percentage growth rate (PGR) to 

determine if there is rapid growth or decline, using the following formula (Casler, 2015) 

𝑃𝐺𝑅 =
𝑉𝑖+1−𝑉𝑖

𝑉𝑖
× 100                                                                                   (1) 

where, 𝑣𝑖 is the 𝑖𝑡ℎ tumour volume in mm3 and 𝑣𝑖+1 is the (𝑖 + 1)𝑡ℎ tumour volume in mm3. If PGR is positive, it 

indicates rapid growth, whereas a negative PGR suggests a decline in growth. To enhance model accuracy, PGR is 

utilized as a continuous variable for fitting the model, while also being classified into categorical groups (rapid growth 

and decline) to examine its relationship with other factors. However, the outcome variable violated the linearity 

assumption concerning initial tumour volume (𝑟 =  −0.29), indicating a nonlinear relationship. Clinical 

characteristics of paediatric patients are shown in Table 1. 

 

Table 1: Clinical characteristics of HGG patients for categorical variables. 

Characteristics Categories Number (%) 

Growth Rapid Growth 26 (45.6) 

Decline 31 (54.4) 

Gender Male 31 (54.4) 

Female 26 (45.6) 

Headache Yes 40 (70.2) 

No 17 (29.8) 

Edema Mild 23 (40.3) 

Moderate 29 (50.9) 

No 1 (1.8) 

Severe 4 (7.0) 

Neurostate Asymptom 17 (29.8) 

Symptoma 40 (70.2) 

Extent of Surgical resection Biopsy 22 (38.6) 

Gross Resection 10 (17.5) 

Subtotal 25 (43.9) 

 

 

 

3. Statistical Analysis 

This study included qualitative and quantitative statistical methods. Initially, we utilized the Kolmogorov-Smirnov 

test to evaluate if the result variable adhered to a normal distribution. Kendall's Tau was utilized to assess the 

nonparametric correlations among growth, volume, age, and PS before RT. Furthermore, the non-parametric Mann-

Whitney U test and the Kruskal-Wallis H test were employed to examine the associations among categorical variables. 

The Mann-Whitney U test was utilized when the result variable exhibited a non-normal distribution, and the 

independent variables were categorical with two categories. Likewise, the Kruskal-Wallis H test was employed under 

identical conditions for qualitative independent variables with three or more categories. A two-tailed probability with 

a significance level of 0.05 was uniformly employed. Secondly, a correlation test and a normal probability-probability 

plot of residuals were employed to confirm that the growth rate and volume demonstrate a nonlinear trend. Nonlinear 

models effectively represent the diverse connection between tumour volume and growth rate, particularly when the 

data violates linearity assumptions. A generalized exponential regression model was utilized to forecast glioma 

development in nonlinear progressions. Let us consider, 

𝑦 = 𝑎 + 𝑏𝑣 + 𝑘𝑐𝑣 + 𝑒                                                                          (2) 

where, 𝑦 is the percentage growth rate (PGR), 𝑣 is the volume and   𝑎, 𝑏, 𝑐 and 𝑘 are constant parameters such that, 

−∞ < 𝑎, 𝑏 < ∞ , 𝑐 > 0,  𝑘 ≠ 0 and 𝑒 is the statistical error term, assumed to be normally distributed with mean zero 

and constant variance. The best model fit is described in Table 2 and coefficient of determination (𝑅2) = 0.775. The 

𝑅2 indicates that 77.5% of the variation in the dependent variable growth of paediatric is explained by the independent 

variable initial tumour volume. 
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Table 2: Parameter estimation 

   95% confidence interval 

Parameter Estimate SD Lower bound Upper bound 

𝑎 78.307 154.380 -231.330 387.950 

𝑏 -0.088 0.182 -0.454 0.277 

𝑐 0.962 0.007 0.948 0.975 

𝑘 7852.010 769.360 6308.870 9395.160 

For the diagnostic tests, the runs test was applied to evaluate the randomness of residuals, ensuring that the residuals 

exhibited no systematic patterns. Additionally, a spread-location plot, also known as a scale-location plot, was utilized 

to examine the homoscedasticity of residuals verifying that residuals maintain constant variance across all levels of 

the independent variable. All statistical analyses were performed using SPSS software version 15.0. 

 

 

4. Results and Discussion 

4.1 Normality test 

Table 3: Test for normality of the paediatric glioma growth. 

 Kolmogorov-Smirnov 

 
Statistic df Sig. 

HGG Growth 0.387 57 0.000 

 

The normality of the outcome variable was assessed using the Kolmogorov-Smirnov test, which confirmed the non-

normality assumption (𝑝 <  0.05) as in Table 3 for the study variables. 

 

4.2 Nonparametric Association for non-normal numeric: Kendall’s Tau 

Table 4: Nonparametric correlation analysis of growth, volume, PS before RT and age. 

 HGG Growth Volume (mm3) PS before RT Age (years) 

HGG Growth 1.000    

Volume -0.415** 1.000   

PS before RT 0.188 -0.262** 1.000  

Age 0.086 0.006 -0.066 1.000 

**Correlation is significant at the 0.05 level (2-tailed) 

Nonparametric Kendall’s Tau test indicates a significant negative relationship between growth rate and volume (𝑟 =
−0.415), and between volume and PS prior to RT (𝑟 = −0.262), both significant at the 0.05 level. Increasing the 

volume and PS before RT leads to a decreased growth rate, signifying a significant inverse correlation as shown in 

Table 4. Extremely weak association exists between the development of glioma and child age. 

 

4.3 Association Analysis for qualitative independent variables: Mann-Whitney U test and Kruskal–Wallis H 

test 

Table 5: Test of significant mean difference of growth between the categorical variables. 

Variables Mann-Whitney 

U test 

Kruskal–Wallis 

H test 

P value Remark 

Survival status (Dead, Alive) 185.0 - 0.003 Significant 

Gender (Male, Female) 399.0 - 0.949 Not Significant 

Headache (Yes, No) 268.0 - 0.209 Not Significant 

Extent of Surgical resection 

(Biopsy, Gross resection, Subtotal) 

- 7.675 0.022 Significant 

Edema (Mild, Moderate, No, 

Severe) 

- 6.116 0.106 Not Significant 
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The Mann- Whitney U test in Table 5 showed no significant difference in growth between male and female (Mann-

Whitney U=  399.0, 𝑝 > 0.05), and Headache (Mann-Whitney U=  268.0, 𝑝 > 0.05) and Edema (Kruskal-Wallis 

H= 6.116, 𝑝 > 0.05). However, Survival status was found to be significant with growth of children (Mann-Whitney 

U= 185.0, 𝑝 < 0.05). From Table 5, it is also observed that extent of surgical resection (Kruskal-Wallis H=
 7.675, 𝑝 < 0.05) was significant with glioma growth. 

 

4.4 Quantitative analysis 

Table 6. Basic statistical characteristics of age, gross tumour volume and PS Before RT for continues variables. 

Variables Mean Median SD Range Skewness Kurtosis 

Age (years) 7.99 8.00 3.98 15 0.428 -0.767 

Volume (mm3) 588.65 511.28 520.80 2247.7 1.405 1.877 

PS Before RT 56.49 60.00 17.16 50 -0.109 -1.310 

 

According to Table 6, the mean age of the patient demographics is 7.99 years, with a median age of 8 years and a 

range of 15 years. The average volume of children is 588.65 mm3, while the median PS before to RT is 60, indicating 

a need for occasional support in caring for children with glioma cancer.  

 

 

 

4.5 Pearson correlation test and linearity test 

Pearson correlation  Normal p-p plot of residual for linear model 

-0.29 

 
Figure 1: Pearson correlation and linearity test 

 

The results demonstrate a low association between the growth rate and volume, indicating that these variables are not 

significantly linearly associated. The normal probability-probability (P-P) plot in Figure 1, indicating that the residuals 

of the linear model are not randomly distributed, thereby violating the randomness assumption necessary for linear 

regression. The findings validate that the provided data demonstrates nonlinear behaviour. Thus, a nonlinear 

generalized exponential regression model will be utilized to more precisely forecast outcomes for paediatric glioma 

patients, since it is more adept at capturing the intricate correlations present in the data. 
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4.6 Prediction and estimation of paediatric HGG glioma growth 

 
Figure 2: Prediction of glioma growth for rapid growth and decline. 

A high percentage denotes rapid growth, whereas a negative percentage implies a decrease in growth rates as shown 

in Figure 2. The simultaneous movement of the two colours (blue and orange) indicates that the model effectively 

predicts glioma proliferation. Conversely, opposing trajectories of the two colours indicate suboptimal predicting 

performance. The findings provide significant insights that can enhance early diagnosis, risk evaluation, and the 

formulation of individualized treatment regimens for paediatric high-grade glioma patients. 

 

Table 7: Prediction of the paediatric glioma growth from the fitted model 

 No. of Patients No. of Patients Predicted  Correct Prediction (in %) 

HGG volume (in mm3) 57 42 73.68% 

HGG volume < 100 mm3 9 7 77.70% 
 

The model has a 73.68% accuracy in predicting glioma development within the chosen dataset, accurately detecting 

42 of 57 paediatric cases. It attained a superior accuracy rate of 77.70% for small glioma tumours, successfully 

predicting 7 out of 9 instances with volumes less than 100 𝑚𝑚³. This indicates that the model is very proficient at 

predicting the growth of small tumours, surpassing its general prediction accuracy as illustrated in Table 7. The results 

underscore the model's efficacy as a dependable instrument for the early diagnosis and surveillance of paediatric 

glioma, particularly in instances with lower tumour sizes.  

 

4.7 Test for residuals: Run test 

Table 8: Run test of residuals 

Test value Number of Runs Sig.(2-tailed)/p value 

-30.270 26 0.351 

Table 8 describes the diagnostic assessment of residuals using the run test. Since 𝑝 > 0.05, the residuals derived from 

the calculated model are random. The results confirmed that the fitted model accurately predicts the HGG growth of 

children.  
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4.8 Spread-Location Plot 

 
Figure 3: Scale-Location plot for residuals 

This figure 3 assists the evaluation of homoscedasticity (constant variance of residuals) in regression models by 

illustrating the association between fitted values and the dispersion of residuals. The diagram indicates that the 

residuals exhibit constant variance. Given that the average errors (∑ 𝑒𝑖 = 0) is zero and the variance is constant, the 

fitted model accurately predicts HGG in paediatric patients. 

 

5. Conclusion 

 

The study employs a generalized exponential regression model to predict growth patterns in paediatric gliomas, 

achieving an accuracy rate of 73.68%. This model is particularly significant for paediatric patients with HGGs 

exhibiting nonlinear behaviour. The findings reveal a strong correlation between the growth rate of paediatric HGGs 

and two critical factors: the extent of surgical resection and the survival status (alive or deceased). It suggests 

improving early diagnosis, risk assessment, and the development of personalized treatment strategies for children with 

glioma. However, certain factors, such as the patient's functional level and immunological symptoms, which may 

influence tumour development patterns, were not evaluated in this study. Despite these limitations, this research 

introduces a novel and effective approach to estimating glioma progression in paediatric patients under diverse 

conditions. Future studies should focus on validating the model using larger datasets and exploring its potential to 

enhance clinical decision-making and patient outcomes. 
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