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Abstract  

 

This study introduces the Odd-Burr Pareto (OBu-P) distribution as a novel and flexible model, which is 

developed by combining the Burr and Pareto distributions using the T-X generator approach (Alizadeh et al. 

2017). The OBu-P distribution can be used to model different data types characterized by heavy tails. 

Statistical properties, including moments, incomplete moments, quantile functions, and limiting behavior, 

generating functions and order statistics of the OBu-P distribution are also presented. The parameters of the 

OBu-P distribution are estimated efficiently using the maximum likelihood method. The flexibility of the 

distribution is shown in a real-life example compared to its alternatives. 
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1. Introduction  

Statistical distributions play a vital role in modelling events observed in nature (Johnson et al. 1994). Among these, 

the Pareto distribution is particularly useful for its ability to capture heavy-tailed data, like rainfall, wind speed, and 

financial losses (Arnold 2008).  However, the limited flexibility of the Pareto distribution has led to various 

generalizations, such as the exponentiated Pareto (Nadarajah 2005), beta-Pareto (Akinsete et al. 2008), 

Kumaraswamy-Pareto (Bourguignon et al.  2013) and the Odd-Burr Pareto distribution (Arik 2018). For example, 

While Nadarajah (2005) develops the exponentiated Pareto distribution and analyses its properties, Akinsete et al. 

(2008) propose the beta-Pareto distribution as another generalization. Other developments include the gamma-Pareto 

distribution derived from the T-X family of distributions (Alzaatreh et al. 2012, Alzaatreh et al. 2013). On the other 

hand, Mahmoudi (2011), Zea et al. (2012), Bourguignon et al. (2013), Aljarrah et al. (2015) and Tahir et al. (2016) 

introduce beta-generalized Pareto distribution, beta-exponentiated Pareto distribution, the Kumaraswamy Pareto 

distribution, Weibull-Pareto distribution and different Weibull-Pareto distribution (approach of Bourguignon et al. 

2014). Furthermore, the Pareto-Rayleigh distribution, a member of the T-T, is described by Godase et al. (2017).  

Considering the latest studies on generalizations of the Pareto distribution, several models have been recently 

presented, such as the Alpha-Power Pareto distribution (Ihtisham et al. 2019) and a new three-parameter lifetime 

distribution that is an extension of the classical Pareto distribution (Aniyan and George, 2023) are presented. More 

recently, the class of the Weibull-Pareto distribution (Rashid 2024), the Alpha Power Exponentiated Pareto (Pimsap 

et al. 2024), and the odd-inverse Pareto-Burr XII (Olmos et al. 2024) are introduced for modelling positive data. These 

generalizations and developments enhance the Pareto family’s capacity for modelling complex phenomena, including 

income inequality, catastrophic losses, and extreme weather events (Arik, 2018). 
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 Pareto random variable with cumulative distribution function (cdf) and probability density function (pdf), are 

provided as: 

                                            𝐺(𝑥) = 1 − (
𝑥

𝜃
)
−𝛼

, 𝑥 ≥ 𝜃 > 0, 𝛼 > 0                                                    (1)                                                          

                                            𝑔(𝑥) =
𝛼𝜃𝛼

𝑥𝛼+1
,             (2) 

 where 𝜃 and 𝛼 are the scale and shape parameters, respectively.  

In this study, we propose a new and highly flexible distribution, the Odd Burr-Pareto (OBu-P) distribution 

(Arik 2018, Arik and Kantar 2019), derived from the T-X generator approach introduced by Alizadeh et al. (2017). 

This new family of continuous distributions includes two additional shape parameters that increase flexibility.  

The OBu-P distribution can be extensively used in extreme value analysis, reliability studies, survival analysis, 

and engineering. Its key statistical characteristics are thoroughly explored with examinations of skewness-kurtosis 

relationships, density and hazard rate variations under different shape parameters (Arik, 2018).  

Alizadeh et al. (2017) present the Odd Burr-G family, developed using the T-X generator approach, which 

incorporates two extra shape parameters to extend the range of continuous distributions. The T–X generator is a 

general framework for constructing new distribution families from a baseline cdf 𝐺(𝑥). This approach adds shape 

parameters that can change the skewness and tails of the distribution, making the model more flexible. cdf of the Odd 

Burr-G family is formulated as follows: 

𝐹(𝑥) = ∫
𝑎𝑏𝑡𝑎−1

(1+𝑡𝑎)𝑏+1
𝑑𝑡 = 1 −

[1−𝐺(𝑥)]𝑎𝑏

{𝐺(𝑥)𝑎+[1−𝐺(𝑥)]𝑎}𝑏

𝐺(𝑥)

1−𝐺(𝑥)

0
, 𝑥 > 0.                                (3) 

Taking the derivative of equation (3) yields the corresponding pdf in the following form: 

𝑓(𝑥) =
𝑎𝑏𝑔(𝑥)𝐺(𝑥)𝑎−1[1−𝐺(𝑥)]𝑎𝑏−1

{𝐺(𝑥)𝑎+[1−𝐺(𝑥)]𝑎}𝑏+1
, 𝑥 > 0,                                                    (4) 

which 𝑎, 𝑏 > 0, additional shape parameters. 

 

Proof (obtaining the pdf): 

 

To obtain the pdf, i.e., the derivative of the cdf, we perform the following transformations:  

𝑢 = 𝐺(𝑥),𝑀 = 𝑢𝑎, 𝑁 = (1 − 𝑢)𝑎, 

𝑄(𝑢) =
(1 − 𝑢)𝑎𝑏

(𝑀 + 𝑁)𝑏
= (1 − 𝑢)𝑎𝑏(𝑀 + 𝑁)−𝑏 

Hence, the cdf can be rewritten as: 

𝐹(𝑥) = 1 − 𝑄(𝑢) 

The derivative can be obtained as follows: 

𝑑𝐹

𝑑𝑥
= −

𝑑𝑄

𝑑𝑥
= −

𝑑𝑄

𝑑𝑢

𝑑𝑢

𝑑𝑥
, 𝑤ℎ𝑒𝑟𝑒 

𝑑𝑢

𝑑𝑥
= 𝐺′(𝑥) = 𝑔(𝑥)  

Using the product rule for differentiation: 

𝑑𝑄

𝑑𝑢
= 𝑎𝑏(1 − 𝑢)𝑎𝑏−1(−1)(𝑀 + 𝑁)−𝑏 + (1 − 𝑢)𝑎𝑏(−𝑏)(𝑀 + 𝑁)−𝑏−1(𝑀′ + 𝑁′) 

𝑑𝑄

𝑑𝑢
= −𝑏(1 − 𝑢)𝑎𝑏−1(𝑀 + 𝑁)−𝑏−1[𝑎(𝑀 + 𝑁) + (1 − 𝑢)(𝑀′ + 𝑁′)] 

𝑀′ = 𝑎𝑢𝑎−1 and 𝑁′ = −𝑎(1 − 𝑢)𝑎−1 so, 
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(1 − 𝑢)(𝑀′ +𝑁′) = 𝑎(1 − 𝑢)𝑢𝑎−1 − 𝑎(1 − 𝑢)𝑎 

[𝑎(𝑀 + 𝑁) + (1 − 𝑢)(𝑀′ + 𝑁′)] = 𝑎[𝑢𝑎 + (1 − 𝑢)𝑎] + 𝑎(1 − 𝑢)𝑢𝑎−1 − 𝑎(1 − 𝑢)𝑎 = 𝑎𝑢𝑎−1 

As a result, the derivative is obtained as follows, 

𝑑𝑄

𝑑𝑢
= −𝑏(1 − 𝑢)𝑎𝑏−1(𝑀 + 𝑁)−𝑏−1𝑎𝑢𝑎−1 = −

𝑎𝑏𝑢𝑎−1(1 − 𝑢)𝑎𝑏−1

(𝑀 + 𝑁)𝑏+1
 

Thus, by the chain rule 

𝑑𝐹

𝑑𝑥
= −

𝑑𝑄

𝑑𝑥
= −

𝑑𝑄

𝑑𝑢

𝑑𝑢

𝑑𝑥
=
𝑎𝑏𝑢𝑎−1(1 − 𝑢)𝑎𝑏−1

(𝑀 + 𝑁)𝑏+1
𝑔(𝑥) 

Finally, applying the reverse transformation, the pdf is obtained as: 

𝐹′(𝑥) = 𝑓(𝑥) =
𝑎𝑏𝑔(𝑥)𝐺(𝑥)𝑎−1[1 − 𝐺(𝑥)]𝑎𝑏−1

{𝐺(𝑥)𝑎 + [1 − 𝐺(𝑥)]𝑎}𝑏+1
. 

The remainder of the paper is organized as follows: Section 2 introduces OBu-P, and some properties; pdf, cdf, hazard 

rate function, limiting behaviours, moments, incomplete moments, generating functions, and order statistics. Section 

3 provides the maximum likelihood estimation (MLE) method for OBu-P. In Section 4, a simulation study is conducted 

to evaluate the performance of the MLE. Section 5 applies the OBu-P distribution to a real-world dataset, 

demonstrating its flexibility and superior fit. Finally, Section 6 concludes the study with a summary of findings and 

recommendations for future research. 

 

2. Odd-Burr Pareto Distribution (OBu-P) 

Substituting equation (1) into equation (3), cdf of the OBu-P is derived as follows (Arik, 2018; Arik and Kantar 2019): 

𝐹(𝑥) = 1 −
(
𝑥

𝜃
)
−𝛼𝑎𝑏

{[1−(
𝑥

𝜃
)
−𝛼
]
𝑎

+(
𝑥

𝜃
)
−𝛼𝑎

}

𝑏 , 𝑎, 𝑏, 𝛼 > 0, 𝑥 ≥ 𝜃 > 0                                     (5)  

The pdf corresponding to (5) is, 

𝑓(𝑥) =
𝑎𝑏𝛼𝜃𝛼𝑎𝑏𝑥−(𝛼𝑎𝑏+1)[1−(

𝑥

𝜃
)
−𝛼
]
𝑎−1

{[1−(
𝑥

𝜃
)
−𝛼
]
𝑎

+(
𝑥

𝜃
)
−𝛼𝑎

}

𝑏+1                                                         (6) 

Here, 𝜃 represents the scale parameter, while a, b, and 𝛼 denote the shape parameters of OBu-P. A random variable 

X following the pdf in equation (6) is expressed as 𝑋~𝑂𝐵𝑢 − 𝑃(𝑎, 𝑏, 𝛼, 𝜃). Figures 1-3 illustrate the pdf of the OBu-

P for various parameter combinations. These graphs reveal the flexibility of the OBu-P distribution, showcasing 

diverse shapes, distinct tail behaviours, and varying degrees of skewness and kurtosis depending on the shape 

parameters. 



Pak.j.stat.oper.res.  Vol.21  No. 3 2025 pp 375-394  DOI: https://doi.org/10.18187/pjsor.v21i3.4950 
 

A New Odd-Burr Pareto Distribution: Statistical Properties, Estimation, and Applications 378 

 

 

Figure 1. Plots of the OBu-P pdf for fixed values of a, b and 𝜃, with varying values of 𝛼 

 

Figure 2. Plots of the OBu-P pdf for fixed values of a, 𝛼 and 𝜃, with varying values of 𝑏 
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Figure 3. Plots of the OBu-P pdf for fixed values of b, 𝛼 and 𝜃,  with varying values of a 

Special Cases 

a) For a=b=1 the OBu-P distribution reduces to the Pareto distribution. 

b) When a=1, 𝑂 𝐵𝑢 − 𝑃(𝑎, 𝑏, 𝛼, 𝜃) reduces to the Pareto distribution with parameters 𝑘 = 𝑏𝛼 and 𝜃 and its pdf is,  

𝑔(𝑥) =
𝑘𝜃𝑘

𝑥𝑘+1
, 𝑘 > 0, 𝑥 ≥ 𝜃 > 0. 

c) If a random variable 𝑌~𝐵𝑢𝑟𝑟𝑋𝐼𝐼(𝑎, 𝑏), then the random variable, 

𝑋 = 𝜃(𝑌 + 1)
1
𝛼  

 follows the 𝑂𝐵𝑢 − 𝑃(𝑎, 𝑏, 𝛼, 𝜃) distribution. 

Proof of c: Y can be obtained as follows: 

𝑌 = (
𝑋

𝜃
)
𝛼

− 1 

Using transformation method (Bhatt, 2023), we have  

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃 ((
𝑋

𝜃
)
𝛼

− 1 ≤ 𝑦) = 𝑃 (𝑋 ≤ 𝜃(𝑦 + 1)
1
𝛼) = 𝐹𝑋 (𝜃(𝑦 + 1)

1
𝛼) 

𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑦 + 1)
1
𝛼) = 1 −

(
𝜃(𝑦 + 1)

1
𝛼

𝜃
)

−𝛼𝑎𝑏

{[1 − (
𝜃(𝑦 + 1)

1
𝛼

𝜃
)

−𝛼

]

𝑎

+ (
𝜃(𝑦 + 1)

1
𝛼

𝜃
)

−𝛼𝑎

}

𝑏
 

𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑦 + 1)
1
𝛼) = 1 −

(𝑦 + 1)−𝑎𝑏

{[1 − (𝑦 + 1)−1]𝑎 + (𝑦 + 1)−𝑎}𝑏
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𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑦 + 1)
1
𝛼) = 1 − (

(𝑦 + 1)−𝑎

𝑦𝑎 + 1
(𝑦 + 1)𝑎

)

𝑏

= 1 − (1 + 𝑦𝑎)−𝑏 

𝐹𝑌(𝑦) = 1 − (1 + 𝑦
𝑎)−𝑏 

The latest equation obtained is the cdf of Burr XII distribution. 

d) If a random variable Y follows the Lomax distribution with the shape parameter b and scale parameter 1, then the 

random variable, 

𝑋 = 𝜃 (𝑌
1

𝑎 + 1)

1

𝛼
, 

follows the 𝑂𝐵𝑢 − 𝑃(𝑎, 𝑏, 𝛼, 𝜃) distribution. 

Proof of d: Y can be obtained as follows: 

𝑌 = [(
𝑋

𝜃
)
𝛼

− 1]

𝑎

 

Using transformation method (Bhatt, 2023): 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃 ([(
𝑋

𝜃
)
𝛼

− 1]

𝑎

≤ 𝑦) = 𝑃 (𝑋 ≤ 𝜃 (𝑦
1
𝑎 + 1)

1
𝛼
) = 𝐹𝑋 (𝜃 (𝑦

1
𝑎 + 1)

1
𝛼
) 

𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑌 + 1)
1
𝛼) = 1 − (

 
 𝜃 (𝑦

1
𝑎 + 1)

1
𝛼

𝜃

)

 
 

−𝛼𝑎𝑏

{
 
 

 
 

[
 
 
 
 

1 −

(

 
 𝜃 (𝑦

1
𝑎 + 1)

1
𝛼

𝜃

)

 
 

−𝛼

]
 
 
 
 
𝑎

+

(

 
 𝜃 (𝑦

1
𝑎 + 1)

1
𝛼

𝜃

)

 
 

−𝛼𝑎

}
 
 

 
 
𝑏  

𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑦 + 1)
1
𝛼) = 1 −

(𝑦
1
𝑎 + 1)

−𝑎𝑏

{[1 − (𝑦
1
𝑎 + 1)

−1

]

𝑎

+ (𝑦
1
𝑎 + 1)

−𝑎

}

𝑏 

𝐹𝑌(𝑦) = 𝐹𝑋 (𝜃(𝑦 + 1)
1
𝛼) = 1 −

(𝑦
1
𝑎 + 1)

−𝑎𝑏

(𝑦 + 1)𝑏

(𝑦
1
𝑎 + 1)𝑎𝑏

= 1 −
1

(𝑦 + 1)𝑏
 

𝐹𝑌(𝑦) = 1 − (𝑦 + 1)
−𝑏 

The final equation obtained is the cdf of the Lomax distribution with the scale parameter 1. 

 

Shape Properties  
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In this section the shape characteristics of the OBu-P pdf is examined. The first derivative of (6) is, 

𝜕𝑓(𝑥)

𝜕𝑥
= −𝑎𝑏𝛼𝜃𝛼𝑎𝑏𝑥−(𝛼𝑎𝑏+1)−1 (

𝑥

𝜃
)
𝛼(𝑎+1)

[1 − (
𝑥

𝜃
)
−𝛼

]
𝑎

 

{(
𝑥

𝜃
)
𝛼𝑎

[1 − (
𝑥

𝜃
)
−𝛼

]
𝑎

[(𝛼𝑎𝑏 + 1) (
𝑥

𝜃
)
𝛼

+ 𝛼 − 1] + (1 − 𝛼𝑎) (
𝑥

𝜃
)
𝛼

+ 𝛼 − 1} 

                                      [(
𝑥

𝜃
)
𝛼

− 1]
−2

{[1 − (
𝑥

𝜃
)
−𝛼

]
𝑎

+ (
𝑥

𝜃
)
−𝛼𝑎

}
−𝑏

{(
𝑥

𝜃
)
𝛼𝑎

[1 − (
𝑥

𝜃
)
−𝛼

]
𝑎

+ 1}
−2

                          (7) 

 

Equation (7) can yield multiple solutions. At any solution point 𝑥0, the nature of the point—whether it is a local 

maximum, local minimum, or an inflection point—depends on the sign of the second derivative: if 𝑓′′(𝑥0) < 0 it is a 

maximum, if  𝑓′′(𝑥0) > 0 it is a minimum, and if 𝑓′′(𝑥0) = 0 it represents an inflection point (Arik, 2018). 

 

Lifetime Characteristics  

For the OBu-P random variable, 𝑆(𝑥) survival function and ℎ(𝑥) hazard rate function (Hrf) are defined as follows: 

𝑆(𝑥) =
(
𝑥

𝜃
)
−𝛼𝑎𝑏

{[1−(
𝑥

𝜃
)
−𝛼
]
𝑎

+(
𝑥

𝜃
)
−𝛼𝑎

}

𝑏                                                                    (8) 

                                   ℎ(𝑥) =
𝑎𝑏𝛼[1−(

𝑥

𝜃
)
−𝛼
]
𝑎−1

𝑥{[1−(
𝑥

𝜃
)
−𝛼
]
𝑎

+(
𝑥

𝜃
)
−𝛼𝑎

}

                                                                   (9) 

 

Figure 4. OBu-P’s Hrf function plots corresponding to different parameter values 
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Figure 5. OBu-P’s Hrf function plots corresponding to different parameter values 

Figures 4 and 5 present Hrf for various parameter values. These graphs reveal that Hrf of the OBu-P distribution 

exhibits diverse shapes, including monotonically decreasing and increasing-decreasing patterns, depending on the 

parameter configurations. This flexibility makes the OBu-P distribution particularly well-suited for analysing lifetime 

data (Arik, 2018). 

 

Limit behaviour  

The limit behaviour of OBu-P are provided by using Lemmas 2.1 and 2.2: 

The asymptotic behaviour of the pdf and Hrf is described by the following lemmas 

Lemma 2.1: The limit of the OBu-P density as 𝑥 → ∞ is 0 and the limit as 𝑥 → 𝜃 is given as follows: 

𝑙𝑖𝑚
𝑥→𝜃

𝑓(𝑥) = {

∞,𝑤ℎ𝑒𝑛 0 < 𝑎 < 1
𝑎𝑏𝛼

𝜃
,𝑤ℎ𝑒𝑛 𝑎 = 1

0,𝑤ℎ𝑒𝑛 𝑎 > 1

 

Proof: It is easy to show the above equation from the OBu-P density in equation (6).     

Lemma 2.2: The limit of the OBu-P hazard function as 𝑥 → ∞ is 0 and the limit as 𝑥 → 𝜃 is given as follows: 

𝑙𝑖𝑚
𝑥→𝜃

ℎ(𝑥) = {

∞,𝑤ℎ𝑒𝑛 0 < 𝑎 < 1
𝑎𝑏𝛼

𝜃
,𝑤ℎ𝑒𝑛 𝑎 = 1

0,𝑤ℎ𝑒𝑛 𝑎 > 1

 

Proof: It is easy to obtain the results of Lemma 2.2 with taking the limit of the OBu-P hazard function in equation (9). 

 

Quantile function 

To obtain the quantile function, the cdf must be solved according to 𝑥: 
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𝐹(𝑥) = 1 −
(
𝑥
𝜃
)
−𝛼𝑎𝑏

{[1 − (
𝑥
𝜃
)
−𝛼

]
𝑎

+ (
𝑥
𝜃
)
−𝛼𝑎

}
𝑏
 

[1 − 𝐹(𝑥)]−
1
𝑏 =

{[1 − (
𝑥
𝜃
)
−𝛼

]
𝑎

+ (
𝑥
𝜃
)
−𝛼𝑎

}

(
𝑥
𝜃
)
−𝛼𝑎 =

[1 − (
𝑥
𝜃
)
−𝛼

]
𝑎

(
𝑥
𝜃
)
−𝛼𝑎 + 1 

([1 − 𝐹(𝑥)]−
1
𝑏 − 1)

1
𝑎
=

1

(
𝑥
𝜃
)
−𝛼 − 1 

([1 − 𝐹(𝑥)]−
1
𝑏 − 1)

1
𝑎
+ 1 = (

𝑥

𝜃
)
𝛼

 

𝑋 = 𝜃 {([1 − 𝑈]−
1

𝑏 − 1)

1

𝑎
+ 1}

1

𝛼

, 𝑈 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)                                                 (10) 

OBu-P data is generated by using (10). 

Alternative Mathematical Representations of the OBu-P Distribution 

This part of the study explores alternative mathematical representations of the OBu-P distribution using power series 

expansions. Beginning with the cdf given by Altun et al. (2017), these expansions enable the pdf and cdf to be 

reformulated in ways that simplify analysis, facilitate computation, and provide additional perspectives on how the 

distribution behaves under different parameter configurations. 

𝐹(𝑥) = 1 −
[1 − 𝐺(𝑥)]𝑎𝑏

{𝐺(𝑥)𝑎 + [1 − 𝐺(𝑥)]𝑎}𝑏
= 1 − {1 −

𝐺(𝑥)𝑎

𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎
}

𝑏

 

By expanding the second term using the binomial series,  

(1 − z)𝑏 =∑(−1)𝑖 (
𝑏
𝑖
) 𝑧𝑖

∞

𝑖=0

  ∣ z ∣< 1 

where 𝑧 =
𝐺(𝑥)𝑎

𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎
  and 𝐺̄(𝑥) = 1 − 𝐺(𝑥), thus: 

𝐹(𝑥) = 1 − ∑ (−1)𝑖 (
𝑏
𝑖
)

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎]𝑖
∞
𝑖=0                                                       (11) 

Thus, the following alternative representations for the OBu-P can be derived through various mathematical 

expansions.  

𝐺(𝑥)𝑎𝑖 = {1 − [1 − 𝐺(𝑥)]}𝑎𝑖 =∑(−1)𝑗 (
𝑎𝑖
𝑗
) [1 − 𝐺(𝑥)]𝑗

∞

𝑗=0

 

[1 − 𝐺(𝑥)]𝑗 =∑(−1)𝑘 (
𝑗
𝑘
) 𝐺(𝑥)𝑘

∞

𝑘=0

 

𝐺(𝑥)𝑎𝑖 = ∑ 𝛼𝑘𝐺(𝑥)
𝑘∞

𝑘=0                                                                (12) 
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 where  𝛼𝑘 = ∑ (−1)𝑘+𝑗 (
𝑎𝑖
𝑗
) (
𝑗
𝑘
)∞

𝑗=𝑘 .  

In eq. (11) can be expressed as follows:  

𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎 =∑𝜂𝑘𝐺(𝑥)
𝑘

∞

𝑘=0

+∑(−1)𝑘 (
𝑎
𝑘
)𝐺(𝑥)𝑘

∞

𝑘=0

 

                                          =∑{𝜂𝑘 + (−1)
𝑘 (
𝑎
𝑘
)} 𝐺(𝑥)𝑘

∞

𝑘=0

=∑𝑡𝑘𝐺(𝑥)
𝑘

∞

𝑘=0

, 

where 𝜂𝑘 = ∑ (−1)𝑘+𝑗 (
𝑎
𝑗
) (
𝑗
𝑘
)∞

𝑗=𝑘  and 𝑡𝑘 = 𝜂𝑘 + (−1)
𝑘 (
𝑎
𝑘
).  

We apply a formula from Gradshteyn & Ryzhik (2002) for expanding a power series raised to a positive integer power, 

which allows us to express the series in a more manageable form for further analysis and computations, 

 

(∑ 𝑡𝑘𝑥
𝑘∞

𝑘=0 )𝑖 = ∑ 𝑐𝑖,𝑘𝑥
𝑘∞

𝑘=0                                                              (13)        

where 𝑐𝑖,𝑘 = (𝑘𝑡0)
−1∑ [𝑚(𝑖 + 1) − 𝑘]𝑡𝑚𝑐𝑖,𝑘−𝑚

𝑘
𝑚=1 , 𝑘 ≥ 1 and 𝑐𝑖,0 = 𝑡0

𝑖 . Then, 

[𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎]𝑖 = [∑ 𝑡𝑘𝐺(𝑥)
𝑘∞

𝑘=0 ]𝑖 = ∑ 𝑐𝑖,𝑘𝐺(𝑥)
𝑘∞

𝑘=0                                  (14)                      

Thus, 

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎]𝑖
=

∑ 𝛼𝑘𝐺(𝑥)
𝑘∞

𝑘=0

∑ 𝛽𝑘𝐺(𝑥)
𝑘∞

𝑘=0
                                                              (15) 

where 𝛽𝑘 = 𝑐𝑖,𝑘. Based on the ratio of two power series (Gradshteyn & Ryzhik, 2002), it can be expressed as follows: 

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎]𝑖
= ∑ 𝜆𝑘𝐺(𝑥)

𝑘∞
𝑘=0                                                          (16) 

where 𝜆𝑘 = 𝛽0
−1[𝛼𝑘 − 𝛽0

−1∑ 𝛽𝑟𝜆𝑘−𝑟
𝑘
𝑟=1 ] for 𝑘 > 0 and 𝜆0 =

𝛼0

𝛽0
.  Finally, the OBu-P cdf is presented as: 

𝐹(𝑥) = 1 − ∑ (−1)𝑖 (
𝑏
𝑖
) 𝜆𝑘𝐺(𝑥)

𝑘

∞

𝑘,𝑖=0

 

        = 1 −∑𝑚𝑘𝐺(𝑥)
𝑘

∞

𝑘=0

 

= ∑ 𝑛𝑘𝐺(𝑥)
𝑘∞

𝑘=0 = ∑ 𝑛𝑘𝐻𝑘(𝑥)
∞
𝑘=0                                        (17) 

and  

𝑓(𝑥) = ∑ 𝑛𝑘+1ℎ𝑘+1(𝑥)
∞
𝑘=0                                                              (18) 

where 𝐻𝑘(𝑥) is the exponentiated Pareto (EP) cdf with parameter 𝜃, 𝛼 and k, 𝑚𝑘 = ∑ (−1)𝑖 (
𝑏
𝑖
) 𝜆𝑘

∞
𝑖=0 , 𝑛0 = 1 −𝑚0 

and 𝑛𝑘 = −𝑚𝑘 (Arik, 2018; Arik and Kantar 2019). 

 

Theoretical Convergence: 

The foundational expansion in Eq.(11) employs the binomial series (1 − z)𝑏, which converges absolutely for      |𝑧| <

1. In our case 𝑧 =
𝐺(𝑥)𝑎

𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎
 Since 0 < 𝐺(𝑥) < 1 for any finite 𝑥 > 0, it follows that 0 < 𝑧 < 1 for all 𝑥 in the 

support of the distribution. This satisfies the convergence condition ∣ 𝑧 ∣< 1 universally, guaranteeing the 

convergence of the series in Eq. (11). All subsequent expansions (Eqs. 12, 14, 16) are power series in G(x), which is 

bounded between 0 and 1. Therefore, these series also converge absolutely for the parameter space of interest 
(𝑎, 𝑏, 𝛼, 𝜃 > 0). See (Gradshteyn and Ryzhik 2007; Abramowitz and Stegun 1972). 
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Truncation Error Bounds: 

In practice, the infinite series in Eq. (11) must be truncated after i=N terms. The resulting truncation error, 𝐸(𝑥), is 

the absolute difference between the true cdf 𝐹(𝑥) and its N-term approximation 𝐹̂(𝑥): 
 

𝐸(𝑥) = ∑ (−1)𝑖 (
𝑏
𝑖
)

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎]𝑖

∞

𝑖=𝑁+1

 

 

 

|𝐸(𝑥)| = | ∑ (−1)𝑖 (
𝑏
𝑖
)

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎]𝑖

∞

𝑖=𝑁+1

| ≤ ∑ |(−1)𝑖 (
𝑏
𝑖
)

𝐺(𝑥)𝑎𝑖

[𝐺(𝑥)𝑎 + 𝐺̄(𝑥)𝑎]𝑖
| ≤

∞

𝑖=𝑁+1

 

 

∑ |(−1)𝑖 (
𝑏
𝑖
)| 𝑧𝑖 ≤ |(−1)𝑁+1 (

     𝑏
𝑁 + 1

)| 𝑧𝑁+1
∞

𝑖=𝑁+1

 

 

where 𝑧 =
𝐺(𝑥)𝑎

[𝐺(𝑥)𝑎+𝐺̄(𝑥)𝑎]
 . This result guarantees that for any desired tolerance 𝜀 > 0, one can always find a sufficiently 

large N such that 𝐸(𝑥) < 𝜀 for all x in the support of the distribution. This uniform bound ensures the computational 

feasibility and numerical stability of the series representation for the OBu-P distribution. On the other hand, Table 1 

presents the minimum number of terms (N) required in the series expansion to calculate the OBu-P distribution's 

properties at a given point 𝑥 within a specified error tolerance. It demonstrates that a higher number of terms is needed 

both for larger values of 𝑥 (further into the tail of the distribution) and for stricter (smaller) error tolerances. 

 

Table 1. For  𝑎 = 2, 𝑏 = 1.5, 𝜃 = 1.0, 𝛼 = 2.0, error values. 

 𝑥 𝐸𝑟𝑟𝑜𝑟𝑠 

  10⁻³ 10⁻⁶ 10⁻⁹ 

 0.5 8 12 16 

 1.0 10 15 20 

 2.0 12 17 22 

 5.0 15 20 25 

 

Based on equation (17), cdf of OBu-P is expressed as a weighted sum of power series expansions of the baseline 

distribution function, 𝐺(𝑥) (Alizadeh et al., 2017; Altun et al., 2017). This formulation is particularly valuable for 

deriving key statistical properties of the OBu-P distribution, such as its moments, incomplete moments, and order 

statistics. The ability to represent the cdf in this manner, simplifies the calculation and analysis of statistical properties 

of the OBu-P variable (Arik, 2018). 

 

Moments 

By using (18), the rth moment corresponding to the OBu-P can be derived. To compute this, the rth moment of the EP 

distribution is expressed as follows: 

𝜇𝐸𝑃
′ = 𝐸𝐸𝑃(𝑍

𝑟) = 𝛼𝛽𝜃𝛼 ∫ 𝑧𝑟−𝛼−1 (1 − (
𝑧

𝜃
)
−𝛼

)
𝛽−1

𝑑𝑧
∞

𝜃
                           (19) 

Here, 𝛼 and 𝛽 represent the shape parameters, while 𝜃 is the scale parameter of the EP distribution. Through some 

algebraic manipulation, the rth moment of the EP distribution is given as follows (Stoppa, 1990): 

𝜇𝐸𝑃
′ = 𝐸𝐸𝑃(𝑍

𝑟) = 𝛽𝜃𝑟𝐵 (1 −
𝑟

𝛼
, 𝛽) ,  𝑟 ≤ 𝛼                                           (20) 

where 𝐵(𝑥, 𝑦) = ∫ 𝑡(𝑥−1)(1 − 𝑡)(𝑦−1)𝑑𝑡
1

0
 is the beta function. Moments of OBu-P random variable is:  

𝜇𝑂𝐵𝑢−𝑃
′ = 𝐸𝑂𝐵𝑢−𝑃(𝑋

𝑟) = ∑ 𝑛𝑘+1 ∫ 𝑥𝑟ℎ(𝑘+1)(𝑥)𝑑𝑥
∞

𝜃
∞
𝑘=0 = 𝜃𝑟 ∑ 𝑛𝑘+1(𝑘 + 1)𝐵 (1 −

𝑟

𝛼
, (𝑘 + 1))∞

𝑘=0 , 𝑟 ≤ 𝛼. (21) 

In particular setting r=1, the mean of the OBu-P distribution is, 
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𝜇1
′ = 𝜃∑𝑛𝑘+1(𝑘 + 1)𝐵 (1 −

1

𝛼
, (𝑘 + 1))

∞

𝑘=0

 

The jth central moment of X can be easily obtained from the equation (21) as follows: 

𝜇𝑗 = 𝐸[(𝑋 − 𝜇)
𝑗] = ∑(

𝑗
𝑘
) 𝜇𝑗

′(−𝜇1
′ )𝑗−𝑘

𝑗

𝑘=0

. 

The interchange of summation and integration in Equation (21) is justified by the absolute and uniform convergence 

of the series representation of the OBu-P density for all 𝑥 >  𝜃 and across the specified parameter ranges, which 

follows from the properties of power series expansions and the ratio of convergent series under the given conditions 

(see, Cordeiro and Castro 2011 for analogous justification in generalized distribution families). 

Tables 2 and 3 report the mean, variance, skewness, and kurtosis of the OBu-P distribution (Caudill, 2012). 

𝐾 ≥ 𝑆2 + 1.                                                                              (22) 

From Table 3, all skewness–kurtosis pairs of the OBu-P distribution comply with Equation (22). 

Table 2. Mean and variance values for the OBu-P distribution 

a α b=0.75 (µ, σ²) b=2 (µ, σ²) b=5 (µ, σ²) 

0.75 2.0 (3.03, 3.71) (2.24,0.12) (2.06,0.01) 

2.0 2.0 (2.43, 0.12) (2.23,0.02) (2.14,0.01) 

5.0 2.0 (2.33, 0.01) (2.26,0.00) (2.22,0.00) 

 

 

Table 3. Skewness (S) and kurtosis (K) values for the OBu-P distribution 

 

a α b=0.75 (S, K) b=2.0 (S, K) b=5.0 (S, K) 

0.75 5.0 (12.66, 478.0) (3.75,30.4) (3.48,23.2) 

2.0 7.5 (2.55, 16.45) (1.16,5.74) (0.68,3.59) 

5.0 10.0 (1.39, 8.02) (0.15,3.55) (-0.24,3.13) 

 

 

 

rth incomplete Moments 

The rth incomplete moment of the EP random variable Z can be represented as  

𝑚𝑟,𝑍 = ∫ 𝑧𝑟ℎ(𝑧)
𝑤

𝜃

𝑑𝑧 = 𝛼𝛽𝜃𝛼∫ 𝜃𝑤𝑧−(𝛼+1)𝑧𝑟 [1 − (
𝑧

𝜃
)
−𝛼

]
𝛽−1

,   𝑧 ≥ 𝜃 > 0, 𝛼 > 0, 𝛽 > 0 

𝑡 = 1 − (
𝑧

𝜃
)
−𝛼

   and 𝑑𝑡 = 𝛼𝜃𝛼𝑧−(𝛼+1)𝑑𝑧, borders of integral are 𝑧 = 𝜃 ⇒ 𝑡 = 0  and 

  𝑧 = 𝑤 ⇒ 𝑡 = 1 − (
𝑧

𝜃
)
−𝛼

= 𝑡𝑤. 

  𝑚𝑟,𝑍 = 𝛼𝛽𝜃
𝛼 ∫

1

𝛼𝜃𝛼
𝜃𝑟(1 − 𝑡)−

𝑟

𝛼𝑡𝛽−1
𝑡∗

𝜃
𝑑𝑡 = 𝛽𝜃𝑟𝐵𝑡𝑤 (𝛽, 1 −

𝑟

𝛼
) ,  𝑟 ≤ 𝛼,   (23) 

where  𝐵𝑤(𝑥, 𝑦) = ∫ 𝑡(𝑥−1)(1 − 𝑡)(𝑦−1)𝑑𝑡
𝑤

0
 is the incomplete beta function.  

Accordingly, the rth incomplete moment of the OBu-P distribution is expressed as: 
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𝑚𝑟,𝑋(𝑤) = ∫ 𝑧𝑟𝑓𝑂𝐵−𝑃 (𝑧)𝑑𝑧 

𝑤

𝜃

= ∫ 𝑧𝑟∑𝑛𝑘+1

∞

𝑘=0

ℎ𝑘+1(𝑧)𝑑𝑧 =
𝑤

𝜃

∑𝑛𝑘+1

∞

𝑘=0

∫ 𝑧𝑟ℎ𝑘+1(𝑧)𝑑𝑧
𝑤

𝜃

 

∑ 𝑛𝑘+1
∞
𝑘=0 (𝑘 + 1)𝜃𝑟𝐵𝑡𝑤 (𝑘 + 1,1 −

𝑟

𝛼
)   𝑟 ≤ 𝛼      (24) 

   

Moment Generating Function 

The moment generating function (mgf) corresponding to the EP random variable is found (Tahir et al. 2016) as 

follows: 

𝑀𝐸𝑃(𝑡) = 𝛼𝛽∑(−1)𝑖𝜃(𝑖+1) (
𝛽 − 1
   𝑖

) 𝐽(𝜃, (𝑖 + 1)𝛼 + 1, 𝑡)

∞

𝑖=0

 

where J function is provided as follows: 

𝐽(𝑞, 𝑝, 𝑡) = ∫ 𝑥−𝑝𝑒𝑡𝑥𝑑𝑥
∞

𝑞

= (−𝑡)𝑝𝑞 [−
𝜋 𝑐𝑠𝑐(𝑝𝜋)

𝑡𝑞𝛤(𝑝)
−
𝑝𝛤(−𝑝)

𝑞𝑡
+

𝑒𝑡𝑞

(−𝑡)𝑝+1𝑞𝑝+1
+
𝑝𝛤(−𝑝,−𝑡𝑞)

𝑡𝑞
] 

where 𝛤(𝛼, 𝑡) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

𝑡
 is incomplete gamma function. With the help of the equation (18) the mgf of the 

OBu-P distribution is obtained as follows: 

𝑀(𝑡) = 𝛼∑ 𝑛𝑘+1(𝑘 + 1)𝜃
(𝑖+1)𝛼 (

𝑘
𝑖
) 𝐽(𝜃, (𝑖 + 1)𝛼 + 1, 𝑡)∞

𝑘,𝑖=0 .                                (25) 

The equation (25) is the main result of this part. 

 

Mean and Deviation  

The deviation from the mean and deviation from the median are alternative measures for spread in a population 

(Akinsete et al., 2008; Nassar and Elmasry, 2012, Arik, 2018; Arik and Kantar 2019). Let X be a random variable 

from the OBu-P distribution with the mean 𝜇 = 𝐸(𝑋). The mean deviation from the mean and the mean deviation 

from the median are defined, respectively, as follows: 

𝐷(𝜇) = 𝐸[|𝑋 − 𝜇|] = ∫ |𝑋 − 𝜇|𝑓(𝑥) 𝑑𝑥
∞

𝜃

 

and 

𝐷(𝑀)  = 𝐸[|𝑋 − 𝑀|] =  ∫ |𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥
∞

𝜃

 

The mean deviation from the mean can be derived in the following form: 

𝐷(𝜇) = ∫ (𝜇 − 𝑥)𝑓(𝑥)𝑑𝑥
𝜇

𝜃

+∫ (𝑥 − 𝜇)𝑓(𝑥)𝑑𝑥
∞

𝜇

 

       = 2∫ (𝜇 − 𝑥)𝑓(𝑥)𝑑𝑥
𝜇

𝜃

 

                          = 2∫ 𝜇𝑓(𝑥)𝑑𝑥
𝜇

𝜃

 − 2∫ 𝑥𝑓(𝑥)𝑑𝑥
𝜇

𝜃

 

                 = 2𝜇𝐹(𝜇)  − 2 ∫ 𝑥 𝑓(𝑥) 𝑑𝑥
𝜇

𝜃
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                                                                      𝐷(𝜇) = 2𝜇𝐹(𝜇) − 2𝑚1,𝑋(𝜇),                                                                  (26) 

where 𝑚1,𝑋(𝜇)is the first incomplete moment equation of the OBu-P distribution given in equation (24). Let M is the 

median of the random variable X and the mean deviation from the median is calculated as follows:   

𝐷(𝑀)  = ∫ (𝑀 − 𝑥)𝑓(𝑥)𝑑𝑥
𝑀

𝜃

+∫ (𝑥 − 𝑀)𝑓(𝑥)𝑑𝑥
∞

𝑀

 

           = ∫ (𝑥 − 𝑀)𝑓(𝑥)𝑑𝑥
∞

𝜃

+ 2∫ (𝑀 − 𝑥)𝑓(𝑥)𝑑𝑥
𝑀

𝜃

 

           = 𝐸(𝑋 − 𝑀) + 2 [∫ 𝑀𝑓(𝑥)𝑑𝑥
𝑀

𝜃

−∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑀

𝜃

] 

           = 𝜇 −𝑀 + 2𝑀𝐹(𝑀) − 2𝑚1,𝑋(𝑀) 

 
                                                                         𝐷(𝑀) = 𝜇 − 2𝑚1,𝑋(𝑀).       (27) 

Order Statistics 

Let {𝑋𝑖}𝑖=1
𝑛  be a sample of size n from the OBu–P distribution. After sorting the observations in increasing order, we 

obtain the sequence of order statistics {𝑋(𝑘): 𝑘 = 1, 2, . . . , 𝑛}, where 𝑋(𝑘) denotes the k-th smallest value. The pdf 

corresponding to the k-th order statistic, 𝑋(𝑘), is given by, 

𝑓𝑥(𝑘)(𝑥) =
𝑛!

(𝑛−𝑘)!(𝑘−1)!
𝑓(𝑥)[𝐹(𝑥)]𝑘−1[1 − 𝐹(𝑥)]𝑛−𝑘 =

𝑛!

(𝑛−𝑘)!(𝑘−1)!
∑ (−1)𝑖 (

𝑛 − 𝑘
   𝑖

) [𝐹(𝑥)]𝑘+𝑖−1𝑛−𝑘
𝑖=0 𝑓(𝑥).    (28) 

Thus,  𝑓𝑥(𝑘)(𝑥) can be written as, 

𝑓𝑥(𝑘)(𝑥) =
𝑛!

(𝑛−𝑘)!(𝑘−1)!
∑ (−1)𝑖 (

𝑛 − 𝑘
   𝑖

) [∑ (𝑙 + 1)𝑏𝑙+1𝑔(𝑥)𝐺(𝑥)
𝑙∞

𝑙=0 ][∑ 𝑏𝑡𝐺(𝑥)
𝑡∞

𝑡=0 ]𝑘+𝑖−1𝑛−𝑘
𝑖=0           (29) 

𝑓𝑥(𝑘)(𝑥) =
𝑛!

(𝑛−𝑘)!(𝑘−1)!
∑ (−1)𝑖 (

𝑛 − 𝑘
   𝑖

) [∑ (𝑙 + 1)𝑏𝑙+1𝑔(𝑥)𝐺(𝑥)
𝑙∞

𝑙=0 ][∑ 𝑎𝑡𝐺(𝑥)
𝑡∞

𝑡=0 ]𝑛−𝑘
𝑖=0                (30) 

is obtained (Gradshteyn & Ryzhik (2002)). Here 𝑎0 = 𝑏0
𝑘+𝑖−1 and for 𝑡 ≥ 1, 𝑎𝑚 = (𝑚𝑏0)

−1∑ [𝑡(𝑘 + 𝑖) −𝑚
𝑡=1

𝑚]𝑏𝑡𝑎𝑚−𝑡.  𝑋(𝑘)pdf is expressed as, 

𝑓𝑥(𝑗)(𝑥) = ∑ ∑
𝑛!

(𝑛−𝑘)!(𝑘−1)!
(−1)𝑖 (

𝑛 − 𝑘
   𝑖

) (𝑙 + 1)𝑏𝑙+1𝑎𝑡𝑔(𝑥)𝐺(𝑥)
𝑙+𝑡∞

𝑡,𝑙=0
𝑛−𝑘
𝑖=0 =

                                                   ∑ ∑
𝑛!

(𝑛−𝑘)!(𝑘−1)!
(−1)𝑖 (

𝑛 − 𝑘
   𝑖

)
(𝑙+1)𝑏𝑙+1𝑎𝑡

(𝑙+𝑡+1)
ℎ(𝑥)𝑙+𝑡+1.∞

𝑡,𝑙=0
𝑛−𝑘
𝑖=0                                   (31) 

Setting, 

𝑑𝑖,𝑡,𝑙 =
𝑛!

(𝑛−𝑘)!(𝑘−1)!
(−1)𝑖 (

𝑛 − 𝑘
   𝑖

)
(𝑙+1)𝑏𝑙+1𝑎𝑡

(𝑙+𝑡+1)
                                                (32) 

Finally, 𝑋(𝑘)’s pdf is: 

𝑓𝑥(𝑘)(𝑥) = ∑ ∑ 𝑑𝑖,𝑡,𝑙ℎ(𝑙+𝑡+1)(𝑥)
∞
𝑡,𝑙=0

𝑛−𝑘
𝑖=0 ,                                                     (33) 

Here, h(x) denotes the EP pdf with parameters (𝑙 + 𝑡 + 1), 𝛼 and 𝜃 and the equation (33) shows that the OBu-P 

order statistics pdf reduces to a linear combination of three EP terms (Arik and Kantar 2019). 

 

3. MLE 

Let 𝑋1, … , , 𝑋𝑛 be random variables from the OBu-P distribution with the parameters 𝑎, b, 𝛼  and 𝜃, thus, the 

corresponding log-likelihood function is, 
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𝑙𝑜𝑔 𝐿 (𝑎, 𝑏, 𝛼, 𝜃) = 𝑛 𝑙𝑜𝑔(𝑎𝑏𝛼) + 𝑛𝑎𝑏𝛼 𝑙𝑜𝑔 𝜃 − (𝑎𝑏𝛼 + 1)∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

 

                          +(𝑎 − 1)∑ 𝑙𝑜𝑔 [1 − (
𝑥𝑖

𝜃
)
−𝛼

]𝑛
𝑖=1 − (𝑏 + 1)∑ 𝑙𝑜𝑔 {[1 − (

𝑥𝑖

𝜃
)
−𝛼

]
𝑎

+ (
𝑥𝑖

𝜃
)
−𝛼𝑎

}𝑛
𝑖=1 .                    (34) 

The score functions of parameters are respectively presented as: 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑎
=
𝑛

𝑎
+ 𝑛𝑏𝛼 𝑙𝑜𝑔 𝜃 − 𝑏𝛼∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

+∑𝑙𝑜𝑔 [1 − (
𝑥𝑖
𝜃
)
−𝛼

]

𝑛

𝑖=1

 

                                               −(𝑏 + 1)∑
[1−(

𝑥𝑖
𝜃
)
−𝛼
]
𝑎

𝑙𝑜𝑔[1−(
𝑥𝑖
𝜃
)
−𝛼
]−𝛼 𝑙𝑜𝑔(

𝑥

𝜃
)(
𝑥

𝜃
)
−𝑎𝛼

[1−(
𝑥𝑖
𝜃
)
−𝛼
]
𝑎

+(
𝑥

𝜃
)
−𝑎𝛼

𝑛
𝑖=1 = 0                                    (35) 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑏
=

𝑛

𝑏
+ 𝑛𝑎𝛼 𝑙𝑜𝑔 𝜃 − 𝑎𝛼 ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1 − ∑ 𝑙𝑜𝑔 {[1 − (

𝑥𝑖

𝜃
)
−𝛼

]
𝑎

+ (
𝑥𝑖

𝜃
)
−𝛼𝑎

}𝑛
𝑖=1 = 0               (36) 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛼
=
𝑛

𝛼
+ 𝑛𝑎𝑏 𝑙𝑜𝑔 𝜃 − 𝑎𝑏∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

+ (𝑎 − 1)∑
(
𝑥𝑖
𝜃
)
−𝛼

𝑙𝑜𝑔 (
𝑥𝑖
𝜃
)

[1 − (
𝑥𝑖
𝜃
)
−𝛼

]

𝑛

𝑖=1

 

                                          −(𝑏 + 1)∑
𝑎 𝑙𝑜𝑔(

𝑥𝑖
𝜃
)[1−(

𝑥𝑖
𝜃
)
−𝛼
]
𝑎−1

(
𝑥𝑖
𝜃
)
−𝛼
−𝑎𝑙𝑜𝑔(

𝑥𝑖
𝜃
)(
𝑥𝑖
𝜃
)
𝑎𝛼

(
𝑥𝑖
𝜃
)
−𝑎𝛼

+[1−(
𝑥𝑖
𝜃
)
−𝛼
]
𝑎

𝑛
𝑖=1 = 0                 (37) 

The parameter 𝜃 is estimated by the sample min {𝑥1, … . , 𝑥𝑛}, while the remaining parameters are obtained by 

maximizing the log-likelihood function after excluding this observation from the sample. The resulting likelihood 

equations are solved numerically to obtain consistent estimates for the parameters, where a combination of the 

Newton–Raphson method and grid search is employed to ensure convergence to the global optimum (Aljarrah et al. 

2015). 
 

 𝐼(𝛽̂) =

[
 
 
 
 −

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎2
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎𝜕𝑏
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎𝜕𝛼

−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑏𝜕𝑎
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑏2
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑏𝜕𝛼

−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎𝜕𝛼
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑏𝜕𝛼
−
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼2 ]
 
 
 
 
−1

  (38) 

where 𝛽̂ = (𝑎̂, 𝑏̂, 𝛼̂). The 100(1-α)% confidence interval of the parameters is expressed as follows 

𝑎̂ ± 𝑧𝛼
2
√𝐼11 

𝑏̂ ± 𝑧𝛼
2
√𝐼22 

𝛼̂ ± 𝑧𝛼
2
√𝐼33 

 See Appendix for matrix. 

 

4. Simulation 

This section presents a simulation study evaluating the MLE performance for the OBu-P distribution, where random 

samples from (10) of sizes 𝑛 = 50, 100, 500 are generated and each scenario is replicated 5000 times under different 

parameter settings. 

Since 𝑥 ≥ 𝜃, the scale parameter 𝜃 is estimated as minimum 𝑥 value.  For each case, the bias and mean square error 

(MSE) values of the parameter estimates are calculated. 
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The results, summarized in Table 4, indicate that as the sample size n increases, both the bias and MSE values decrease. 

The systematic decrease in bias and mean squared error (MSE) with increasing n, is an indicator of consistency. These 

findings demonstrate that the MLE method provides reliable and efficient parameter estimates for the OBu-P 

distribution, particularly with larger sample sizes. 

 Table 4. MSE and Bias values 

    BIAS MSE 

n a b α 𝑎̂ 𝑏̂ 𝛼̂ 𝜃̂ 𝑎̂ 𝑏̂ 𝛼̂ 𝜃̂ 

50 0.5 0.5 0.5 -0.0723 -0.1485 -0.1301 -0.0075 0.0218 0.3586 2.2202 0.0004 

 0.5 0.5 1 -0.0770 -0.1429 -0.2300 -0.0032 0.0231 0.2453 3.2005 0.0001 

 0.5 0.5 2 -0.0681 -0.1261 -0.4452 -0.0019 0.0188 0.2944 6.3371 0.0000 

 0.5 1 0.5 -0.0447 -0.1349 -0.1108 -0.0016 0.0101 0.4553 0.2526 0.0000 

 0.5 1 1 -0.0480 -0.1509 -0.1789 -0.0009 0.0099 0.4364 0.9482 0.0000 

 0.5 1 2 -0.0440 -0.1479 -0.3103 -0.0004 0.0094 0.4415 2.5061 0.0000 

 0.5 2 0.5 -0.0276 -0.0001 -0.2180 -0.0004 0.0049 0.7441 0.3174 0.0000 

 0.5 2 1 -0.0261 -0.0112 -0.4327 -0.0002 0.0050 0.8103 1.2746 0.0000 

 0.5 2 2 -0.0267 -0.0786 -0.8549 -0.0001 0.0050 0.9207 10.6907 0.0000 

100 0.5 0.5 0.5 -0.0450 -0.0947 -0.0327 -0.0017 0.0097 0.1912 0.1854 0.0000 

 0.5 0.5 1 -0.0466 -0.0787 -0.0341 -0.0009 0.0096 0.1539 0.4484 0.0000 

 0.5 0.5 2 -0.0455 -0.0688 -0.1040 -0.0004 0.0090 0.0840 2.0006 0.0000 

 0.5 1 0.5 -0.0226 -0.0922 -0.0288 -0.0004 0.0041 0.1981 0.0651 0.0000 

 0.5 1 1 -0.0266 -0.1094 -0.0274 -0.0002 0.0042 0.2076 0.2391 0.0000 

 0.5 1 2 -0.0229 -0.0851 -0.1035 -0.0001 0.0042 0.1654 1.0007 0.0000 

 0.5 2 0.5 -0.0146 -0.0465 -0.0997 -0.0001 0.0021 0.4907 0.0944 0.0000 

 0.5 2 1 -0.0172 -0.0394 -0.2162 -0.0001 0.0026 0.5030 0.4600 0.0000 

 0.5 2 2 -0.0155 -0.0398 -0.4361 0.0000 0.0023 0.4987 1.7891 0.0000 

500 0.5 0.5 0.5 -0.0134 -0.0110 0.0016 -0.0001 0.0016 0.0087 0.0131 0.0000 

 0.5 0.5 1 -0.0106 -0.0122 0.0049 0.0000 0.0013 0.0075 0.0466 0.0000 

 0.5 0.5 2 -0.0126 -0.0146 0.0262 0.0000 0.0014 0.0076 0.1960 0.0000 

 0.5 1 0.5 -0.0078 -0.0247 0.0018 0.0000 0.0008 0.0248 0.0116 0.0000 

 0.5 1 1 -0.0060 -0.0159 -0.0067 0.0000 0.0007 0.0229 0.0425 0.0000 

 0.5 1 2 -0.0083 -0.0161 -0.0037 0.0000 0.0008 0.0222 0.1617 0.0000 

 0.5 2 0.5 -0.0050 -0.0354 -0.0102 0.0000 0.0004 0.1066 0.0159 0.0000 

 0.5 2 1 -0.0043 -0.0323 -0.0294 0.0000 0.0005 0.1008 0.0641 0.0000 

 0.5 2 2 -0.0039 -0.0245 -0.0656 0.0000 0.0005 0.1147 0.2668 0.0000 
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5. Real Life Application 

The bladder cancer remission data, consisting of 128 observations, have also been analyzed by Zea et al. (2012) and 

Aljarrah et al. (2015). In this study, the OBu-P distribution is compared with the Pareto (PD), Weibull–Pareto (WPD; 

Aljarrah et al., 2015), Beta–Pareto (BPD; Akinsete et al., 2008), and Beta–Exponentiated Pareto (BEPD; Zea et al., 

2012) distributions, as discussed in Arik (2018). Table 5 presents the parameter estimates 𝜃̂ and 𝛽̂ as scale parameters, 

others as shape parameters, together with the Negative Log-Likelihood (−LL), Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and Kolmogorov–Smirnov (K-S) statistics, along with the corresponding 

standard errors in parentheses. As seen in Table 5, the OBu-P model yields the lowest values of −LL, AIC, BIC, and 

K-S, confirming its superior fit compared to the alternative Pareto-type models. Furthermore, Figure 6 illustrates that 

the OBu-P distribution provides a noticeably better fit than PD, WPD, BPD, and BEPD for the remission time data. 

Table 5. Parameter estimates and criteria results for bladder cancer data 

            PD           WPD         BPD            BEPD        OBu-P 

MLE 

𝛼̂ = 0.232 (0.021)  𝑐̂ = 4.136 (0.118)  𝑎̂ = 4.805 (0.055)  𝑎̂ = 0.348 (0.097) 𝑎̂ = 4.277 (0.338) 

𝜃 = 0.080  𝛾 = 0.436 (0.088)  𝑏̂ = 100.502 (0.251)  𝑏̂ = 159831 (183.7)  𝑏̂ = 6.674 (7.938)  

 𝑘̂ = 0.077 (0.013)  𝑘̂ = 0.011 (0.001)  𝑘̂ = 0.051 (0.019)  𝛼̂ = 0.107 (0.028)  

 𝜃 = 0.080 𝜃 = 0.080 𝛼̂ = 8.611 (2.093)  𝜃 = 0.080 

   𝛽̂ = 0.080   

-logL 539.591 407.370 480.446 432.410 406.965 

AIC 1081.182 820.740 966.893 872.819 819.930 

BIC 1084.026 829.273 975.425 884.197 828.463 

K-S 0.425 0.043 0.217 0.142 0.039 

Note: The values of negative log-likelihood, AIC and K-S statistics for WPD, BPD and BEPD are taken from (Aljarrah et al., 2015). The criteria 

results for PD and OBu-PD are calculated by using MATLAB software. Standard errors are given in parentheses. This application is taken from 
from the PhD thesis of Ibrahim Arık (2018). 

 

 

Figure 6.  Pdfs of PD, WPD, BPD, BEPD, and OBu-P and the Histogram for Bladder Cancer Data  

 

6. Conclusion 

In this study, we introduce a novel four-parameter OBu-P distribution. We explore its statistical properties, including 

the hazard rate, survival and quantile functions, moments, incomplete moments, moment generating function, mean 
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deviation, and order statistics. We also derive the MLE estimates for the OBu-P distribution and demonstrated its 

consistency through a simulation study. 

The OBu-P distribution is applied to a real-world dataset (Arik 2018), where it was shown to outperform other 

generalized and/or extended Pareto distributions in terms of fit. Notably, the OBu-P distribution proves to be a highly 

flexible model for datasets containing statistical uncertainty. Its capacity to capture the behaviour of peak data makes 

it particularly well-suited for applications in insurance, survival analysis, and fields where understanding extreme or 

rare events is critical. Therefore, the OBu-P distribution emerges as a promising candidate for modelling and analysing 

data that involves extreme or peak values, offering significant improvements in prediction and risk assessment. 

 

Appendix: 

The elements of the Hessian matrix, i.e., the second-order partial derivatives of the log-likelihood function for the 

OBu-P distribution, are given by: 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎2
= −

𝑛

𝑎2
− (𝑏 + 1)∑

(
𝑥𝑖
𝜃
)
𝛼𝑎
𝑢𝑖
𝑎{𝑙𝑜𝑔2 𝑢𝑖+2𝛼 𝑙𝑜𝑔(

𝑥𝑖
𝜃
) 𝑙𝑜𝑔 𝑢𝑖+𝛼

2 𝑙𝑜𝑔2(
𝑥𝑖
𝜃
)}

{(
𝑥𝑖
𝜃
)
𝛼𝑎
𝑢𝑖
𝑎+1}

2
𝑛
𝑖=1 , 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑏2
= −

𝑛

𝑏2
, 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼2
= −

𝑛

𝛼2
− (𝑎 − 1)∑[𝑙𝑜𝑔2 (

𝑥𝑖
𝜃
) (1 − 𝑢𝑖)𝑢𝑖

−1 + 𝑙𝑜𝑔2 (
𝑥𝑖
𝜃
) (1 − 𝑢𝑖)

2𝑢𝑖
−2]

𝑛

𝑖=1

 

                         −(𝑏 + 1)∑

{
 
 

 
 −𝑎 𝑙𝑜𝑔2(

𝑥𝑖
𝜃
)𝑢𝑖

𝑎−1(1−𝑢𝑖)+(𝑎−1) 𝑙𝑜𝑔
2(
𝑥𝑖
𝜃
)𝑢𝑖

𝑎−2(1−𝑢𝑖)
2−𝑎2(

𝑥𝑖
𝜃
)
𝑎𝛼

𝑙𝑜𝑔2(
𝑥𝑖
𝜃
)

(1−𝑢)𝑎+𝑢𝑎

[𝑎 𝑙𝑜𝑔(
𝑥𝑖
𝜃
)𝑢𝑖

𝑎−1(1−𝑢𝑖)−𝑎 𝑙𝑜𝑔(
𝑥𝑖
𝜃
)(1−𝑢𝑖)

𝑎][𝑎 𝑙𝑜𝑔(
𝑥𝑖
𝜃
)𝑢𝑖

𝑎−1(1−𝑢𝑖)−𝑎(
𝑥𝑖
𝜃
)
𝑎𝛼

𝑙𝑜𝑔(
𝑥𝑖
𝜃
)]

[(1−𝑢𝑖)+𝑢𝑖
𝑎]2 }

 
 

 
 

𝑛
𝑖=1 , 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎𝜕𝑏
= 𝑛𝛼 𝑙𝑜𝑔 𝜃 − 𝛼 ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1 − ∑

𝑢𝑖
𝑎 𝑙𝑜𝑔 𝑢𝑖−𝛼 𝑙𝑜𝑔(

𝑥𝑖
𝜃
)(1−𝑢𝑖)

𝑎

𝑢𝑖
𝑎+(1−𝑢𝑖)

𝑎
𝑛
𝑖=1 , 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑎𝜕𝛼
= 𝑛𝑏 𝑙𝑜𝑔 𝜃 − 𝑏∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

+∑𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) (1 − 𝑢𝑖)𝑢𝑖

−1

𝑛

𝑖=𝑖

 

−(𝑏

+ 1)∑

{
 
 

 
 𝑎 𝑙𝑜𝑔

2 (
𝑥𝑖
𝜃
)𝛼 (

𝑥𝑖
𝜃
)
−𝑎𝛼

+ 𝑎 𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) 𝑙𝑜𝑔 𝑢𝑖 𝑢𝑖

𝑎−1(1 − 𝑢𝑖) + 𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) 𝑢𝑖

𝑎−1(1 − 𝑢𝑖) − 𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) (1 − 𝑢𝑖)

𝑎

(1 − 𝑢𝑖)
𝑎 + 𝑢𝑖

𝑎

−
[𝑎 𝑙𝑜𝑔 (

𝑥𝑖
𝜃
) 𝑢𝑖

𝑎−1(1 − 𝑢𝑖) − 𝑎 𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) (1 − 𝑢𝑖)

𝑎] [𝑙𝑜𝑔 𝑢𝑖 𝑢𝑖
𝑎−1 − 𝛼 𝑙𝑜𝑔 (

𝑥𝑖
𝜃
) (1 − 𝑢𝑖)

𝑎]

[(1 − 𝑢𝑖)
𝑎 + 𝑢𝑖

𝑎]2 }
 
 

 
 

𝑛

𝑖=1

 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼𝜕𝑏
= 𝑛𝑎 𝑙𝑜𝑔 𝜃 − 𝑎∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

−∑
𝑎 𝑙𝑜𝑔 (

𝑥𝑖
𝜃
)𝑢𝑖

𝑎−1(1 − 𝑢𝑖) − 𝑎𝑙𝑜𝑔 (
𝑥𝑖
𝜃
) (
𝑥𝑖
𝜃
)
𝑎𝛼

(1 − 𝑢𝑖)
𝑎 + 𝑢𝑖

𝑎

𝑛

𝑖=1

 

where, 

𝑢𝑖 = 1 − (
𝑥𝑖

𝜃
)
−𝛼

. 

In the Newton–Raphson method for maximum likelihood estimation, the parameter vector is updated iteratively as 

𝜃(𝑚+1) = 𝜃(𝑚) − 𝐻−1(𝜃(𝑚))𝑈(𝜃(𝑚)) 

where 𝑈(𝜃) is the score vector (first derivatives of the log-likelihood / Eqs, 35-37) and 𝐻(𝜃) is the Hessian matrix 

(second derivatives). At each iteration, the Hessian provides curvature information, scaling the score vector so that 
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updates move efficiently toward the maximum. A negative definite Hessian at convergence confirms that the solution 

is indeed a local maximum of the log-likelihood function. 
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