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Abstract  

 

This paper proposed new, highly accurate, single-term, and explicitly invertible approximations for the standard 

normal distribution function and its related functions, such as the error function and the quantile function. The 

proposed approximations are built based on some existing approximations, however, the proposed ones are much 

more accurate. The accuracy of the proposed approximations is measured via maximum absolute error and mean 

absolute error. Some of the proposed approximations are at least five times more accurate than the original ones and 

two of them have maximum absolute error lower than 1.8×10-4, which is quite sufficient for most of real-world 

applications. Two real applications are studied to show the applicability of the proposed improvements. These 

applications showed the superiority of one of the proposed approximations over some of the available single-term 

approximations even though the latter have smaller maximum absolute error. 
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1. Introduction  

 

 

The standard normal distribution function and other related functions such as the quantile function, the error function, 

and the complementary error function are considered among the most important functions in statistics and engineering. 

For example, the standard normal distribution function is widely useful in statistical theory and modelling (Devore, 

2011). The Error function frequently appears in transport phenomena in chemical engineering (Bird, 2002) and in 

digital phase modulation and signal processing (Proakis, 2001). In these applications and many others, it is of 

significant importance to have a closed form approximation of the aforementioned functions. For a detailed review of 

applications and approximations of the normal cumulative distribution function and related functions, we strongly 

recommend Soranzo et al. (2023), Eidous and Abu-Shareefa (2019), and Eidous and Al-Rawwash (2025). In addition 

to approximating the distribution function of the standard normal distribution, it is of great importance also to have 

lower and upper bounds of the distribution function, see for example Eidous (2023) and Ananbeh and Eidous (2024). 

 

The standard normal distribution function is defined as the probability that a normally distributed random variable X 

does not exceed a pre-specified value x and is denoted as: 

𝛷(𝑥) = ∫
1

√2𝜋
𝑒−

𝑡2

2
𝑥

−∞
𝑑𝑡.                                                                          (1) 
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There are three functions that are related to 𝛷(𝑥) and are very popular in statistical learning, engineering, mathematics, 

and  machine learning. These functions are 

1- The Q-function: 

𝑄(𝑥) = ∫
1

√2𝜋
𝑒−

𝑡2

2

∞

𝑥

𝑑𝑡, 

  =  1 − 𝛷(𝑥). 

  

2- The error function: 

erf(𝑥) = ∫
2

√𝜋
𝑒−

𝑡2

2
𝑥

0
𝑑𝑡, 

                  =  2𝛷(𝑥√2) − 1. 

 

3- The complementary error function: 

erfc(𝑥) =
1

2
+ ∫

2

√𝜋
𝑒−

𝑡2

2

∞

𝑥

 

          = 1 − erf (𝑥). 

None of the integrals that appear above can be evaluated in closed form, hence several attempts have been made to 

approximate these functions and/or finding upper or lower limits for them. Existing approximations can be classified 

into two types: (1) complex, highly accurate, but not explicitly invertible, and (2) simple, invertible, but less accurate. 

This research aims to improve some of the already published simple approximations of the standard normal 

distribution function, 𝛷(𝑥), to have relatively high accuracy and yet very simple to deal with. Due to the symmetry 

property of the normal density, it is sufficient to approximate its distribution function for x > 0. 

 

The accuracy of the proposed improvements will be measured via the maximum absolute error (Max.AE) and mean 

absolute error (Mean.AE) which are defined as follows. Let 𝛷(𝑥) and 𝛷̂(𝑥) be the true and approximate value of the 

distribution function respectively. Then  

 

Max.AE = 𝑚𝑎𝑥|𝛷(𝑥) −  𝛷̂(𝑥)|. 

The Mean.AE is defined as follows: 

Mean.AE =
∑|𝛷(𝑥𝑖)− 𝛷̂(𝑥𝑖)|

𝑀
 

where 𝑥𝑖 is taken to be between 0 to 7 with step 0.0001, and 𝑀 is the number of xi points.  Note that the built-in R 

function “pnorm” is used to find the true value 𝛷(𝑥) for any given 𝑥 (R Core Team, 2023). 

  

The rest of this paper is organized as follows. Section 2 discusses some literature review on simple approximations. 

The proposed improvements are discussed in Sections 3. In Section 4 some applications are presented. Section 5 

concludes the paper with discussion. 

 

2. Literature Review 

 

Pólya (1945) suggested a formula of the form 𝛷̂₁(𝑧) = 𝑎 + 𝑏√(1 − 𝑒− 𝑐 𝑧2
), where 𝑎 = 𝑏 = 0.5, and 𝑐 =

2

𝜋
 with 

Max.AE= 3.2×10−3. This approximation was originally proposed by Pólya as an upper bound not as an approximation 

of the standard normal distribution function. However, many authors have revised and improved it as an 

approximation, see for example Aludaat and Alodat (2008), Eidous and Al-Salman (2016), and Hanandeh and Eidous 

(2021). Among these approximations, Abderrahmane and  Kamel (2017) approximation has the smallest Max.AE, 

where 𝑎 = 0.50103,𝑏 = 0.49794, and c = 0.62632, with Max.AE = 1.03×10−3 and Mean.AE = 6.64×10−4. 

Burr (1967) gave the following approximation: 𝛷̂2(𝑧) =  1 − (1 + (𝑎 + 𝑏𝑧)𝑐)−𝑑  where 𝑎 = 0.644693, 𝑏 =

0.161984, 𝑐 = 4.874, 𝑑 = 6.158. This approximation produced Max.AE = 3.97×10−3 and Mean.AE = 5.89×10−4 
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Ordaz (1991) proposed approximation of the form 𝛷̂3(𝑧) = 1 – 𝑎𝑒−(−
9𝑧

14
−

8

14
)

2

, with a = 0.6931. The Max.AE and 

Mean.AE of this approximation are 4.1×10−3and 5.5∗ 10−4.  respectively. This formula is then revised by many 

authors including Hanandeh and Eidous (2022) who improved Ordaz approximation by choosing a = 0.688182 which 

gives Max.AE = 3.53×10−3 and Mean.AE = 4.1×10−4. 

Chernoff (1952) proposed the approximation of the form 

𝛷̂4(𝑧) = 1 – 𝑎𝑒− 𝑏 𝑧𝑐
, 

where a = 0.5, b = 0.5 and c = 2. The Max.AE and Mean.AE of this approximation are 1.51×10 -1 and 3.2×10-2, 

respectively. Many authors revised this formula and the one with the smallest Max.AE was Hanandeh and Eidous 

(2022) with a = 0.5, b = 1.2, c = 1.275247 and produces Max.AE = 9.17×10−3, Mean.AE = 2.22×10−3 

Soranzo and Epure  (2014) proposed the approximation 

𝛷̂5(𝑧) = 2−𝑎1−𝑏𝑐𝑧

,  

where a = 22, b = 41, c =  
1

10
. This approximation gave a Max.AE = 1.274×10−4 and Mean.AE = 3.834×10−05 

Kundu et al. (2006) proposed approximation of the form 

𝛷̂6(𝑧) = (1 − 𝑒−ⅇ𝑎 𝑧 + 𝑏
)

𝑐

, 

where a = 0.3820198, b = 1.0792510, c =  12.8 , with Max.AE = 3.2×10−4. 

Tocher (1963) proposed the approximation 

𝛷̂8(𝑧) = 1 – 
1

1+ⅇ𝑎 𝑧,  

where a = √
8

𝜋
  and with Max.AE = 1.8×10−2. This formula is then revised by many authors including Bowling et al. 

(2009) by choosing a = 1.702 which gives Max.AE = 9.5×10−3. 

Recently, Lipoth et al. (2022) proposed the approximation 

𝛷̂7(𝑧) = (1 + 𝑎 (𝑙𝑛 (1 + 𝑒−
𝑧
ℎ

+𝐶))
𝑏

)

−𝑑

 

where a = 0.00161826615, b = 3.38692114553, c =  3.26862849061,  d = 7.80500878654, and  

h = 0.82116764005, with Max.AE = 2.4×10−5 

 

 

3. The Proposed Improvements 

 

In this section, we propose five updated and highly accurate single-term approximations of the standard normal 

distribution function. These approximations can be easily manipulated to obtain approximations to the error function, 

complementary error function, and quantile function. Moreover, the proposed improvements can be easily inverted 

for the purpose of random numbers generation and finding critical values. Note that to obtain the new approximations, 

we first introduced new unknown constants to the available approximations. These constants along with the original 

constants in the approximations are then obtained by optimizing the Kolmogrov-Smirnov statistics. The initial guess 

of these constants are taken to be the constants of the original approximations. We then search for better values of the 

constants around the optimal solution using R loops to improve the Max.AE.  

3.1 Improvement of Pólya’s approximation 
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Our new proposed improvement of Pólya’s formula takes the general form: 

𝛷̂1𝑛ⅇ𝑤(𝑧) = 𝑎 + 𝑏 (1 − 𝑒− 𝑐 𝑧ℎ
)𝑑, 

with the following constants, 𝑎 = 𝑏 = 0.5, 𝑐 = 0.668224, 𝑑 = 0.531504, and ℎ = 1.89375. This approximation 

produced a Max.AE = 1.73 × 10−4 and Mean.AE = 5.25 × 10−5. The newly proposed approximation is 

approximately six times more accurate than the old best one 

3.2 Improvement of Burr’s approximation 

Our proposed approximation of Burr’s formula is, 

𝛷̂2𝑛ⅇ𝑤(𝑧) =  1 − (1 + (𝑎 + 𝑏𝑧)𝑐)−𝑑 

Where the constants are  𝑎 = 0.6446348,  𝑏 = 0.1566217, 𝑐 = 4.9187329,  and 𝑑 = 6.3597984. This approximation 

produce a Max.AE =  6.06× 10−4 and Mean.AE = 2.12×10−4. The newly proposed approximation is approximately 

6.5 times more accurate than Burr’s approximation. 

3.3 Improvement of Ordaz’ approximation 

The proposed improvement is, 

𝛷̂3𝑛ⅇ𝑤(𝑧) = 1 – 𝑎𝑒−(𝑏𝑧+𝑐)𝑑
, 

where  𝑎 = 0.74;  𝑏 = 0.6154381;  𝑐 = 0.6272601;  𝑑 = 2. This approximation produced a Max.AE = 7.27×10−4, 

Mean.AE = 2.2×10−4. This approximation is about 4.8 times more accurate than Hanandeh and Eidous (2022) 

approximation 

 

3.4 Improving Chernoff’s approximation  

The proposed improvement takes the same form of Chernoff’s approximation, that is  

𝛷̂4𝑛ⅇ𝑤(𝑧) = 1 – 𝑎𝑒− 𝑏 𝑧𝑐
 

 with 𝑎 = 0.493376, 𝑏 =  1.1729, 𝑐 = 1.3037. This choice of the constants produce a Max.AE = 6.65×10−3, 

Mean.AE = 1.81×10−3. 

3.5 Improvement Soranzo and Epure approximation 

The proposed improvement takes the form, 

𝛷̂5𝑛ⅇ𝑤(𝑧) = 2−𝑑∗𝑎1−𝑏𝑐𝑧

, 

where a = 22.2118, b=39.59191,  c=0.100688,  d=1.0001336. The new approximation gave a Max.AE = 1.11×10−4 

and Mean.AE = 3.98810−5. 

Figure 1 illustrates the error and absolute error of the 5 proposed approximations for 0 ≤ 𝑧 ≤ 7. It can be seen from 

that 𝛷̂1𝑛ⅇ𝑤 and 𝛷̂5𝑛ⅇ𝑤 are the best very close in performance followed by 𝛷̂2𝑛ⅇ𝑤 and 𝛷̂3𝑛ⅇ𝑤. 
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        Figure 1: Error (left) and Absolute Error (right) of the 5 proposed approximations 

 

4. Applications 

Two real applications will be considered here to compare the performance of the proposed approximations. The first 

example is in the area of process control and the second is about the application of the error function in digital 

communications. 

Example 1: The first example will discuss a statistical process control of a chemical product. The example was first 

discussed by Aljebory and Alshebeb (2014) and Alkhazali et al. (2020). The aim is to determine the average run length 

to detect a shift that may occur in a product pH form a mean of 𝑋̅ =9.26 to 𝑋̅ =10. In this case the true shift is           10-

9.26=0.74. Figure 2 shows a snapshot of the product control chart (obtained from Aljebory and Alshebeb (2014)). 

Using the fact that the data in normal distribution fall within 3 standard deviation from the mean we have 

𝑈𝐶𝐿 − 𝑋̅ = 3𝜎𝑋̅ 

10.278 − 9.26 = 3𝜎𝑋̅ 

𝜎𝑋̅ = 0.339, 

Therefore, the shift in terms of 𝜎𝑋̅ is 
0.74

0.339
= 2.18. 

Following Alkhazali et al. (2020), the probability of detecting the shift will be 𝛽 = 𝛷(0.82) − 𝛷(−5.18) =

0.7938918. Table 1 gives the approximate value of this probability using the proposed approximations. Although 

the modified Soranzo and Epure approximation, Φ̂5𝑛ⅇ𝑤(z), has the smallest  Max.AE, Φ̂1𝑛ⅇ𝑤  and Φ̂2𝑛ⅇ𝑤 provided a 

more accurate approximation in this example. 

 

Table 1: Approximated value and error of the probability for the new five approximations. 

Approximation Approximated value Error (𝛷(𝑥) −  𝛷̂(𝑥)) 

Φ̂1𝑛ⅇ𝑤 0.7939175 -0.000025 
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Φ̂2𝑛ⅇ𝑤 0.7939525 -0.00006 

Φ̂3𝑛ⅇ𝑤 0.794508 -0.00062 

Φ̂4𝑛ⅇ𝑤 0.8005355 -0.0066 

Φ̂5𝑛ⅇ𝑤 0.7940018 -0.00011 

 

 

 
Figure 2: Control chart of the product pH levels (Aljebory and Alshebeb, 2014). 

Example 2: : The second example is in the field of digital communications, see Sandoval-Hernandez et al. (2019).  In 

digital phase modulation, Bit Error Rate (BER) is a key performance metric. It measures the ratio of erroneous bits to 

the total transmitted bits over a communication channel. It is considered a crucial metric for evaluating and optimizing 

the reliability of data transmission. The probability of BER in binary Phase Shift Keying is defined as 

𝑃 =
1

2
𝑒𝑟𝑓𝑐 (√

𝐸𝑏

𝑁0

) 

= 1 − 𝛷 (√
2𝐸𝑏

𝑁0
), 

Where, Eb and N0 are the energy in one bit and the additive white Gaussian noise, respectively. The ratio 
𝐸𝑏

𝑁0
 is called 

the signal to noise ratio (SNR).  

Figure 3 shows the performance of the proposed approximation in estimating BER. It is clear that 𝛷̂1𝑛ⅇ𝑤 perform the 

best of the five proposed approximations followed by 𝛷̂5𝑛ⅇ𝑤 and 𝛷̂3𝑛ⅇ𝑤. It can be also observed that in this application 

𝛷̂1𝑛ⅇ𝑤outperform Lipoth’s approximation even though the latter has smaller Max.AE. Note that the R code used to 

produce this figure are converted from the Matlab code of Sandoval-Hernandez et al. (2019). 
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Figure 3: Bit error probability curve for Phase Shift Keying modulation. 

5. Conclusion  

In this article, five one-term improvements to the standard normal distribution function approximations are proposed 

and investigated. These improvements are compared with the approximation available in the R software using the 

maximum and mean absolute error. The R approximation to the standard normal distribution function is considered 

as the true value. 

It is worth mentioning that the improved approximations considered here have simple single-term analytical form 

which makes them easy to program and easy to invert and yet have sufficiently high accuracy. They also have a simple 

form, consisting of a single term involving x. Therefore, the proposed improvements are considered very competitive 

approximations to other highly accurate but complex approximations available in the literature. The Max. AEs of 

some of the proposed improvements is four to six times better than previously proposed improvements which 

considered relatively high in single-term approximations. Two of the proposed improvements have Max.AE less than 

1.8×10-4. Two real examples are discussed to show the applicability of the proposed improvements. These applications 

showed that 𝛷̂1𝑛ⅇ𝑤 outperforms existing approximations even though they have smaller Max.AE. 
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Appendix 1: The R code used to produce Figure 3 in Example 2. 

 

# Polya  
f1=function(x) 
{ 
par=c(0.668224,1.89375,0.531504) 
res=0.5*(1+(1-exp(-par[1]*x^par[2]))^par[3]) 
return(res) 
}  
 
# Bur 
f2=function(x) 
{ 
par=c(0.6446348, 0.1566217, 4.9187329, 6.3597984) 
res=  1-(1+(par[1]+par[2]*x)^par[3])^(-par[4]) 
return(res) 
}  
 
#Ordaz 
f3=function(x) 
{ 
a1=a = 0.74; a2=  0.6154381; a3=0.6272601; a4=2;a5=1 
res= (1-a1*exp(-(a2*x+a3)^a4))^a5  
return(res) 
}  
 
 
#Chernof 
f4=function(x) 
{ 
a=0.493376;b=1.1729;c=1.3037 
res=  1-a*exp(-b*x^c) 
return(res) 
}  
 
 
#soranzo 
f5=function(x) 
{ 
a=22.2118;b= 39.59191;c=  0.100688;d=  1.0001336 
res=  2^(-d*a^(1-b^(c*x))) 
return(res) 
}  
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# Lipoth 
f6=function(x) 
{ 
a=0.00161826615;b=3.38692114553 
c=3.26862849061;d=7.80500878654;h=0.82116764005 
res=(1+a*(log(1+exp(-x/h+c)))^b)^(-d) 
return(res) 
} 
set.seed(100)   
N <- 10^7  
 
ip <- runif(N) > 0.5   
s <- 2 * as.numeric(ip) - 1   
set.seed(200)   
n <- (1 / sqrt(2)) * (rnorm(N) + 1i * rnorm(N))   
Eb_N0_dB <- -3:10   
 
for (ii in 1:length(Eb_N0_dB)) { 
  y <- s + 10^(-Eb_N0_dB[ii] / 20) * n   
   
  ipHat <- as.numeric(Re(y) > 0)   
} 
 
library(ggplot2) 
library(pracma) 
 
nErr <- numeric(length(Eb_N0_dB))  
for (ii in 1:length(Eb_N0_dB)) { 
  nErr[ii] <- sum(ip != ipHat)   
} 
 
simBer2 <- 0.5 * (1 - erf(sqrt(10^(Eb_N0_dB / 10))))   
theoryBer <- 0.5 * erfc(sqrt(10^(Eb_N0_dB / 10)))   
 
plot(Eb_N0_dB, theoryBer, type="o", col="black", lty=2, log="y", 
     xlab="Eb/No (dB)", ylab="Bit Error Rate", main="Bit error probability curve") 
#points(Eb_N0_dB, simBer2, type="o", col="blue", pch=4) 
points(Eb_N0_dB, 1-f1(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="blue", pch=2) 
points(Eb_N0_dB, 1-f2(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="green", pch=4) 
points(Eb_N0_dB, 1-f3(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="brown", pch=15) 
points(Eb_N0_dB, 1-f4(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="yellow", pch=16) 
points(Eb_N0_dB, 1-f5(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="red", pch=17) 
points(Eb_N0_dB, 1-f6(sqrt(2*10^(Eb_N0_dB / 10))), type="o", col="orange", pch=19) 
 
 
grid() 
legend("bottomleft", legend=c("Exact", 
expression(hat(Phi)[1]),expression(hat(Phi)[2]),expression(hat(Phi)[3]),expression(hat(Phi)[4]),expression(hat(Phi)[
5]),"Lipoth"), col=c("black", "blue","green","brown","yellow","red","orange"), pch=c(1,2,4,15,16,17,19)) 
 
 




