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Abstract

The Weibull distribution, widely utilized due to its flexibility, often requires generalization to improve its fit to
real-world data. The Transmuted Weibull Distribution offers enhanced flexibility by incorporating a transmutation
parameter. Metaheuristic algorithms have emerged as robust tools for parameter estimation, particularly for
probability distributions with complex likelihood functions. This study compares the performance of four
metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution
(DE), and Attificial Bee Colony (ABC) against the traditional Newton-Raphson (NR) algorithm for estimating
parameters of the Transmuted Weibull Distribution (TWD). Extensive Monte Carlo simulations evaluated the
algorithms' efficiencies using metrics like log-likelihood values, bias, mean squared error (MSE), and deficiency.
Additionally, the methods are applied to real-world datasets to compare their practical utility. Both simulation and
real data application results revealed that metaheuristic algorithms outperformed traditional Newton-Raphson (NR)
optimization.

Key Words: Transmuted Weibull Distribution, Maximum Likelihood Estimation, Metaheuristic Algorithms,
Nonlinear Optimization, Monte Carlo Simulation

1. Introduction
Probability distributions are fundamental in modeling phenomena across biology, engineering, economics, and

environmental sciences. For instance, Weibull distribution is one of the widely used probability distribution in these
fields. Proposed by Swedish physicist Weibull, it has attracted the attention of many researchers due its flexibility and
wide applications to many fields. However, the standard Weibull distribution may not always provide an optimal fit
to real-world data. Many generalizations and modified extensions of the Weibull distribution have been suggested in
order to become more flexible and capable of modeling real world data. For example, Mudholkar et al. (1996)
introduced a generalization of the Weibull distribution, Pal et al. (2006) proposed exponentiated Weibull distribution,
Lai et al. (2003) presented modified Weibull distribution, and Lee et al. (2007) proposed Beta-Weibull distribution.

Aryal and Tsokos (2011) proposed the Transmuted Weibull Distribution (TWD), a generalization of the Weibull
distribution based on the quadratic rank transmutation map (Shaw & Buckley, 2009). In their study, the authors added
a transmutation parameter to two-parameter Weibull distribution. TWD is more flexible than its parent and other
extensions of the Weibull distribution. For instance, Aryal et al. (2011) demonstrated the utility of TWD in real
applications and compared it to the Weibull distribution and exponentiated Weibull distribution. Pobocikova et al.
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(2018) applied TWD to lifetime data of engineering and biological sciences and compared TWD with two-parameter
and three-parameter Weibull distributions.

Among the many parameter estimation methods in statistics, Maximum Likelihood Estimation (MLE) is widely
favored due to its desirable mathematical properties and flexibility in modeling diverse probability distributions. MLE
maximizes the likelihood function with respect to the unknown parameters. However, the solutions of the likelihood
function of TWD cannot be obtained as an explicit function of the sample data as the likelihood is nonlinear function.
Therefore, iterative algorithms such as Newton-Raphson, or iteratively reweighted least squares are needed to
maximize the likelihood function. For example, Newton-Raphson (NR) algorithm is a traditional numerical algorithm
used to solve the system of equations generated by partial derivatives of the likelihood function to find the estimated
values of the parameter of interest for statistical distributions. However, its major drawback is that it uses a gradient-
based search algorithm to find the best parameter values based on the inverse of the hessian matrix, making it only
applicable to functions that can be differentiated at least twice. It is also important to note that traditional numerical
algorithms are sensitive to the initial parameter values. Choosing the wrong starting point carries the risk of getting
stuck in local optimum instead of finding the global optimum solution (Abbasi et al., 2006).

On the other hand, metaheuristic algorithms are inspired by natural phenomena such as the behavior of bee colonies
or differential evolution. These algorithms work iteratively to find better solutions to the problem at hand.
Metaheuristic algorithms are known for their ability to escape local optima and achieve global convergence, making
them well-suited for complex and non-linear optimization problems such as parameter estimation for the TWD. This
feature makes metaheuristic algorithms a useful tool for parameter estimation in TWD as an alternative to traditional
numerical algorithms.

In this study genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE) and artificial bee
colony (ABC) metaheuristic algorithms will be used to maximize the likelihood function of TWD. Many studies have
used metaheuristic algorithms to estimate some of the well-known probability distributions. For example, Kasap and
Faouri (2024) used five metaheuristic algorithms to estimate the parameters of exponentially modified logistic
distribution. Faouri and Kasap (2023) estimated the parameter of Nakagami distribution using PSO. Yalginkaya et al.
(2018) used GA to obtain the maximum likelihood estimates for the parameters of skew normal distribution. They
compared the performance of GA with other traditional search techniques such as NR, Nelder Mead, and iteratively
reweighted least squares Algorithm. They found that GA estimates were the most efficient compared to the traditional
search techniques. Karakoca and Pekgor (2019) used a GA-based approach to estimate the maximum likelihood
estimates of the parameters of progressively type-2 censored samples from the Weibull distribution. Based on
extensive simulations, GA-based estimates outperformed the NR based estimates. Liu et al. (2011) highlighted GA's
computational advantages in modeling wind speed distributions, while Wang et al. (2018) showed PSO and DE's
strong performance alongside Grey Wolf Optimizer (GWO) in wind energy applications. Reddy and Singh (2014)
used GA and PSO for drought risk modeling, while Wadi and Elmasry (2021) applied GA to fit Weibull, Poisson, and
Lognormal distributions for wind power studies. Borges and Campos (2023) validated DE's utility in interval-censored
data modeling. Jiang et al. (2015) assessed the wind speed frequency distribution using three probability distributions.
Their study compared MLE, Method of Moments and three metaheuristic algorithms namely PSO, DE and Ant Colony
Optimization (ACO). They found that parameter estimates based on the metaheuristic algorithms were more accurate
than those of traditional numerical algorithms. Kili¢ (2022) applied both ABC and GA to estimate parameters of the
Weibull distribution, demonstrating their efficiency. Ravindra et al. (2012) modeled wind speed using a two-parameter
Weibull distribution and showed that ABC provided better parameter estimates than the iterative MLE method. Xu et
al. (2017) addressed the challenges of estimating q-Weibull distribution parameters, utilizing ABC and an adaptive
hybrid ABC algorithm to handle the intricate nonlinear equations involved.

The objective of this study is to obtain the maximum likelihood estimates of the parameters of TWD by using four
metaheuristic algorithms. We then compare the efficiencies of these estimators with corresponding estimates based
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on NR algorithm by conducting extensive Monte Carlo simulations. To the best of our knowledge, this is the first
study to obtain the maximum likelihood estimates for the parameters of the TWD using metaheuristic algorithms.

The rest of the study is organized as follows: In Section 2, the TWD and its basic properties are presented. In section
3, the four metaheuristic algorithms and NR algorithm are introduced. In Section 4, the efficiencies of the parameter
estimators are compared via a comprehensive Monte Carlo simulation. In section 5, two applications of real datasets
are analyzed. In the last section, the study concludes.

2. Transmuted Weibull Distribution
Aryal and Tsokos (2011) introduced the transmuted Weibull distribution by generalizing the two-parameter Weibull

distribution using the quadratic rank transmutation map (QRTM). The probability density function (pdf) and
cumulative distribution function (cdf) of the two-parameter Weibull distribution are given by Equations (1) and (2)
respectively.

=2 e (<), >0 0

Fi(x) =1—exp (— (;)n> (2)

Using Equations (3) and (4), Aryal and Tsokos (2011) derived the cdf and pdf for the transmuted Weibull distribution,
which are presented in Equations (5) and (6), respectively. In these equations, F; and f; denote the cdf and pdf of the
parent distribution respectively, while F, and f, represent the cdf and pdf of the transmuted distribution respectively.
The parameter A in Equations (3), (4), (5) and (6), referred to as the transmutation parameter and is constrained to the
interval [—1,1].
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Figure 1. The left panel shows the cdf F(x) and the right panel shows the pdf f (x) of the TWD for different values

of the transmutation parameter A.

Aryal et al. noted that for n = 1, the distribution becomes a transmuted exponential distribution, for A = 0, it reduces
to the Weibull distribution, and when n = 4 = 1 then resulting distribution is an exponential distribution with

parameter % Possible shapes of the pdf and cdf of a transmuted Weibull distribution are visualized in Figure 1 for

chosen values of A, with n and o held constant at 1.

The moments of the transmuted Weibull distribution are given by equation (7).

E(X*) = g*T (1 +§) <1 —,1+/12%) (7)

The mean and variance can be obtained by using Equation (7) and is given in Equations (8) and (9) respectively.

E(X) = oT (1+%)(1—/1+/12%) @®)
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3. Maximum Likelihood Estimation
The MLE method is used to estimate the parameters of the transmuted Weibull distribution. MLE maximizes the

likelihood function by finding the optimal values of the unknown parameters of the Transmuted Weibull distribution.
For computational simplicity, the log-likelihood is used. The log-likelihood of TWD is presented in Equation (10):
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The MLE for the unknown 4, 1 and ¢ is obtained by maximizing the log-likelihood function. If the partial derivatives
of the log-likelihood are taken with respect to n, ¢ and A, the resulting normal equations are provided in Equations
(11), (12), and (13), respectively.
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Since these equations are nonlinear, they can be solved iteratively. In this study, GA, PSO, DE, ABC and NR
algorithms will be used to solve these equations.

3.1 Genetic Algorithm

GA proposed by Holland (1975), is a type of evolutionary algorithm that mimics the process of natural selection to
find optimal or near-optimal solutions to complex problems. The first step is to decide how to represent potential
solutions to the problem which is known as the chromosome representation. Chromosomes can be represented in many
different ways, such as binary strings, real-valued vectors, or even graphs. Once a chromosome representation has
been chosen, the next step is to initialize the population which involves creating a set of random chromosomes, each
of which represents a potential solution to the problem. The objective function measures how well a candidate solution
performs with respect to the problem, assigning a fitness value to each chromosome. In the Genetic Algorithm (GA),
this fitness evaluation guides the search for the optimal solution. GA uses three genetic operators to evolve the
population: selection, crossover, and mutation. Selection chooses chromosomes from the population to be parents of
the next generation. There are different selection methods such as Random selection, Tournament selection and
Roulette wheel selection. Chromosomes with higher fitness are more likely to be selected. Crossover combines two
parent chromosomes to create two offspring chromosomes. This allows the GA to explore new regions of the search
space. Mutation randomly changes one or more genes in a chromosome. This helps to prevent the GA from getting
stuck in local optima.

3.2 Particle Swarm Optimization

PSO, proposed by Kennedy and Eberhart (1995), is a population-based metaheuristic algorithm which is inspired by
the social behavior of the flocking of birds or schooling of fish in search of food. PSO, like other evolutionary
algorithms such as GAs, aims to optimize a problem iteratively. However, unlike GA, PSO does not use genetic
operators such as crossover and mutation. Instead, potential solutions, called particles, fly through the problem search
space to find the optimal solution. Each particle in the swarm has a position and knows its personal best position and
the fitness value associated with it. It also knows the global best position within the swarm, along with the current
global fitness value.
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Pseudo Code for GA Algorithm

Inputs: Objective function, lower bound (Ib), upper bound (ub), Population number (nPop), number of offsprings
(nC), number generations (Iteration), crossover probability (pC), Mutation rate (rM), mutation step size (sM).

1. Initialize a random population (nPop)

2. Evaluate the objective function

3. Memorize the best solution

4. Enter the evolution loop

for it = 1: Iteration
Perform random selection

fork=1:nC/2
Select Parent 1
Select Parent 2
Perform Uniform Crossover
end
Perform mutation
fori=1:nC
Perform mutation of the i™ offspring
Bound the offsprings
end
for i=1: nC
Evaluate the new population
end

Merge and sort the populations
Select the best nPop based on the objective function
Update the best solution

End

Each particle in the swarm is represented by a n-dimensional vector. Every particle in the swarm also has a velocity
with the same dimension as its position. The velocity enables the particles to move toward the global best. The
movement of particles is determined by the information exchange among the swarm particles, since each particle
knows its personal best. Thus, their movement is based on communication and learning until they reach the global
optimum of the problem. The velocity of each particle i in the swarm, at time (iteration) t, is updated according to
Equation (14)

vi(t+1) = wy(t) + (i) — x(t)) + coralg(t) — x; (¢ )] (14)

where w is the inertia weight, used to balance global exploration and local exploitation. ¢; and c, are acceleration
coefficients for the cognitive and social components, respectively. r; and r, are uniformly distributed n —dimensional
random vectors between [0, 1]. p;(t) is the personal best position of particle i at time t. g(t) is the current global best
position of the swarm. The position of each particle at time t is updated according to Equation (15).

The initial vectors of x, and v, can be generated using a uniform distribution. Likewise, the personal best position
should be initialized by the current position of particle i that is pg = x,.
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Pseudo Code for PSO Algorithm
Inputs: Objective function, lower bound (Ib), upper bound (ub), swarm size (nPop), inertia weight (w), cognitive

coefficient (c1), social coefficient (c2), number of cycles (T).
1. [Initialize a random population
2. Evaluate the objective function
3. Memorize the personal best (obj_pbest) and global best (obj_gbest) solutions
4. Enter the cycle loop

forit=1:T

for i=1: nPop
Update velocity
Update position

Bound the position
Calculate the objective function
Perform greedy selection
if objective(i) > obj_pbest(i)
Update Personal best
if obj_pbest(i) > obj gbest
Update Global best
end
end
end
end

3.3 Differential Evolution

DE algorithm, proposed by Storn and Price (1997), is a population-based metaheuristic algorithm inspired by Darwin’s
theory of evolution. DE operates in generations, similar to biological evolutions. Each generation consists of a
population of individuals represented by vectors where each vector can be thought as chromosome. Each individual
in the population is a potential solution to the problem at hand. DE has three operators and applies these three operators
to find the optimal solution given the parameter space. These operators are mutation, crossover, and selection.

The first operator of DE to be performed after the initial population is generated is mutation. In DE there are three
different vectors namely Target (parent) vector, Donor (mutant) vector, and Trail (offspring) vector. Mutation is
applied to the Target vector by selecting three distinct and randomly chosen individuals from the population. These
three individuals should be different from the current individual. After every individual has undergone a mutation, a
donor vector is created. Mutation is performed using Equation (16)

V=X, +F(X,—X.) (16)

r1,7r2, and r3 are indices of the randomly selected individuals (chromosomes) where r1,72,andr3 € (1,2,3, ..., NP)
and NP stands for number of populations.

The second operator of DE is recombination (crossover) operator. To increase the diversity of the population, a
crossover is performed by exchanging the donor vector and the target vector. The crossover operator used in DE
algorithm can be either exponential or uniform crossover. In uniform crossover, a crossover probability is
predetermined first. A random number between 0 and 1 is generated for each decision variable in this case for each
gene. Likewise, a random number between 1 and the length of the decision variables is generated. The crossover
probability is compared to the generated random number. If the random number is less than or equal to the crossover
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probability or the generated number is equal to the current gene or decision variable, then this decision variable or

gene comes from the donor vector, otherwise, it comes from the target vector. The mathematical expression for the

recombination is given by Equation (17).

u-—{vj ifr<P or j=j (17)
J X; ifr>P and j#j,

The parameter P, denotes the crossover probability, v; represents the j th variable derived from the donor vector, and
x; corresponds to the j th variable extracted from the target vector. Additionally, j, is a randomly generated number,

where j. € (1,2,3,...,D) and D denotes the length of the parameters to be estimated. After performing crossover
operator to each chromosome, the resulting vector is called trail vector.

The third DE operator is the selection operator, which keeps the population size fixed by performing greedy selection
between the target vector and the trial vector to determine which one survives to the next generation. This greedy
selection is done according to the fitness function. The greedy selection is performed using equation (18) where x; g1

represents the solution that passes to the next generation using Equation (18):
u;, fu) = f(x;)
=l < Fo (1o
3.4 Artificial Bee Colony
ABC, developed by Karaboga and Basturk (2007), is a nature-inspired population-based metaheuristic algorithm
which was inspired by the foraging behavior of honeybees. The ABC algorithm has three important components. The
first component is food sources where a bee explores the neighborhood around the hive in search of food. A bee selects
a food source, it evaluates several properties of the food such as its proximity to the hive, nectar amount, and ease of
exploiting the food source. In the ABC algorithm, the food source represents a potential solution to the optimization
problem and the nectar amount of the food source represents the quality of the food source which corresponds to the
fitness function. The second component of the ABC algorithm is employed forager. An employed forager is a bee
which has already visited a food source and exploiting it. It memorizes the location of the food source it has visited
and returns to the hive carrying information about the food quality such as distance to the hive, direction and
profitability of the food source. The third component is unemployed forager. An unemployed forager is a bee which
is currently looking for food source to exploit. An unemployed forager can be an onlooker or a scout bee. An onlooker
bee watches the employed bee in the dancing area where employed bees perform waggle dance to recruit other bees.
This dance is a way to communicate and exchange information by the bees. Onlooker bees select a promising food
source based on the information shared by the employed bees. The scout bees explore new food sources when the
existing ones are exhausted.

In the ABC algorithm, the number of food sources is equal to the number of employed bees or onlooker bees. Each
food source is exploited by one bee. In the first step of the algorithm is to randomly generate food source for each bee
in D-dimensional space where D represents the number of parameters in the optimization problem. The objective
function and the fitness value of each food source is evaluated and stored. The fitness value can be calculated Equation

(19).

1
) f;:ZO
1+f;
) o (19)
1+1fil -~ L

where f; is the objective function value of the i" food source.
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Pseudo Code for DE Algorithm

Inputs: Objective function, lower bound (Ib), upper bound (up), Number of parameters (D), Population size (nPop),
Number of Iterations (T), Crossover Probability (pC), Scaling Factor (F)
1. Initialize a random population (nPop)
2. Calculate the objective function (f)
3. Memorize the best solution
Enter the evolution loop
fort=1:T
for i=1: nPop
Perform mutation and obtain the donor vector
Perform crossover and generate Trail vector

end
for i=1: nPop
Bound the Trail Vector
Evaluate the fitness function of the trail vector (fu)
Perform greedy selection between f and fu
update nPop
end
Update best solution
end

The employed bees explore new food source (solution) around the current food source (solution) using Equation (20).
vij = xij + By (i — xif) (20)
where ¢;; is random number between —1 and 1, k € (1,2,3,...,N) and i # k.

The fitness value of the new solution is calculated. The current solution is compared with the new solution. A greedy
selection is performed and the best of the two solutions is stored, and the other one is discarded. After all the employed
bees complete their search, they share the fitness value of each food source to the onlooker bees. An onlooker bee
selects a food source based on the probability value with that food source. The probability is calculated using Equation

@21).

_ fi
p; = (0.9 X max(f)) +0.1 1)

After selecting a food source, a new solution is generated around the selected food source using Equation (20).
The fitness value of the new food source is calculated and compared to the current one. If the new food source is better
than the current one, the new food source is stored otherwise the current one is kept. If the quality of the food source

is low, that food source is abandoned. A new food source is explored by a scout bee. In ABC algorithm, a food source
is abandoned if the profitability of that food source cannot be improved in predefined number of trails.
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Pseudo Code for ABC

Inputs: Objective Function, lower bound (Ib), upper bound (up), Number of parameters (D), Population size (nPop),
Number of Iterations (T), limit

1

2.
3.
4.

Initialize a random population (nPop)

Calculate the objective function (f) and fitness function (fit)

Memorize the best solution
Set the trail counter to 0
Enter the main loop
forit=1:T
for i=1: nPop
Perform Employed Bee Phase
Perform Greedy selection

if fitnew < fit(i)
Update the nPop(i)
Update the f(i)
Update the fit(i)
Set trail(i) to zero
else
increment trail(i) by 1
end
end
Determine the of Probability of each food source
for i=1: nPop
Perform Onlooker Bee Phase
Generate new solution
Perform Greedy selection
if fitnew < fit(i)
Update the nPop(i)
Update the f(i)
Update the fit(i)
Set trail(i) to zero
else
Increment trail(i) by 1
End
end

Memorize the best food source
Perform Scout Bee Phase
if trail(i) > limit
set trail(i) to zero
Generate new food source
Calculate the f and fit functions
end
Update the best food source
end

3.5 Newton Raphson Algorithm

The Newton-Raphson optimization algorithm is an iterative technique used to find the critical points (local minima or
maxima) for a real-valued function. The general steps of the Newton-Raphson method for multivariate optimization

are as follows:
Initialize: Start with an initial guess for the optimal solution, denoted as

1.

x© —

where p is the number of parameters.
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2. Compute Gradient and Hessian: Calculate the gradient vector, V£ (x¥), and the Hessian matrix, V2f (x®),
of the objective function f(x) at the current iteration x*), k = 0,1,2,---. Here k represents the number of

iterations.
of of @ af 1"
Vf(x(k)) — _f’_f’_f’...’_f
0x, 0x, 0xs 0x,
o ok 0% ]
0x?  0x,0x, 0x,0x,
0*f 0*f 0*f
sz(x(k)) =|0x,0x; dx? 0x,0x,,
0*f 0*f 0*f
[0x,0x, 0x,0x, oxZ |

3. Update: Compute the update direction d® using Equation (22).
a0 = [ ()] 77 (:) @)

4. Tterate: Update the current iterate x(®) using Equation (23).
x D = () 4 g (23)

Repeat steps 2-4 until the convergence criteria are met, such as the magnitude of the gradient vector or the change in
the function value being smaller than a specified tolerance.

4. Simulation Results

This section presents a comprehensive simulation study that aims to evaluate the performance of different parameter
estimation algorithms for TWD. The transmutation parameter (1) will be systematically varied from -1, -0.5, 0.5 to 1
to examine the behavior of the algorithms under different scenarios.

To examine the impact of sample size on parameter estimation accuracy, three sample sizes (50, 100, and 200) will
be considered within each scenario. All other distribution parameters will remain constant throughout the simulation.
The parameters for each algorithm were carefully selected to ensure effective optimization. For the GA, a population
size (nPop) of 100 was chosen, along with 100 generations (T). Additionally, the crossover probability (pC), mutation
rate (rM) and mutation step size (sM) were set to 0.8, 0.02 and 0.1, respectively. Similarly, the PSO algorithm utilized
a swarm size (nPop) of 100, an inertia weight (w) of 0.8, and cognitive (c1) and social (c2) coefficients of 1.5, with
100 cycles (T). Furthermore, the DE algorithm adopted a population size of 100 and 100 generations (T), a crossover
probability (pC) of 0.8 and a scaling factor (F) of 0.85. Finally, for the ABC algorithm, the swarm size was also set to
100, but it featured 50 food sources (F), a limit of 5, and a 100 number of cycles (T).

These parameters were chosen to balance computational efficiency and optimization performance. The performance
of each algorithm will be assessed using bias, mean squared error (MSE) and Def as defined in Equations (24), (25)
and (26) respectively. The algorithm with the lowest bias, MSE and Def will be considered as the best-performing
algorithm. All simulations will be conducted using MATLAB R2022b. Each simulation will be repeated 2000 times.

bias(f) =E(B) — B (24)
MSE() = E[(8 - B)°] = var(§) + [bias(B)]’ (25)
Def = MSE(#) + MSE (&) + MSE (A) (26)
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The results of the Monte Carlo simulations are presented in Tables 1-4. The results indicate that DE performs best in
minimizing bias for the n and ¢ parameters when 4 is negative (—0.5 and —1). NR, however, outperforms in estimating
the A parameter when 4 = —1. For positive 4 values, GA excels in minimizing bias for the A parameter across all
sample sizes and for the n parameter at small sample sizes (n = 50). NR shows superior performance for the 7
parameter at moderate to large sample sizes (n = 100, 200) and for the ¢ parameter at small to moderate sample sizes
(n = 50,100). At larger sample sizes (n = 200), PSO achieves the lowest bias for the o parameter and consistently
performs well for both 1 and A parameters when 4 = 1.

DE achieves the lowest MSE for 1 and o parameters when A is negative (—0.5, —1), highlighting its stability under
such conditions. For the A parameter, NR produces the smallest MSE, followed closely by DE. For positive 4 values
(0.5 and 1), GA demonstrates superior performance, achieving the lowest MSE for all parameters except when 4 =
1, where NR has the smallest MSE for the ¢ parameter. Notably, GA struggles with negative A values, showing the
highest MSE across all sample sizes. Conversely, DE exhibits instability under positive A values, particularly for n
and ¢ parameters, while NR performs poorly in these scenarios due to higher bias and MSE values.

Based on the deficiency (Def) criterion, DE is the most efficient algorithm for estimating TWD parameters when the
true 4 value is negative, achieving the lowest Def values across all sample sizes. For positive A values, GA emerges
as the most efficient method, consistently outperforming other algorithms. These findings highlight the adaptability
of DE and GA under different parameter conditions. Notably, NR is less reliable, as it frequently yields negative 4
estimates regardless of the true A value.

Tablel: Simulated parameter values for transmuted Weibull distribution (n = 2,0 = 2,4 = —1)

n  Algorithm 1 g 4 Def
Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE
GA 3.0870 0.1342 1.0870 1.3157 | 2.7963 0.0618 0.7963 0.6960 | 0.4023 0.1128 1.4023 2.0791 4.0909
PSO 2.9104 0.2419 0.9104 1.0707 | 2.6977 0.1490 0.6977  0.6358 | 0.2123 0.3902 1.2123 1.8597 | 3.5663
50 DE 2.4704 0.3071 0.4704  0.5283 | 2.2846 0.1410 0.2846  0.2220 | -0.5106 0.3909 0.4894  0.6304 | 1.3808
ABC 2.4817 0.3125 0.4817  0.5446 | 2.3002 0.1512 0.3002 02414 | -0.4841 0.4216 0.5159  0.6878 1.4738
NR 3.1036 0.1464 1.1036 1.3643 2.7626 0.0422 0.7626  0.6237 | -0.9995 0.0000 0.0005  0.0000 1.9880
GA 3.0521 0.0627 1.0521 1.1695 2.8506 0.0412 0.8506  0.7648 | 0.4858 0.0854 1.4858  2.2930 | 4.2274
PSO 2.8547 0.2002 0.8547  0.9307 | 2.7186 0.1539 0.7186  0.6703 0.2423 0.4247 1.2423 1.9681 3.5692
100 DE 2.3898 0.2480 0.3898  0.3999 | 2.2756 0.1508 0.2756  0.2268 | -0.5271 0.4350 0.4729  0.6586 1.2853
ABC 2.4228 0.2606 04228  0.4394 | 2.3140 0.1735 0.3140  0.2721 | -0.4620 0.4958 0.5380  0.7853 1.4968
NR 3.0469 0.0691 1.0469 1.1651 2.7596 0.0182 0.7596  0.5953 | -0.9992 0.0001 0.0008  0.0001 1.7605
GA 3.0328 0.0364 1.0328 1.1032 | 2.8890 0.0301 0.8890  0.8205 0.5483 0.0677 1.5483 24650 | 4.3887
PSO 2.8334 0.1825 0.8334  0.8771 2.7343 0.1530 0.7343 0.6922 | 0.2707 0.4340 1.2707  2.0487 | 3.6180
200 DE 23177 0.2222 03177  0.3232 | 2.2482 0.1548 0.2482  0.2164 | -0.5688 0.4556 0.4312 0.6415 1.1810
ABC 2.3564 0.2375 0.3564  0.3646 | 2.2898 0.1767 0.2898  0.2606 | -0.4984 0.5198 0.5016  0.7714 1.3966
NR 3.0110 0.0432 1.0110 1.0653 2.7665 0.0234 0.7665 0.6109 | -0.9992 0.0001 0.0008  0.0001 1.6763
Table 2: Simulated parameter values for transmuted Weibull distribution (n = 2,0 = 2,4 = —0.5)
. n [4 A

n Algorithm Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE Def
GA 2.3965 0.1022 0.3965 0.2593 2.3892 0.0861 0.3892 0.2376 0.1394 0.1560 0.6394 0.5648 1.0618

PSO 2.3145 0.1276 0.3145 0.2265 2.4091 0.1764 0.4091 0.3438 0.1353 0.3362 0.6353 0.7398 1.3101
50 DE 2.1411 0.1487 0.1411 0.1686 2.1234 0.1180 0.1234 0.1332 | -0.2967 0.2629 0.2033 0.3042 | 0.6060
ABC 2.1686 0.1472 0.1686  0.1756 | 2.1686 0.1366 0.1686 0.1650 | -0.2288 0.2989 0.2712 0.3725 0.7130
NR 2.4769 0.1166 0.4769 0.3441 2.5259 0.1151 0.5259 0.3917 | -0.9990 0.0001 -0.4990  0.2490 | 0.9848
GA 2.3711 0.0530 0.3711 0.1907 2.4167 0.0787 0.4167 0.2523 0.1775 0.1556 0.6775 0.6146 1.0576
PSO 2.2966 0.0793 0.2966  0.1672 2.4647 0.1758 0.4647 0.3918 0.2112 0.3398 0.7112 0.8456 1.4046
100 DE 2.1434 0.1039 0.1434 0.1244 | 2.1717 0.1228 0.1717 0.1523 | -0.2226 0.2809 0.2774 0.3578 0.6345
ABC 2.1779 0.1025 0.1779 0.1341 2.2264 0.1396 0.2264 0.1908 | -0.1384 0.3107 0.3616 0.4415 0.7664
NR 24510 0.0588 04510  0.2621 2.5144 0.0553 0.5144 0.3199 | -0.9986 0.0002 -0.4986  0.2488 | 0.8307
GA 2.3506 0.0320 0.3506  0.1550 2.4132 0.0731 0.4132 0.2438 0.1674 0.1527 0.6674 0.5980 | 0.9968
PSO 2.2656 0.0582 0.2656  0.1287 2.4722 0.1872 0.4722 0.4101 0.2079 0.3681 0.7079 0.8692 1.4080
200 DE 2.1457 0.0759 0.1457  0.0972 2.1976 0.1215 0.1976 0.1606 | -0.1860 0.2780 0.3140 0.3766 | 0.6343
ABC 2.1877 0.0696 0.1877 0.1048 2.2696 0.1384 0.2696 02111 | -0.0782 0.3084 0.4218 0.4863 0.8022
NR 2.4333 0.0379 0.4333 0.2256 2.5214 0.0627 0.5214 0.3346 | -0.9992 0.0001 -0.4992  0.2493 0.8095
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Table 3: Simulated parameter values for transmuted Weibull distribution

DOL:

—_

n=20=21=0.,5)

https://doi.org/10.18187/pjsor.v21i4.4905

n Algorithm 1 g 2 Def
g Mean Variance Bias MSE Mean __ Variance Bias MSE Mean Variance Bias MSE
GA 2.0090 0.0591 0.0090 0.0592 1.8858 0.0657 -0.1142  0.0787 0.3013 0.1253 -0.1987  0.1648 0.3027
PSO 1.9277 0.0876 -0.0723 0.0928 1.8863 0.1483 -0.1137  0.1612 0.2618 0.3328 -0.2382 0.3896 0.6436
50 DE 1.7468 0.1184 -0.2532 0.1825 1.5754 0.1332 -0.4246  0.3135 | -0.2674 0.3708 -0.7674  0.9597 1.4556
ABC 1.7907 0.1149 -0.2093  0.1587 1.6467 0.1491 -0.3533  0.2739 | -0.1455 0.4076 -0.6455  0.8242 1.2569
NR 2.0321 0.0690 0.0321 0.0700 1.9121 0.0795 -0.0879  0.0872 | -0.9990 0.0001 -1.4990  2.2470 2.4041
GA 1.9805 0.0291 -0.0195  0.0294 1.9186 0.0542 -0.0814  0.0609 0.3483 0.1130 -0.1517  0.1360 0.2263
PSO 1.8949 0.0599 -0.1051  0.0710 1.9228 0.1478 -0.0772  0.1538 0.3050 0.3390 -0.1950 03770 0.6017
100 DE 1.7384 0.0904 -0.2616  0.1588 1.6230 0.1431 -0.3770  0.2853 | -0.1885 0.4029 -0.6885 0.8770 1.3210
ABC 1.7898 0.0863 -0.2102  0.1305 1.7122 0.1576 -0.2878  0.2404 | -0.0378 0.4296 -0.5378  0.7188 1.0897
NR 1.9905 0.0374 -0.0095  0.0375 1.9264 0.0853 -0.0736  0.0908 | -0.9991 0.0001 -1.4991  2.2474 | 2.3756
GA 1.9688 0.0170 -0.0312 0.0180 1.9403 0.0477 -0.0597  0.0513 0.3817 0.1074 -0.1183 0.1214 0.1908
PSO 1.8921 0.0424 -0.1079  0.0540 1.9525 0.1317 -0.0475  0.1340 0.3523 0.3128 -0.1477  0.3346 0.5226
200 DE 1.7622 0.0787 -0.2378  0.1353 1.6831 0.1448 -0.3169  0.2452 | -0.0832 0.4160 -0.5832  0.7561 1.1367
ABC 1.8277 0.0667 -0.1723 0.0964 1.7989 0.1468 -0.2011 0.1872 0.1104 0.3993 -0.3896  0.5511 0.8347
NR 1.9836 0.0210 -0.0164  0.0213 1.9152 0.0483 -0.0848  0.0555 | -0.9986 0.0002 -1.4986  2.2460 2.3228
Table 4: Simulated parameter values for transmuted Weibull distribution (n = 2,0 = 2,1 = 1)
. n a Y}
" Algorithm Mean Variance Bias MSE Mean __ Variance Bias MSE Mean Variance Bias MSE Def
GA 2.1115 0.0640 0.1115 0.0764 1.5059 0.0371 -0.4941 0.2813 0.1939 0.1229 -0.8061 0.7728 1.1305
PSO 2.0363 0.0817 0.0363 0.0830 1.5484 0.0917 -0.4516  0.2956 0.2341 0.3239 -0.7659  0.9105 1.2891
50 DE 1.8828 0.1103 -0.1172  0.1240 1.3196 0.0651 -0.6804  0.5280 | -0.2451 0.2876 -1.2451 1.8378 2.4898
ABC 1.9141 0.1053 -0.0859  0.1127 1.3698 0.0795 -0.6302 04766 | -0.1420 0.3410 -1.1420 1.6450 2.2343
NR 2.1564 0.0748 0.1564 0.0992 1.5749 0.0459 -0.4251  0.2266 | -0.9986 0.0002 -1.9986  3.9947 4.3205
GA 2.0828 0.0346 0.0828 0.0415 1.5285 0.0327 -0.4715  0.2550 0.2343 0.1218 -0.7657  0.7081 1.0045
PSO 2.0076 0.0542 0.0076 0.0543 1.5675 0.0874 -0.4325  0.2745 0.2649 0.3190 -0.7351 0.8593 1.1881
100 DE 1.8817 0.0814 -0.1183 0.0954 1.3572 0.0663 -0.6428  0.4795 -0.1646 0.3028 -1.1646 1.6592 2.2341
ABC 1.9294 0.0741 -0.0706  0.0791 1.4239 0.0763 -0.5761 0.4082 | -0.0243 0.3315 -1.0243 1.3807 1.8680
NR 2.1281 0.0404 0.1281 0.0568 1.5729 0.0284 -0.4271  0.2107 | -0.9990 0.0002 -1.9990  3.9961 4.2637
GA 2.0661 0.0186 0.0661 0.0229 1.5320 0.0315 -0.4680  0.2505 0.2410 0.1166 -0.7590  0.6927 0.9661
PSO 1.9988 0.0331 -0.0012  0.0331 1.5954 0.0860 -0.4046  0.2498 0.3162 0.3060 -0.6838  0.7736 1.0565
200 DE 1.9156 0.0550 -0.0844  0.0622 1.3998 0.0594 -0.6002  0.4196 | -0.0650 0.2666 -1.0650 1.4008 1.8825
ABC 1.9580 0.0470 -0.0420  0.0487 1.4817 0.0755 -0.5183  0.3441 0.0989 0.3044 -0.9011 1.1163 1.5091
NR 2.1050 0.0278 0.1050 0.0388 1.5811 0.0359 -0.4189  0.2114 | -0.9983 0.0002 -1.9983 3.9934 4.2437
5. Real Data Applications
We consider two datasets to test the utility of metaheuristic algorithms in obtaining the maximum likelihood estimates
for TWD parameters. The performance of the parameter estimation algorithms is compared using the log-likelihood
values and Kolmogorov-Smirnov (KS) test and Akaike Information Criterion (AIC). KS is a non-parametric test which
assesses the goodness-of-fit between the empirical distribution function F(x) of the data and the theoretical
distribution function F(x) of the distribution being evaluated. The KS statistic measures the maximum absolute
difference between these two cumulative distributions. The null hypothesis (H) assumes that the data originates from
the proposed distribution. Rejection of the null hypothesis at a significance level of a = 0.05 indicates a statistically
significant difference between the data and the theoretical distribution. The K-S test and AIC equations are presented
in Equations (27) and (28) respectively.
KS = max |F(x) — F(x)| 27)
AIC = —2log(l) + 2p (28)
log (L) represents the maximized log-likelihood of the model, n is the sample size, and p is the number of parameters
in the model. The algorithm that produces the highest log-likelihood value or the lowest AIC value is considered the
best algorithm.
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Dataset 1

The first data set represents the lifetimes of Kevlar 49/epoxy strands subjected to constant sustained pressure at 90%
stress level until the strand failure. This data is extracted from Barlow et al. (1984) and recently used by (Owoloko et

al., 2015). The data are as follows:

DO https://doi.org/10.18187/pjsor.v21i4.4905

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671
0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645
0.8851 09113 0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570
1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 1.4880 1.5728 1.5733
1.7083 1.7263 1.7460 1.7630 1.7746 1.8275 1.8375 1.8503 1.8808
1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.1330
2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911
3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005
5.4435 5.5295 6.5541 9.0960
Table 5: The descriptive statistics for the Kevlar 49/epoxy data
n Min Max Mean Median Variance Skewness Kurtosis
76 0.0251 9.096 1.959 2477 2.0196 5.6

Table 5 provides the descriptive statistics for the Kevlar dataset, which consists of the lifetimes of Kevlar 49/epoxy
strands under constant pressure. As shown in Table 6, the metaheuristic algorithms (GA, PSO, DE, ABC) yielded
comparable maximum likelihood estimates for the TWD parameters, all achieving similar log-likelihood values and
AIC scores. In contrast, the NR algorithm performed poorly, with significantly higher AIC values and lower log-
likelihoods. The KS test confirmed that the parameter estimates from NR failed to adequately fit the data (p-value =
0.004), while the metaheuristic methods produced better fits (p-values > 0.45). Figure 2 illustrates the histogram and
the fitted TWD PDFs. While the NR-based estimates deviate noticeably from the data distribution, all metaheuristic
algorithms converged to identical parameter estimates (and thus identical PDF curves), consistently capturing the

underlying distribution.

Table 6: The parameter estimates, p-value of K-S, Log-likelihood and AIC values for Kevlar 49/epoxy data

Algorithm n o A Log-likelihood P-value
GA 1.431 2.941 0.711 -121.735 249.4706 0.460
PSO 1.431 2.942 0.711 -121.735 249.4706 0.458
DE 1.431 2.942 0.711 -121.735 249.4706 0.458
ABC 1.431 2.944 0.713 -121.735 249.4706 0.460
NR 1.492 3.976 0.954 -124.767 255.5342 0.004
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Figure 2. Histogram and fitted pdf of the TWD for Kevlar dataset.

Dataset 2
The second data set represents survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli. The
data in reported in Bjerkedal (1960) and recently used by (Owoloko et al., 2016; Pobocikova et al., 2018). The data is

as follows:
10 93 108 122 153 183 230 293
33 96 108 122 159 195 231 327
44 100 109 124 160 196 240 342
56 100 112 130 163 197 245 347
59 102 113 134 163 202 251 361
72 105 115 136 168 213 253 402
74 107 116 139 171 215 254 432
77 107 120 144 172 216 254 458
92 108 121 146 176 222 278 555

Table 7 summarizes the descriptive statistics for the guinea pig survival dataset, which includes survival times (in
days) for 72 subjects infected with virulent tubercle bacilli. The estimated TWD parameters are shown in Table 8.
While all algorithms, including GA, PSO, DE, ABC, and NR, provided similar results, the metaheuristic algorithms
achieved marginally lower AIC values and higher log-likelihood scores compared to NR. This indicates a slight
advantage in model parsimony and fit quality. However, the KS test p-values (ranging from 0.451 to 0.597) suggest
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that all methods fit the dataset well. Figure 3 illustrates the histogram and the fitted TWD PDFs, showing that all
algorithms effectively modeled the survival times without significant discrepancies.

Table 7. Descriptive statistics for the guinea pigs survival times data
n Min Max Mean Median Variance Skewness Kurtosis

72 10 555 176.894 149.5 10702.91 1.371 2.225

Table 8. The parameter estimates, p-value of K-S, Log-likelihood and AIC values for guinea pigs survival times data

Algorithm n a 2 Log-likelihood AIC P-value
GA 1.322 138.561 -0.937 -425.746 857.492 0.451
PSO 1315 137.184 -0.969 -425.720 857.439 0.493
DE 1.353 139.624 -0.951 -425.684 857.369 0.586
ABC 1.352 139.487 -0.953 -425.684 857.369 0.586
NR 1.412 145.460 -0.895 -425.788 857.576 0.597

6% 1079

0 100 200 300 400 500 600
z

Figure 3. Histogram and fitted pdf of the TWD for guinea pigs survival times.
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6. Conclusion

This study investigated the application of four metaheuristic algorithms including Genetic Algorithm, Particle Swarm
Optimization, Differential Evolution, and Artificial Bee Colony for maximum likelihood estimation of the Transmuted
Weibull Distribution. Through extensive Monte Carlo simulations and real-world applications, the performance of
these algorithms was compared to the traditional Newton-Raphson optimization method.

The results demonstrated that metaheuristic algorithms offer significant advantages over NR in terms of accuracy,
particularly in handling the nonlinear likelihood equations of TWD. Among the metaheuristics, DE and GA
consistently provided superior parameter estimates under varying conditions, achieving lower bias, mean squared
error, and deficiency values in the simulation study. The algorithms' ability to escape local optima and converge
globally makes them reliable alternatives to traditional numerical methods such as NR algorithm. Specifically, the
study suggested using DE for scenarios with negative 4 and GA for positive A, positioning these algorithms as superior
alternatives to traditional approaches.

Applications to Kevlar 49/epoxy and guinea pig survival datasets further validated the effectiveness of metaheuristics,
with improved log-likelihood, AIC, and Kolmogorov—Smirnov test results compared to NR. These findings
underscore not only the theoretical relevance but also the practical significance of metaheuristic approaches for
modeling in reliability engineering and survival analysis.

Overall, this study makes a significant methodological contribution by demonstrating that metaheuristic optimization
is not only viable but superior to classical methods for MLE of the TWD — a distribution characterized by a complex,
nonlinear likelihood function. Our findings empower researchers and practitioners in reliability and survival analysis
with a more accurate, stable, and globally convergent estimation approach, paving the way for broader adoption of
metaheuristics in parametric distribution fitting.

Despite their advantages, metaheuristic algorithms may require careful tuning of parameters such as population size,
number of iterations, and any other user defined parameters to optimize performance. Future research could explore
alternative metaheuristics, such as Ant Colony Optimization or Simulated Annealing, and assess their comparative
efficacy.
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