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Abstract 

 

The Weibull distribution, widely utilized due to its flexibility, often requires generalization to improve its fit to 

real-world data. The Transmuted Weibull Distribution offers enhanced flexibility by incorporating a transmutation 

parameter. Metaheuristic algorithms have emerged as robust tools for parameter estimation, particularly for 

probability distributions with complex likelihood functions. This study compares the performance of four 

metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution 

(DE), and Artificial Bee Colony (ABC) against the traditional Newton-Raphson (NR) algorithm for estimating 

parameters of the Transmuted Weibull Distribution (TWD). Extensive Monte Carlo simulations evaluated the 

algorithms' efficiencies using metrics like log-likelihood values, bias, mean squared error (MSE), and deficiency. 

Additionally, the methods are applied to real-world datasets to compare their practical utility. Both simulation and 

real data application results revealed that metaheuristic algorithms outperformed traditional Newton-Raphson (NR) 

optimization. 

 

Key Words: Transmuted Weibull Distribution, Maximum Likelihood Estimation, Metaheuristic Algorithms, 

Nonlinear Optimization, Monte Carlo Simulation 
 

 

1. Introduction  

Probability distributions are fundamental in modeling phenomena across biology, engineering, economics, and 

environmental sciences. For instance, Weibull distribution is one of the widely used probability distribution in these 

fields. Proposed by Swedish physicist Weibull, it has attracted the attention of many researchers due its flexibility and 

wide applications to many fields. However, the standard Weibull distribution may not always provide an optimal fit 

to real-world data. Many generalizations and modified extensions of the Weibull distribution have been suggested in 

order to become more flexible and capable of modeling real world data. For example, Mudholkar et al. (1996) 

introduced a generalization of the Weibull distribution, Pal et al. (2006) proposed exponentiated Weibull distribution, 

Lai et al. (2003) presented modified Weibull distribution, and Lee et al. (2007) proposed Beta-Weibull distribution.  

 

Aryal and Tsokos (2011) proposed the Transmuted Weibull Distribution (TWD), a generalization of the Weibull 

distribution based on the quadratic rank transmutation map (Shaw & Buckley, 2009). In their study, the authors added 

a transmutation parameter to two-parameter Weibull distribution. TWD is more flexible than its parent and other 

extensions of the Weibull distribution. For instance, Aryal et al. (2011) demonstrated the utility of TWD in real 

applications and compared it to the Weibull distribution and exponentiated Weibull distribution. Pobočíková et al. 
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(2018) applied TWD to lifetime data of engineering and biological sciences and compared TWD with two-parameter 

and three-parameter Weibull distributions. 

 

Among the many parameter estimation methods in statistics, Maximum Likelihood Estimation (MLE) is widely 

favored due to its desirable mathematical properties and flexibility in modeling diverse probability distributions. MLE 

maximizes the likelihood function with respect to the unknown parameters. However, the solutions of the likelihood 

function of TWD cannot be obtained as an explicit function of the sample data as the likelihood is nonlinear function. 

Therefore, iterative algorithms such as Newton-Raphson, or iteratively reweighted least squares are needed to 

maximize the likelihood function. For example, Newton-Raphson (NR) algorithm is a traditional numerical algorithm 

used to solve the system of equations generated by partial derivatives of the likelihood function to find the estimated 

values of the parameter of interest for statistical distributions. However, its major drawback is that it uses a gradient-

based search algorithm to find the best parameter values based on the inverse of the hessian matrix, making it only 

applicable to functions that can be differentiated at least twice. It is also important to note that traditional numerical 

algorithms are sensitive to the initial parameter values. Choosing the wrong starting point carries the risk of getting 

stuck in local optimum instead of finding the global optimum solution (Abbasi et al., 2006). 

 

On the other hand, metaheuristic algorithms are inspired by natural phenomena such as the behavior of bee colonies 

or differential evolution. These algorithms work iteratively to find better solutions to the problem at hand. 

Metaheuristic algorithms are known for their ability to escape local optima and achieve global convergence, making 

them well-suited for complex and non-linear optimization problems such as parameter estimation for the TWD. This 

feature makes metaheuristic algorithms a useful tool for parameter estimation in TWD as an alternative to traditional 

numerical algorithms.  

 

In this study genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE) and artificial bee 

colony (ABC) metaheuristic algorithms will be used to maximize the likelihood function of TWD. Many studies have 

used metaheuristic algorithms to estimate some of the well-known probability distributions. For example, Kasap and 

Faouri (2024) used five metaheuristic algorithms to estimate the parameters of exponentially modified logistic 

distribution. Faouri and Kasap (2023) estimated the parameter of Nakagami distribution using PSO. Yalçınkaya et al. 

(2018) used GA to obtain the maximum likelihood estimates for the parameters of skew normal distribution. They 

compared the performance of GA with other traditional search techniques such as NR, Nelder Mead, and iteratively 

reweighted least squares Algorithm.  They found that GA estimates were the most efficient compared to the traditional 

search techniques. Karakoca and Pekgör (2019) used a GA-based approach to estimate the maximum likelihood 

estimates of the parameters of progressively type-2 censored samples from the Weibull distribution. Based on 

extensive simulations, GA-based estimates outperformed the NR based estimates. Liu et al. (2011) highlighted GA's 

computational advantages in modeling wind speed distributions, while Wang et al. (2018) showed PSO and DE's 

strong performance alongside Grey Wolf Optimizer (GWO) in wind energy applications. Reddy and Singh (2014) 

used GA and PSO for drought risk modeling, while Wadi and Elmasry (2021) applied GA to fit Weibull, Poisson, and 

Lognormal distributions for wind power studies. Borges and Campos (2023) validated DE's utility in interval-censored 

data modeling. Jiang et al. (2015) assessed the wind speed frequency distribution using three probability distributions. 

Their study compared MLE, Method of Moments and three metaheuristic algorithms namely PSO, DE and Ant Colony 

Optimization (ACO). They found that parameter estimates based on the metaheuristic algorithms were more accurate 

than those of traditional numerical algorithms. Kılıç (2022) applied both ABC and GA to estimate parameters of the 

Weibull distribution, demonstrating their efficiency. Ravindra et al. (2012) modeled wind speed using a two-parameter 

Weibull distribution and showed that ABC provided better parameter estimates than the iterative MLE method. Xu et 

al. (2017) addressed the challenges of estimating q-Weibull distribution parameters, utilizing ABC and an adaptive 

hybrid ABC algorithm to handle the intricate nonlinear equations involved. 

 

The objective of this study is to obtain the maximum likelihood estimates of the parameters of TWD by using four 

metaheuristic algorithms. We then compare the efficiencies of these estimators with corresponding estimates based 
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on NR algorithm by conducting extensive Monte Carlo simulations. To the best of our knowledge, this is the first 

study to obtain the maximum likelihood estimates for the parameters of the TWD using metaheuristic algorithms. 

 

The rest of the study is organized as follows: In Section 2, the TWD and its basic properties are presented. In section 

3, the four metaheuristic algorithms and NR algorithm are introduced. In Section 4, the efficiencies of the parameter 

estimators are compared via a comprehensive Monte Carlo simulation. In section 5, two applications of real datasets 

are analyzed. In the last section, the study concludes. 

 

2. Transmuted Weibull Distribution 

Aryal and Tsokos (2011) introduced the transmuted Weibull distribution by generalizing the two-parameter Weibull 

distribution using the quadratic rank transmutation map (QRTM). The probability density function (pdf) and 

cumulative distribution function (cdf) of the two-parameter Weibull distribution are given by Equations (1) and (2) 

respectively. 
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𝜂
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Using Equations (3) and (4), Aryal and Tsokos (2011) derived the cdf and pdf for the transmuted Weibull distribution, 

which are presented in Equations (5) and (6), respectively. In these equations, 𝐹1 and 𝑓1 denote the cdf and pdf of the 

parent distribution respectively, while 𝐹2 and 𝑓2 represent the cdf and pdf of the transmuted distribution respectively. 

The parameter 𝜆 in Equations (3), (4), (5) and (6), referred to as the transmutation parameter and is constrained to the 

interval [−1,1]. 
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Figure 1. The left panel shows the cdf 𝐹(𝑥) and the right panel shows the pdf 𝑓(𝑥) of the TWD for different values 

of the transmutation parameter 𝜆. 

Aryal et al. noted that for 𝜂 = 1, the distribution becomes a transmuted exponential distribution, for 𝜆 = 0, it reduces 

to the Weibull distribution, and when 𝜂 = 𝜆 = 1 then resulting distribution is an exponential distribution with 

parameter 
𝜎

2
. Possible shapes of the pdf and cdf of a transmuted Weibull distribution are visualized in Figure 1 for 

chosen values of λ, with η and σ held constant at 1. 

The moments of the transmuted Weibull distribution are given by equation (7). 

𝐸(𝑋𝑘) = 𝜎𝑘Γ (1 +
𝑘

𝜂
) (1 − 𝜆 + 𝜆2

𝑘
𝜂) (7) 

 

The mean and variance can be obtained by using Equation (7) and is given in Equations (8) and (9) respectively. 
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3. Maximum Likelihood Estimation 

The MLE method is used to estimate the parameters of the transmuted Weibull distribution. MLE maximizes the 

likelihood function by finding the optimal values of the unknown parameters of the Transmuted Weibull distribution. 

For computational simplicity, the log-likelihood is used.  The log-likelihood of TWD is presented in Equation (10): 
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The MLE for the unknown 𝜆, 𝜂 and 𝜎 is obtained by maximizing the log-likelihood function. If the partial derivatives 

of the log-likelihood are taken with respect to η, σ and λ, the resulting normal equations are provided in Equations 

(11), (12), and (13), respectively. 
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Since these equations are nonlinear, they can be solved iteratively. In this study, GA, PSO, DE, ABC and NR 

algorithms will be used to solve these equations. 

3.1 Genetic Algorithm 

GA proposed by Holland (1975), is a type of evolutionary algorithm that mimics the process of natural selection to 

find optimal or near-optimal solutions to complex problems. The first step is to decide how to represent potential 

solutions to the problem which is known as the chromosome representation. Chromosomes can be represented in many 

different ways, such as binary strings, real-valued vectors, or even graphs. Once a chromosome representation has 

been chosen, the next step is to initialize the population which involves creating a set of random chromosomes, each 

of which represents a potential solution to the problem. The objective function measures how well a candidate solution 

performs with respect to the problem, assigning a fitness value to each chromosome. In the Genetic Algorithm (GA), 

this fitness evaluation guides the search for the optimal solution. GA uses three genetic operators to evolve the 

population: selection, crossover, and mutation. Selection chooses chromosomes from the population to be parents of 

the next generation. There are different selection methods such as Random selection, Tournament selection and 

Roulette wheel selection. Chromosomes with higher fitness are more likely to be selected. Crossover combines two 

parent chromosomes to create two offspring chromosomes. This allows the GA to explore new regions of the search 

space. Mutation randomly changes one or more genes in a chromosome. This helps to prevent the GA from getting 

stuck in local optima. 

 

3.2 Particle Swarm Optimization 

PSO, proposed by Kennedy and Eberhart (1995), is a population-based metaheuristic algorithm which is inspired by 

the social behavior of the flocking of birds or schooling of fish in search of food. PSO, like other evolutionary 

algorithms such as GAs, aims to optimize a problem iteratively. However, unlike GA, PSO does not use genetic 

operators such as crossover and mutation. Instead, potential solutions, called particles, fly through the problem search 

space to find the optimal solution. Each particle in the swarm has a position and knows its personal best position and 

the fitness value associated with it. It also knows the global best position within the swarm, along with the current 

global fitness value. 
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Pseudo Code for GA Algorithm 

Inputs: Objective function, lower bound (lb), upper bound (ub), Population number (nPop), number of offsprings 

(nC), number generations (Iteration), crossover probability (pC), Mutation rate (rM), mutation step size (sM). 

1. Initialize a random population (nPop) 

2. Evaluate the objective function 

3. Memorize the best solution 

4. Enter the evolution loop 

for it = 1: Iteration 

Perform random selection 

for k = 1: nC/2 

Select Parent 1 

Select Parent 2 

Perform Uniform Crossover 

end 

Perform mutation 

for i = 1: nC 

Perform mutation of the ith offspring 

Bound the offsprings 

end 

for i=1: nC 

Evaluate the new population 

end 

Merge and sort the populations 

Select the best nPop based on the objective function 

Update the best solution 

End 

 

 

 

Each particle in the swarm is represented by a 𝑛-dimensional vector. Every particle in the swarm also has a velocity 

with the same dimension as its position. The velocity enables the particles to move toward the global best. The 

movement of particles is determined by the information exchange among the swarm particles, since each particle 

knows its personal best. Thus, their movement is based on communication and learning until they reach the global 

optimum of the problem. The velocity of each particle 𝑖 in the swarm, at time (iteration) t, is updated according to 

Equation (14) 

 

𝑣𝑖(𝑡 + 1)  =  𝑤𝑣𝑖(𝑡 )  + 𝑐1𝑟1(𝑝𝑖(𝑡)  − 𝑥𝑖(𝑡 ))  +  𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡 )]         (14) 

 

where 𝑤 is the inertia weight, used to balance global exploration and local exploitation. 𝑐1 and 𝑐2 are acceleration 

coefficients for the cognitive and social components, respectively. 𝑟1 and 𝑟2 are uniformly distributed 𝑛 −dimensional 

random vectors between [0, 1]. 𝑝𝑖(𝑡) is the personal best position of particle 𝑖 at time 𝑡. 𝑔(𝑡) is the current global best 

position of the swarm. The position of each particle at time 𝑡 is updated according to Equation (15). 

 

𝑥𝑖(𝑡 + 1)  =  𝑥𝑖(𝑡 )  + 𝑣𝑖(𝑡 + 1) (15) 

 

The initial vectors of 𝑥0 and 𝑣0 can be generated using a uniform distribution. Likewise, the personal best position 

should be initialized by the current position of particle 𝑖 that is 𝑝0 = 𝑥0. 
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Pseudo Code for PSO Algorithm 

Inputs: Objective function, lower bound (lb), upper bound (ub), swarm size (nPop), inertia weight (w), cognitive 

coefficient (c1), social coefficient (c2), number of cycles (T). 

1. Initialize a random population 

2. Evaluate the objective function 

3. Memorize the personal best (obj_pbest) and global best (obj_gbest) solutions 

4. Enter the cycle loop 

for it = 1: T 

 for i = 1: nPop 

  Update velocity 

  Update position 

  Bound the position 

  Calculate the objective function 

  Perform greedy selection 

  if objective(i) > obj_pbest(i) 

   Update Personal best 

   if obj_pbest(i) > obj_gbest 

    Update Global best 

   end 

  end 

 end 

end 

 

 

3.3 Differential Evolution 

DE algorithm, proposed by Storn and Price (1997), is a population-based metaheuristic algorithm inspired by Darwin’s 

theory of evolution. DE operates in generations, similar to biological evolutions. Each generation consists of a 

population of individuals represented by vectors where each vector can be thought as chromosome. Each individual 

in the population is a potential solution to the problem at hand. DE has three operators and applies these three operators 

to find the optimal solution given the parameter space. These operators are mutation, crossover, and selection. 

 

The first operator of DE to be performed after the initial population is generated is mutation. In DE there are three 

different vectors namely Target (parent) vector, Donor (mutant) vector, and Trail (offspring) vector. Mutation is 

applied to the Target vector by selecting three distinct and randomly chosen individuals from the population. These 

three individuals should be different from the current individual. After every individual has undergone a mutation, a 

donor vector is created. Mutation is performed using Equation (16)  

 

𝑉 = 𝑋𝑟1 + 𝐹(𝑋𝑟2 − 𝑋𝑟3) (16) 

 

𝑟1, 𝑟2, and 𝑟3 are indices of the randomly selected individuals (chromosomes) where 𝑟1, 𝑟2, and 𝑟3 ∈  (1, 2,3, … , 𝑁𝑃) 

and 𝑁𝑃 stands for number of populations.  

 

The second operator of DE is recombination (crossover) operator. To increase the diversity of the population, a 

crossover is performed by exchanging the donor vector and the target vector. The crossover operator used in DE 

algorithm can be either exponential or uniform crossover. In uniform crossover, a crossover probability is 

predetermined first. A random number between 0 and 1 is generated for each decision variable in this case for each 

gene. Likewise, a random number between 1 and the length of the decision variables is generated. The crossover 

probability is compared to the generated random number. If the random number is less than or equal to the crossover 
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probability or the generated number is equal to the current gene or decision variable, then this decision variable or 

gene comes from the donor vector, otherwise, it comes from the target vector. The mathematical expression for the 

recombination is given by Equation (17). 

  

𝑢𝑗 = {
𝑣𝑗           𝑖𝑓 𝑟 ≤ 𝑃𝑐     𝑜𝑟      𝑗 = 𝑗𝑟
𝑥𝑗          𝑖𝑓 𝑟 > 𝑃𝑐     𝑎𝑛𝑑   𝑗 ≠ 𝑗𝑟

 (17) 

 

The parameter 𝑃𝑐 denotes the crossover probability, 𝑣𝑗  represents the 𝑗𝑡ℎ variable derived from the donor vector, and 

𝑥𝑗 corresponds to the 𝑗𝑡ℎ variable extracted from the target vector. Additionally, 𝑗𝑟  is a randomly generated number, 

where 𝑗𝑟 ∈  (1,2,3, … , 𝐷) and 𝐷 denotes the length of the parameters to be estimated. After performing crossover 

operator to each chromosome, the resulting vector is called trail vector.  

 

The third DE operator is the selection operator, which keeps the population size fixed by performing greedy selection 

between the target vector and the trial vector to determine which one survives to the next generation. This greedy 

selection is done according to the fitness function. The greedy selection is performed using equation (18) where 𝑥𝑖,𝑔+1 

represents the solution that passes to the next generation using Equation (18): 

𝑥𝑖,𝑔+1 = {
𝑢𝑖,             𝑓(𝑢𝑖) ≥ 𝑓(𝑥𝑖)

𝑥𝑖 ,             𝑓(𝑢𝑖) < 𝑓(𝑥𝑖)
 (18) 

 

3.4 Artificial Bee Colony 

ABC, developed by Karaboga and Basturk (2007), is a nature-inspired population-based metaheuristic algorithm 

which was inspired by the foraging behavior of honeybees. The ABC algorithm has three important components. The 

first component is food sources where a bee explores the neighborhood around the hive in search of food. A bee selects 

a food source, it evaluates several properties of the food such as its proximity to the hive, nectar amount, and ease of 

exploiting the food source. In the ABC algorithm, the food source represents a potential solution to the optimization 

problem and the nectar amount of the food source represents the quality of the food source which corresponds to the 

fitness function. The second component of the ABC algorithm is employed forager. An employed forager is a bee 

which has already visited a food source and exploiting it. It memorizes the location of the food source it has visited 

and returns to the hive carrying information about the food quality such as distance to the hive, direction and 

profitability of the food source. The third component is unemployed forager. An unemployed forager is a bee which 

is currently looking for food source to exploit. An unemployed forager can be an onlooker or a scout bee. An onlooker 

bee watches the employed bee in the dancing area where employed bees perform waggle dance to recruit other bees. 

This dance is a way to communicate and exchange information by the bees. Onlooker bees select a promising food 

source based on the information shared by the employed bees. The scout bees explore new food sources when the 

existing ones are exhausted. 

In the ABC algorithm, the number of food sources is equal to the number of employed bees or onlooker bees. Each 

food source is exploited by one bee. In the first step of the algorithm is to randomly generate food source for each bee 

in 𝐷-dimensional space where 𝐷 represents the number of parameters in the optimization problem. The objective 

function and the fitness value of each food source is evaluated and stored. The fitness value can be calculated Equation 

(19). 

 

 

{
 

 
1

1 + 𝑓𝑖
     ,               𝑓𝑖 ≥ 0

1

1 + |𝑓𝑖|
   ,             𝑓 𝑖 < 0

 (19) 

where 𝑓𝑖 is the objective function value of the 𝑖𝑡ℎ food source.   
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Pseudo Code for DE Algorithm 

Inputs: Objective function, lower bound (lb), upper bound (up), Number of parameters (D), Population size (nPop), 

Number of Iterations (T), Crossover Probability (pC), Scaling Factor (F) 

1. Initialize a random population (nPop) 

2. Calculate the objective function (f) 

3. Memorize the best solution 

Enter the evolution loop 

for t = 1: T 

 for i = 1: nPop 

  Perform mutation and obtain the donor vector 

  Perform crossover and generate Trail vector 

 end 

 for i = 1: nPop 

  Bound the Trail Vector 

  Evaluate the fitness function of the trail vector (fu) 

  Perform greedy selection between f and fu 

  update nPop 

 end 

 Update best solution 

end 

 

 

The employed bees explore new food source (solution) around the current food source (solution) using Equation (20). 

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)           (20) 

 

where 𝜙𝑖𝑗 is random number between −1 and 1, 𝑘 ∈ (1,2,3, … , 𝑁) and 𝑖 ≠ 𝑘. 

 

The fitness value of the new solution is calculated. The current solution is compared with the new solution. A greedy 

selection is performed and the best of the two solutions is stored, and the other one is discarded. After all the employed 

bees complete their search, they share the fitness value of each food source to the onlooker bees. An onlooker bee 

selects a food source based on the probability value with that food source. The probability is calculated using Equation 

(21). 

𝑝𝑖 = (0.9 ×
𝑓𝑖

max(𝑓)
) + 0.1 (21) 

 

After selecting a food source, a new solution is generated around the selected food source using Equation (20). 

 

The fitness value of the new food source is calculated and compared to the current one. If the new food source is better 

than the current one, the new food source is stored otherwise the current one is kept. If the quality of the food source 

is low, that food source is abandoned. A new food source is explored by a scout bee. In ABC algorithm, a food source 

is abandoned if the profitability of that food source cannot be improved in predefined number of trails. 
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Pseudo Code for ABC 

Inputs: Objective Function, lower bound (lb), upper bound (up), Number of parameters (D), Population size (nPop), 

Number of Iterations (T), limit 

1. Initialize a random population (nPop) 

2. Calculate the objective function (f) and fitness function (fit) 

3. Memorize the best solution 

4.  Set the trail counter to 0 

Enter the main loop 

for it = 1: T 

 for i = 1: nPop 

  Perform Employed Bee Phase 

  Perform Greedy selection 

  if fitnew < fit(i) 

   Update the nPop(i) 

   Update the f(i)  

   Update the fit(i) 

   Set trail(i) to zero 

  else 

   increment trail(i) by 1 

  end 

 end 

 Determine the of Probability of each food source 

 for i = 1: nPop 

  Perform Onlooker Bee Phase 

  Generate new solution 

  Perform Greedy selection 

  if fitnew < fit(i) 

   Update the nPop(i) 

   Update the f(i)  

   Update the fit(i) 

   Set trail(i) to zero 

  else 

   Increment trail(i) by 1 

  End 

 end 

 Memorize the best food source 

 Perform Scout Bee Phase 

 if trail(i) > limit 

  set trail(i) to zero 

  Generate new food source 

  Calculate the f and fit functions 

 end 

 Update the best food source 

end 

 

 

3.5 Newton Raphson Algorithm 

The Newton-Raphson optimization algorithm is an iterative technique used to find the critical points (local minima or 

maxima) for a real-valued function. The general steps of the Newton-Raphson method for multivariate optimization 

are as follows: 

1. Initialize: Start with an initial guess for the optimal solution, denoted as 

𝑥(0)  =  [𝑥1
(0), 𝑥2

(0), ⋯ , 𝑥𝑝
(0)] 

where 𝑝 is the number of parameters. 
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2. Compute Gradient and Hessian: Calculate the gradient vector, ∇𝑓(𝑥(𝑘)), and the Hessian matrix, ∇2𝑓(𝑥(𝑘)), 

of the objective function 𝑓(𝑥) at the current iteration 𝑥(𝑘), 𝑘 = 0,1,2,⋯. Here 𝑘 represents the number of 

iterations. 

∇𝑓(𝑥(𝑘)) = [
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
,
𝜕𝑓

𝜕𝑥3
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑝
]

𝑇

 

∇2𝑓(𝑥(𝑘)) =

[
 
 
 
 
 
 
 
𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑝

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 ⋯

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑝
⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑝𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑝𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑝
2 ]
 
 
 
 
 
 
 

 

3. Update: Compute the update direction 𝑑(𝑘) using Equation (22). 

𝑑(𝑘) = −[∇2𝑓(𝑥(𝑘))]
−1
∇𝑓(𝑥(𝑘)) (22) 

 

4. Iterate: Update the current iterate 𝑥(𝑘) using Equation (23). 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑑(𝑘) (23) 

 

Repeat steps 2-4 until the convergence criteria are met, such as the magnitude of the gradient vector or the change in 

the function value being smaller than a specified tolerance. 

 

4. Simulation Results 

This section presents a comprehensive simulation study that aims to evaluate the performance of different parameter 

estimation algorithms for TWD. The transmutation parameter (λ) will be systematically varied from -1, -0.5, 0.5 to 1 

to examine the behavior of the algorithms under different scenarios. 

 

To examine the impact of sample size on parameter estimation accuracy, three sample sizes (50, 100, and 200) will 

be considered within each scenario. All other distribution parameters will remain constant throughout the simulation. 

The parameters for each algorithm were carefully selected to ensure effective optimization. For the GA, a population 

size (nPop) of 100 was chosen, along with 100 generations (T). Additionally, the crossover probability (pC), mutation 

rate (rM) and mutation step size (sM) were set to 0.8, 0.02 and 0.1, respectively. Similarly, the PSO algorithm utilized 

a swarm size (nPop) of 100, an inertia weight (w) of 0.8, and cognitive (c1) and social (c2) coefficients of 1.5, with 

100 cycles (T). Furthermore, the DE algorithm adopted a population size of 100 and 100 generations (T), a crossover 

probability (pC) of 0.8 and a scaling factor (F) of 0.85. Finally, for the ABC algorithm, the swarm size was also set to 

100, but it featured 50 food sources (F), a limit of 5, and a 100 number of cycles (T).  

These parameters were chosen to balance computational efficiency and optimization performance. The performance 

of each algorithm will be assessed using bias, mean squared error (MSE) and Def as defined in Equations (24), (25) 

and (26) respectively. The algorithm with the lowest bias, MSE and Def will be considered as the best-performing 

algorithm. All simulations will be conducted using MATLAB R2022b. Each simulation will be repeated 2000 times. 

 

bias(𝛽̂) = 𝐸(𝛽̂) − 𝛽 (24) 

  

𝑀𝑆𝐸(𝛽̂) = 𝐸 [(𝛽̂ − 𝛽)
2
] = 𝑉𝑎𝑟(𝛽̂) + [𝑏𝑖𝑎𝑠(𝛽̂)]

2
       (25) 

  

𝐷𝑒𝑓 = 𝑀𝑆𝐸(𝜂̂) + 𝑀𝑆𝐸(𝜎̂) + 𝑀𝑆𝐸(𝜆̂)           (26) 
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The results of the Monte Carlo simulations are presented in Tables 1-4. The results indicate that DE performs best in 

minimizing bias for the 𝜂 and σ parameters when 𝜆 is negative (−0.5 and −1). NR, however, outperforms in estimating 

the 𝜆 parameter when 𝜆 =  −1. For positive 𝜆 values, GA excels in minimizing bias for the 𝜆 parameter across all 

sample sizes and for the 𝜂 parameter at small sample sizes (𝑛 = 50). NR shows superior performance for the 𝜂 

parameter at moderate to large sample sizes (𝑛 = 100, 200) and for the σ parameter at small to moderate sample sizes 

(𝑛 = 50, 100). At larger sample sizes (𝑛 = 200), PSO achieves the lowest bias for the 𝜎 parameter and consistently 

performs well for both 𝜂 and 𝜆 parameters when 𝜆 =  1. 

 

DE achieves the lowest MSE for 𝜂 and 𝜎 parameters when 𝜆 is negative (−0.5, −1), highlighting its stability under 

such conditions. For the 𝜆 parameter, NR produces the smallest MSE, followed closely by DE. For positive 𝜆 values 

(0.5 and 1), GA demonstrates superior performance, achieving the lowest MSE for all parameters except when 𝜆 =

 1, where NR has the smallest MSE for the σ parameter. Notably, GA struggles with negative 𝜆 values, showing the 

highest MSE across all sample sizes. Conversely, DE exhibits instability under positive 𝜆 values, particularly for 𝜂 

and 𝜎 parameters, while NR performs poorly in these scenarios due to higher bias and MSE values. 

 

Based on the deficiency (Def) criterion, DE is the most efficient algorithm for estimating TWD parameters when the 

true 𝜆 value is negative, achieving the lowest Def values across all sample sizes. For positive 𝜆 values, GA emerges 

as the most efficient method, consistently outperforming other algorithms. These findings highlight the adaptability 

of DE and GA under different parameter conditions. Notably, NR is less reliable, as it frequently yields negative 𝜆 

estimates regardless of the true 𝜆 value. 

Table1: Simulated parameter values for transmuted Weibull distribution (𝜂 = 2, 𝜎 = 2, 𝜆 = −1) 

 

Table 2: Simulated parameter values for transmuted Weibull distribution (𝜂 = 2, 𝜎 = 2, 𝜆 = −0.5) 

𝒏 Algorithm 
𝜼 𝝈 𝝀 

Def 
Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE 

50 

GA 2.3965 0.1022 0.3965 0.2593 2.3892 0.0861 0.3892 0.2376 0.1394 0.1560 0.6394 0.5648 1.0618 

PSO 2.3145 0.1276 0.3145 0.2265 2.4091 0.1764 0.4091 0.3438 0.1353 0.3362 0.6353 0.7398 1.3101 

DE 2.1411 0.1487 0.1411 0.1686 2.1234 0.1180 0.1234 0.1332 -0.2967 0.2629 0.2033 0.3042 0.6060 

ABC 2.1686 0.1472 0.1686 0.1756 2.1686 0.1366 0.1686 0.1650 -0.2288 0.2989 0.2712 0.3725 0.7130 
NR 2.4769 0.1166 0.4769 0.3441 2.5259 0.1151 0.5259 0.3917 -0.9990 0.0001 -0.4990 0.2490 0.9848 

100 

GA 2.3711 0.0530 0.3711 0.1907 2.4167 0.0787 0.4167 0.2523 0.1775 0.1556 0.6775 0.6146 1.0576 

PSO 2.2966 0.0793 0.2966 0.1672 2.4647 0.1758 0.4647 0.3918 0.2112 0.3398 0.7112 0.8456 1.4046 
DE 2.1434 0.1039 0.1434 0.1244 2.1717 0.1228 0.1717 0.1523 -0.2226 0.2809 0.2774 0.3578 0.6345 

ABC 2.1779 0.1025 0.1779 0.1341 2.2264 0.1396 0.2264 0.1908 -0.1384 0.3107 0.3616 0.4415 0.7664 

NR 2.4510 0.0588 0.4510 0.2621 2.5144 0.0553 0.5144 0.3199 -0.9986 0.0002 -0.4986 0.2488 0.8307 

200 

GA 2.3506 0.0320 0.3506 0.1550 2.4132 0.0731 0.4132 0.2438 0.1674 0.1527 0.6674 0.5980 0.9968 
PSO 2.2656 0.0582 0.2656 0.1287 2.4722 0.1872 0.4722 0.4101 0.2079 0.3681 0.7079 0.8692 1.4080 

DE 2.1457 0.0759 0.1457 0.0972 2.1976 0.1215 0.1976 0.1606 -0.1860 0.2780 0.3140 0.3766 0.6343 

ABC 2.1877 0.0696 0.1877 0.1048 2.2696 0.1384 0.2696 0.2111 -0.0782 0.3084 0.4218 0.4863 0.8022 
NR 2.4333 0.0379 0.4333 0.2256 2.5214 0.0627 0.5214 0.3346 -0.9992 0.0001 -0.4992 0.2493 0.8095 

𝒏 Algorithm 
𝜼 𝝈 𝝀 

Def 
Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE 

50 

GA 3.0870 0.1342 1.0870 1.3157 2.7963 0.0618 0.7963 0.6960 0.4023 0.1128 1.4023 2.0791 4.0909 
PSO 2.9104 0.2419 0.9104 1.0707 2.6977 0.1490 0.6977 0.6358 0.2123 0.3902 1.2123 1.8597 3.5663 

DE 2.4704 0.3071 0.4704 0.5283 2.2846 0.1410 0.2846 0.2220 -0.5106 0.3909 0.4894 0.6304 1.3808 

ABC 2.4817 0.3125 0.4817 0.5446 2.3002 0.1512 0.3002 0.2414 -0.4841 0.4216 0.5159 0.6878 1.4738 

NR 3.1036 0.1464 1.1036 1.3643 2.7626 0.0422 0.7626 0.6237 -0.9995 0.0000 0.0005 0.0000 1.9880 

100 

GA 3.0521 0.0627 1.0521 1.1695 2.8506 0.0412 0.8506 0.7648 0.4858 0.0854 1.4858 2.2930 4.2274 

PSO 2.8547 0.2002 0.8547 0.9307 2.7186 0.1539 0.7186 0.6703 0.2423 0.4247 1.2423 1.9681 3.5692 
DE 2.3898 0.2480 0.3898 0.3999 2.2756 0.1508 0.2756 0.2268 -0.5271 0.4350 0.4729 0.6586 1.2853 

ABC 2.4228 0.2606 0.4228 0.4394 2.3140 0.1735 0.3140 0.2721 -0.4620 0.4958 0.5380 0.7853 1.4968 

NR 3.0469 0.0691 1.0469 1.1651 2.7596 0.0182 0.7596 0.5953 -0.9992 0.0001 0.0008 0.0001 1.7605 

200 

GA 3.0328 0.0364 1.0328 1.1032 2.8890 0.0301 0.8890 0.8205 0.5483 0.0677 1.5483 2.4650 4.3887 
PSO 2.8334 0.1825 0.8334 0.8771 2.7343 0.1530 0.7343 0.6922 0.2707 0.4340 1.2707 2.0487 3.6180 

DE 2.3177 0.2222 0.3177 0.3232 2.2482 0.1548 0.2482 0.2164 -0.5688 0.4556 0.4312 0.6415 1.1810 

ABC 2.3564 0.2375 0.3564 0.3646 2.2898 0.1767 0.2898 0.2606 -0.4984 0.5198 0.5016 0.7714 1.3966 
NR 3.0110 0.0432 1.0110 1.0653 2.7665 0.0234 0.7665 0.6109 -0.9992 0.0001 0.0008 0.0001 1.6763 
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Table 3: Simulated parameter values for transmuted Weibull distribution (𝜂 = 2, 𝜎 = 2, 𝜆 = 0.5) 

𝒏 Algorithm 
𝜼 𝝈 𝝀 

Def 
Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE 

50 

GA 2.0090 0.0591 0.0090 0.0592 1.8858 0.0657 -0.1142 0.0787 0.3013 0.1253 -0.1987 0.1648 0.3027 

PSO 1.9277 0.0876 -0.0723 0.0928 1.8863 0.1483 -0.1137 0.1612 0.2618 0.3328 -0.2382 0.3896 0.6436 
DE 1.7468 0.1184 -0.2532 0.1825 1.5754 0.1332 -0.4246 0.3135 -0.2674 0.3708 -0.7674 0.9597 1.4556 

ABC 1.7907 0.1149 -0.2093 0.1587 1.6467 0.1491 -0.3533 0.2739 -0.1455 0.4076 -0.6455 0.8242 1.2569 

NR 2.0321 0.0690 0.0321 0.0700 1.9121 0.0795 -0.0879 0.0872 -0.9990 0.0001 -1.4990 2.2470 2.4041 

100 

GA 1.9805 0.0291 -0.0195 0.0294 1.9186 0.0542 -0.0814 0.0609 0.3483 0.1130 -0.1517 0.1360 0.2263 

PSO 1.8949 0.0599 -0.1051 0.0710 1.9228 0.1478 -0.0772 0.1538 0.3050 0.3390 -0.1950 0.3770 0.6017 

DE 1.7384 0.0904 -0.2616 0.1588 1.6230 0.1431 -0.3770 0.2853 -0.1885 0.4029 -0.6885 0.8770 1.3210 

ABC 1.7898 0.0863 -0.2102 0.1305 1.7122 0.1576 -0.2878 0.2404 -0.0378 0.4296 -0.5378 0.7188 1.0897 
NR 1.9905 0.0374 -0.0095 0.0375 1.9264 0.0853 -0.0736 0.0908 -0.9991 0.0001 -1.4991 2.2474 2.3756 

200 

GA 1.9688 0.0170 -0.0312 0.0180 1.9403 0.0477 -0.0597 0.0513 0.3817 0.1074 -0.1183 0.1214 0.1908 

PSO 1.8921 0.0424 -0.1079 0.0540 1.9525 0.1317 -0.0475 0.1340 0.3523 0.3128 -0.1477 0.3346 0.5226 
DE 1.7622 0.0787 -0.2378 0.1353 1.6831 0.1448 -0.3169 0.2452 -0.0832 0.4160 -0.5832 0.7561 1.1367 

ABC 1.8277 0.0667 -0.1723 0.0964 1.7989 0.1468 -0.2011 0.1872 0.1104 0.3993 -0.3896 0.5511 0.8347 

NR 1.9836 0.0210 -0.0164 0.0213 1.9152 0.0483 -0.0848 0.0555 -0.9986 0.0002 -1.4986 2.2460 2.3228 

 

Table 4: Simulated parameter values for transmuted Weibull distribution (𝜂 = 2, 𝜎 = 2, 𝜆 = 1) 

𝒏 Algorithm 
𝜼 𝝈 𝝀 

Def 
Mean Variance Bias MSE Mean Variance Bias MSE Mean Variance Bias MSE 

50 

GA 2.1115 0.0640 0.1115 0.0764 1.5059 0.0371 -0.4941 0.2813 0.1939 0.1229 -0.8061 0.7728 1.1305 

PSO 2.0363 0.0817 0.0363 0.0830 1.5484 0.0917 -0.4516 0.2956 0.2341 0.3239 -0.7659 0.9105 1.2891 

DE 1.8828 0.1103 -0.1172 0.1240 1.3196 0.0651 -0.6804 0.5280 -0.2451 0.2876 -1.2451 1.8378 2.4898 

ABC 1.9141 0.1053 -0.0859 0.1127 1.3698 0.0795 -0.6302 0.4766 -0.1420 0.3410 -1.1420 1.6450 2.2343 
NR 2.1564 0.0748 0.1564 0.0992 1.5749 0.0459 -0.4251 0.2266 -0.9986 0.0002 -1.9986 3.9947 4.3205 

100 

GA 2.0828 0.0346 0.0828 0.0415 1.5285 0.0327 -0.4715 0.2550 0.2343 0.1218 -0.7657 0.7081 1.0045 

PSO 2.0076 0.0542 0.0076 0.0543 1.5675 0.0874 -0.4325 0.2745 0.2649 0.3190 -0.7351 0.8593 1.1881 
DE 1.8817 0.0814 -0.1183 0.0954 1.3572 0.0663 -0.6428 0.4795 -0.1646 0.3028 -1.1646 1.6592 2.2341 

ABC 1.9294 0.0741 -0.0706 0.0791 1.4239 0.0763 -0.5761 0.4082 -0.0243 0.3315 -1.0243 1.3807 1.8680 

NR 2.1281 0.0404 0.1281 0.0568 1.5729 0.0284 -0.4271 0.2107 -0.9990 0.0002 -1.9990 3.9961 4.2637 

200 

GA 2.0661 0.0186 0.0661 0.0229 1.5320 0.0315 -0.4680 0.2505 0.2410 0.1166 -0.7590 0.6927 0.9661 

PSO 1.9988 0.0331 -0.0012 0.0331 1.5954 0.0860 -0.4046 0.2498 0.3162 0.3060 -0.6838 0.7736 1.0565 

DE 1.9156 0.0550 -0.0844 0.0622 1.3998 0.0594 -0.6002 0.4196 -0.0650 0.2666 -1.0650 1.4008 1.8825 

ABC 1.9580 0.0470 -0.0420 0.0487 1.4817 0.0755 -0.5183 0.3441 0.0989 0.3044 -0.9011 1.1163 1.5091 
NR 2.1050 0.0278 0.1050 0.0388 1.5811 0.0359 -0.4189 0.2114 -0.9983 0.0002 -1.9983 3.9934 4.2437 

 

 

5. Real Data Applications 

We consider two datasets to test the utility of metaheuristic algorithms in obtaining the maximum likelihood estimates 

for TWD parameters. The performance of the parameter estimation algorithms is compared using the log-likelihood 

values and Kolmogorov-Smirnov (KS) test and Akaike Information Criterion (AIC). KS is a non-parametric test which 

assesses the goodness-of-fit between the empirical distribution function  𝐹̂(𝑥) of the data and the theoretical 

distribution function 𝐹(𝑥) of the distribution being evaluated. The KS statistic measures the maximum absolute 

difference between these two cumulative distributions. The null hypothesis (𝐻₀) assumes that the data originates from 

the proposed distribution. Rejection of the null hypothesis at a significance level of α = 0.05 indicates a statistically 

significant difference between the data and the theoretical distribution. The K-S test and AIC equations are presented 

in Equations (27) and (28) respectively. 

 

𝐾𝑆 = max |𝐹̂(𝑥) − 𝐹(𝑥)| (27) 

  

𝐴𝐼𝐶 = −2 log(𝑙) + 2𝑝  (28) 

𝑙𝑜𝑔(𝐿) represents the maximized log-likelihood of the model, 𝑛 is the sample size, and 𝑝 is the number of parameters 

in the model. The algorithm that produces the highest log-likelihood value or the lowest AIC value is considered the 

best algorithm. 
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Dataset 1 

The first data set represents the lifetimes of Kevlar 49/epoxy strands subjected to constant sustained pressure at 90% 

stress level until the strand failure. This data is extracted from Barlow et al. (1984) and recently used by (Owoloko et 

al., 2015). The data are as follows: 

 

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 

0.6566 0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 

0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570 

1.2766 1.2985 1.3211 1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 

1.7083 1.7263 1.7460 1.7630 1.7746 1.8275 1.8375 1.8503 1.8808 

1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.1330 

2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 2.4951 2.5260 2.9911 

3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 4.8073 5.4005 

5.4435 5.5295 6.5541 9.0960      

 

Table 5: The descriptive statistics for the Kevlar 49/epoxy data 

n Min Max Mean Median Variance Skewness Kurtosis 

76 0.0251 9.096 1.959 1.736 2.477 2.0196 5.6 

 

Table 5 provides the descriptive statistics for the Kevlar dataset, which consists of the lifetimes of Kevlar 49/epoxy 

strands under constant pressure. As shown in Table 6, the metaheuristic algorithms (GA, PSO, DE, ABC) yielded 

comparable maximum likelihood estimates for the TWD parameters, all achieving similar log-likelihood values and 

AIC scores. In contrast, the NR algorithm performed poorly, with significantly higher AIC values and lower log-

likelihoods. The KS test confirmed that the parameter estimates from NR failed to adequately fit the data (p-value = 

0.004), while the metaheuristic methods produced better fits (p-values > 0.45). Figure 2 illustrates the histogram and 

the fitted TWD PDFs. While the NR-based estimates deviate noticeably from the data distribution, all metaheuristic 

algorithms converged to identical parameter estimates (and thus identical PDF curves), consistently capturing the 

underlying distribution. 

 

Table 6: The parameter estimates, p-value of K-S, Log-likelihood and AIC values for Kevlar 49/epoxy data 

Algorithm 𝜂 𝜎 𝜆 Log-likelihood AIC P-value 

GA 1.431 2.941 0.711 -121.735 249.4706 0.460 

PSO 1.431 2.942 0.711 -121.735 249.4706 0.458 

DE 1.431 2.942 0.711 -121.735 249.4706 0.458 

ABC 1.431 2.944 0.713 -121.735 249.4706 0.460 

NR 1.492 3.976 0.954 -124.767 255.5342 0.004 
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Figure 2. Histogram and fitted pdf of the TWD for Kevlar dataset. 

Dataset 2 

The second data set represents survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli. The 

data in reported in Bjerkedal (1960) and recently used by (Owoloko et al., 2016; Pobočíková et al., 2018). The data is 

as follows: 

 

 

10 93 108 122 153 183 230 293 

33 96 108 122 159 195 231 327 

44 100 109 124 160 196 240 342 

56 100 112 130 163 197 245 347 

59 102 113 134 163 202 251 361 

72 105 115 136 168 213 253 402 

74 107 116 139 171 215 254 432 

77 107 120 144 172 216 254 458 

92 108 121 146 176 222 278 555 

 

Table 7 summarizes the descriptive statistics for the guinea pig survival dataset, which includes survival times (in 

days) for 72 subjects infected with virulent tubercle bacilli. The estimated TWD parameters are shown in Table 8. 

While all algorithms, including GA, PSO, DE, ABC, and NR, provided similar results, the metaheuristic algorithms 

achieved marginally lower AIC values and higher log-likelihood scores compared to NR. This indicates a slight 

advantage in model parsimony and fit quality. However, the KS test p-values (ranging from 0.451 to 0.597) suggest 
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that all methods fit the dataset well. Figure 3 illustrates the histogram and the fitted TWD PDFs, showing that all 

algorithms effectively modeled the survival times without significant discrepancies. 

 

Table 7. Descriptive statistics for the guinea pigs survival times data 

n Min Max Mean Median Variance Skewness Kurtosis 

72 10 555 176.894 149.5 10702.91 1.371 2.225 

 

Table 8. The parameter estimates, p-value of K-S, Log-likelihood and AIC values for guinea pigs survival times data 

Algorithm 𝜂 𝜎 𝜆 Log-likelihood AIC P-value 

GA 1.322 138.561 -0.937 -425.746 857.492 0.451 

PSO 1.315 137.184 -0.969 -425.720 857.439 0.493 

DE 1.353 139.624 -0.951 -425.684 857.369 0.586 

ABC 1.352 139.487 -0.953 -425.684 857.369 0.586 

NR 1.412 145.460 -0.895 -425.788 857.576 0.597 

 

 
Figure 3. Histogram and fitted pdf of the TWD for guinea pigs survival times. 
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6. Conclusion 

This study investigated the application of four metaheuristic algorithms including Genetic Algorithm, Particle Swarm 

Optimization, Differential Evolution, and Artificial Bee Colony for maximum likelihood estimation of the Transmuted 

Weibull Distribution. Through extensive Monte Carlo simulations and real-world applications, the performance of 

these algorithms was compared to the traditional Newton-Raphson optimization method. 

The results demonstrated that metaheuristic algorithms offer significant advantages over NR in terms of accuracy, 

particularly in handling the nonlinear likelihood equations of TWD. Among the metaheuristics, DE and GA 

consistently provided superior parameter estimates under varying conditions, achieving lower bias, mean squared 

error, and deficiency values in the simulation study. The algorithms' ability to escape local optima and converge 

globally makes them reliable alternatives to traditional numerical methods such as NR algorithm. Specifically, the 

study suggested using DE for scenarios with negative 𝜆 and GA for positive 𝜆, positioning these algorithms as superior 

alternatives to traditional approaches. 

Applications to Kevlar 49/epoxy and guinea pig survival datasets further validated the effectiveness of metaheuristics, 

with improved log-likelihood, AIC, and Kolmogorov–Smirnov test results compared to NR. These findings 

underscore not only the theoretical relevance but also the practical significance of metaheuristic approaches for 

modeling in reliability engineering and survival analysis. 

Overall, this study makes a significant methodological contribution by demonstrating that metaheuristic optimization 

is not only viable but superior to classical methods for MLE of the TWD — a distribution characterized by a complex, 

nonlinear likelihood function. Our findings empower researchers and practitioners in reliability and survival analysis 

with a more accurate, stable, and globally convergent estimation approach, paving the way for broader adoption of 

metaheuristics in parametric distribution fitting. 

Despite their advantages, metaheuristic algorithms may require careful tuning of parameters such as population size, 

number of iterations, and any other user defined parameters to optimize performance. Future research could explore 

alternative metaheuristics, such as Ant Colony Optimization or Simulated Annealing, and assess their comparative 

efficacy. 
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