
Pak.j.stat.oper.res. Vol.IV No.2 2008 pp55-62

A catastrophic-cum-restorative queuing system
with correlated batch arrivals and variable capacity

Rakesh Kumar
School of Mathematics
Shri Mata Vaishno Devi University, Katra
Sub – Post Office, SMVD University Campus-182320 (J&K) India

Abstract
In this paper, we study a catastrophic-cum-restorative queuing system with correlated batch
arrivals and service in batches of variable sizes. We perform the transient analysis of the queuing
model. We obtain the Laplace Transform of the probability generating function of system size.
Finally, some particular cases of the model have been derived and discussed.
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1.   Introduction
New Broadband Communication Networks are playing a key role in providing a
variety of multimedia services such as voice, video and data etc. The amount of
information per unit time generated by these services varies along the connection
duration. There are certain periods in which the information rate increases and
others in which it decreases or becomes null. As the sources providing such
services are not synchronized several cells may arrive at the same slot. Thus,
they (cells) arrive in batches of variable size. Due to the bursty nature of the cell
traffic generated by broadband services the arrival process in New Broadband
Communication Networks is correlated in nature [1]. TCP is the most commonly
used transport protocol for Internet broadband services. Because it is a
connection-based protocol, TCP is able to guarantee that each data packet
transmitted from a server reaches its intended destination. It transmits cells in
batches [2].

Further, the arrival of infected cells (viruses) and noise bursts etc. may annihilate
all the cells in the buffer of the server (computer) and leave it momentarily
inactivated until the new cell arrival occurs. Such infected cells may be modeled
by catastrophes. The notion of catastrophes occurring at random, leading to
annihilation of all the customers there and the momentary inactivation of service
facility until a new arrival of a customer is not uncommon in many practical
problems. X. Chao studied a queuing network model with catastrophes [3]. A.
DiCrescenzo et al. [4] studied an M/M/1 queue with catastrophes and derived its
heavy traffic approximation. Recently, Jain and Kumar [5, 6, 7] obtained the
transient solution of some catastrophic queuing systems with correlated input.

The concept of catastrophe has tremendous applications in a wide variety of
areas particularly in computer-communication, biosciences, population studies
and industries etc. It is based on the assumption that with the occurrence of
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catastrophe, all the customers in the system are destroyed and simultaneously
the system becomes ready to accept new customers. However a system will
always require some sort of time to function in a normal way if it suffers from
catastrophe, which is taken as restoration time. Thus, it would be more
practicable if we model the restoration time required by a system which is
suffering from catastrophe. In the present example, with the occurrence of
catastrophe all the cells in the buffer of the server are destroyed immediately. But
the server can work properly after it is free from the viruses and noise bursts.
Thus, some short of recovery / restoration time is needed. To this end, the
concept of restoration time is introduced in which no arrival is allowed to occur.

In this paper, we incorporate the effect of catastrophes and restoration in the
correlated batch arrival queue with variable service capacity which may arise in
New Broadband Communication Networks. We consider a single server
catastrophic-cum-restorative queuing system with correlated batch input and
variable capacity. We derive the transient solution of the model under
investigation.

This paper has been organized as follows: In section 2, we formulate the queuing
model. In section 3, we obtain the transient solution of the model. The paper is
concluded in section 4.

2. Queuing Model
The queuing model under investigation is based on the following assumptions:

(1) The customers arrive at a service facility in batches, the size of the batch
being a random variable with Prob. (size of the batch is j) = cj, j=1,2,3,…….

and 





1

1
j

jc

(2) The arrival of a batch can occur only at the transition marks t0, t1, t2…
where r = tr – tr--1; r = 1, 2, 3, ………. are random variables with
P [r  x] = 1 –exp (–x);   0, r = 1,2,…………...
The arrival and no arrival of a batch at two consecutive transition marks
tr-1, tr; r = 1,2,3,…….. are governed  by the following  transition probability
matrix:

To tr
arrival of a batch               no arrival of a batch

arrival of a batch                        p11 p10 where p11+p10=1

From tr-1 and

no arrival of a batch p01 p00 p01+p00=1

Thus, the arrivals of batches at two consecutive transition marks are
correlated.
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(3) The capacity of the service channel is determined at the beginning of each
service and is a random variable with

Prob. [capacity is j] = a j , j= 0,1,2,3,…………, M and 1
0




M

j
ja .

(4) The queue disciplined is first-come-first-served, so that

(i) if the capacity is (j>0) and the queue length (the number of units
waiting excluding those being served) is n(>0), then a batch of
min(n, j) units is taken for service;

(ii) if at any instant the capacity of the service channel is j (>0) and the
queue length is zero, then the service channel will remain idle and
the service will start immediately on an arrival of a batch.

(5) The service time distribution is exponential with parameter .
(6) When the system is not empty, the catastrophes occur at the service

facility according to a Poisson process with rate . The catastrophes
annihilate all the customers in the system instantaneously.

(7) The restoration times are independently, identically and exponentially
distributed with parameter η.

(8) The stochastic processes namely (i) the distribution of inter-transition
times, (ii) the capacity distribution (iii) distribution of the size of arrival of a
batch and (iv) the distribution of catastrophes and (v) the distribution of
restoration times are independent of each other.

(9) Let the time be reckoned from the instant when the service channel is idle
and a transition with no arrival has just occurred, so that
Q 0,0(0)=1

Define,

Pn, 0(t) = the probability that at time t, the queue length (the number of
customers waiting excluding those being served) is equal to n, the
service channel is not idle and no arrival of a batch has occurred at the
previous transition mark.

P n, 1(t) = the probability that at time t, the queue length is equal to n, the service
channel is not idle and an arrival of a batch has occurred at the
previous transition mark.

Q0, 0(t) = the probability that at time t, the queue length is equal to 0 without the
occurrence of catastrophe, the service channel is idle and no arrival of
a batch has occurred at the previous transition mark.

C0, 0(t) = the probability that at time t, the queue length is equal to 0 with the
occurrence of catastrophe, the service channel is idle and no arrival of
a batch has occurred at the previous transition mark.

Q0, 1(t) = the probability that at time t, the queue length is equal to 0 without the
occurrence of catastrophe, the service channel is idle and an arrival of
a batch has occurred at the previous transition mark.
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C0, 1(t) = the probability that at time t, the queue length is equal to 0 with the
occurrence of catastrophe, the service channel is idle and an arrival of
a batch has occurred at the previous transition mark.

R n (t) = the probability that at time t, the queue length is equal to n.

3. Transient solution of the Model
The equations governing the model are: -
Rn(t)=Pn,0(t)+Pn,1(t)  ;n=1,2,3..... (1)
R0(t) = P0,0(t) + P0,1(t) +  Q0,0(t) + Q0,1(t) (2)

 )]()([)()1()()( 1,0100,0000,000,00,0 tQptQptPatQtQ
dt

d  )(0,0 tC (3)

dt

d C0,0(t) = - )(0,0 tC + 










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0

0, tP
n

n (4)

)()()1()()( 1,01,001,01,0 tCtPatQtQ
dt

d   (5)

dt

d C0,1(t)  = - )(1,0 tC +   




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; n=1,2,…. (10)
Define the Laplace transform of f (t) by

dttfesf st )()(
0



  (11)

Taking L.T.’s of (1) – (10), we have
R*

n (s) = P*
n, 0 (s) + P*

n,1 (s)         ; n=1,2,3,…….. (12)
R*

0(s) = P*
0, 0 (s) + P*

0,1 (s) + Q*
0, 0 (s) + Q*

0,1 (s) (13)
)()]()([)()1(1)()( 0,0

*
1,0100,0000,000,0 sCsQpsQpsPasQs    (14)
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Let us define probability generating functions by
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Multiplying (18) and (19) by appropriate powers of  and adding, we have
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Similarly, (20) and (21) give
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and from (12) and (13) we have

R*(s,) = P*
0 (s,) + P*

1 (s,) + Q*
0, 0 (s) + Q*

0,1 (s) (28)

Solving (24) and (27) simultaneously, we have

P*
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and

D()=[h-p00M][h- p11C()M ] - 2 p01 p102M C() (30)

Combining (24), (25) and (26) we get
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From (22) we have for =1
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Substituting for =1 in (29) and using (33), we get
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Also from (15) and (17), we have
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Thus, substituting the values of )(0,0
* sC and )(1,0

* sC in (14) and (16) we get two
equations in four unknowns.

By Rouche’s theorem the denominator D () in (31) has 2M zeros inside the unit
circle 1 . Since, ),( sR is a finite quantity, these zeros must vanish the
numerator )(N giving rise to a set of 2M equations. Solving these 2M equations
together with (14) and (16) one can determine all the 2M+2 unknowns occurring
in the numerator N(). Hence, ),( sR can be completely determined.
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Particular cases
(1) When  = 0 and η = ∞ (i.e. neither catastrophe nor restoration occurs) the

model reduces to a correlated batch arrival queuing system with variable
capacity having the Laplace transform of probability generating function of
system size as given below

R*(s, ) =  Q*
0, 0 (s) + Q*
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(2) When the arrivals occur  one by one (i.e. C () =) and  =0, η =∞ the
model reduces to that studied by Mohan and Murari [8] having the Laplace
transform of probability generating function of system size as given below:
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D( ) = (h - p00 M)( h - p11 M+1) - 2 p01 p102M+1

Where h =  (s+ + + ) - 

4. Conclusion
A catastrophic queuing model with correlated batch arrivals and variable capacity
is studied with reference to its application in new Broadband Communication
networks. Some queuing models have been derived as particular cases.
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