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Abstract  

 

In this paper, we proposed highly efficient ranked set sampling schemes to estimate the population mean. First, we 

proposed a new single-stage sampling scheme which we called new neoteric ranked set sampling. Second, we 

proposed a two-stage methods based on the systematic ranked set sampling and the new neoteric ranked set 

sampling. The performance of the proposed methods is compared with that of competitive two-stage methods 

through a Monte Carlo simulation study using various popular symmetric and asymmetric statistical distributions. 

The results show that the newly proposed methods are more efficient in estimating the population mean than the 

existing methods. The proposed methods are illustrated on data of the diameter and height of pine trees. 

 
 

Key Words: Two-stage, ranked set sampling, double ranked set sampling, median ranked set sampling, extreme 
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1. Introduction  

 

Ranked set sampling (RSS) and any of its variations are sampling techniques that are useful when ranking of units can 

be done easily and precisely, either visually or at negligible cost using the character of interest. RSS was first proposed 

by McIntyre (1952) as a sampling method to estimate mean pasture and forage yields in agricultural experimentation. 

Statistical theory of RSS was then established by Takahasi and Wakimoto (1968) and Stokes (1980). The procedure 

of RSS can be summarized as follows: m sets of size m units each are drawn from the population. The m units of each 

set are ranked visually without actually quantifying them. From the ith set select the ith ordered unit for actual 

measurement (i=1,2,…,m). This process may be repeated r times to obtain a RSS of size n=mr.  See Chen et al. (2003) 

for more information on the theory and applications of RSS and related sampling schemes. 

 

Several variations of the RSS that rely on the concept of ranking without actual measurement were proposed in 

literature for estimating the population mean. Muttlak (1996) introduced pair ranked set sampling (PRSS), the extreme 

ranked set sampling (ERSS) was proposed by Samawi et al. (1996), and Muttlak (1997) suggested the median ranked 

set sampling (MRSS). Recently Zamanzade and Al-Omari (2016) proposed neoteric ranked set sampling (NRSS). In 

a similar fashion to Zamanzade and Al-Omari, Khan et al. (2019) introduced two new sampling schemes, the 

centralized ranked set sampling (CRSS) and the systematic ranked set sampling (SRSS). Recently, Taconeli (2024) 

proposed Dual-rank ranked set sampling. 

 

The idea of two-stage sampling methods which combines two RSS variations was first introduced by Al-Saleh and 

Al-Kaddiri (2000) who introduced the concept of Double Ranked Set Sampling (DRSS). Samawi (2002) proposed 
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double ERSS (DERSS), and Samawi and Tawalbeh (2002) introduced the double MRSS (DMRSS). Al-Nasser (2007) 

introduced a generalized robust sampling technique for the RSS, MRSS, and PRSS called LRSS. Taconeli and Cabral 

(2019) proposed different two-stage schemes; one is double NRSS (DNRSS) in which the first stage RSS is applied, 

while the NRSS procedure should be applied in the second stage. The second is neoteric DRSS (NDRSS) in which 

the first stage NRSS is applied, while the RSS procedure should be applied in the second stage, and the third is the 

neoteric-neoteric RSS (NNRSS) on which NRSS is applied in the two stages. They also proposed a single stage scheme 

that require ranking 𝑚3which they call extended NRSS (ENRSS). Recently, Samuh et al. (2021) proposed a two-stage 

sampling scheme by combining RSS with MRSS. The proposed scheme suggest applying RSS in the first stage and 

MRSS in the second stage, which we shall denote by MRSS(RSS).  Similarly, Hanandeh et al. (2022) proposed 

different two-stage schemes, among of the proposed schemes the one that combine ERSS in the first stage with MRSS 

in the second stage, denoted by MRSS(ERSS), was found to be the most efficient.  

 

The aim of this paper is two-folded. First, we proposed a new sampling scheme which we called the new neoteric 

ranked set sampling (N-NRSS). Second, we proposed several two-stage ranked set sampling schemes based on SRSS 

and N-NRSS. These three methods differ from other RSS variations in the sense that they require ranking sets of sizes 

m2 instead of ranking m sets of size m each. 

 

To select a sample of size n=mr using RSS, we follow the following steps: 

(1) Randomly select m2 units from the population. 

(2) Divide the m2 units into m sets each of size m. 

(3) Rank each set separately according to the variable of interest visually or using cheap method. 

(4) Select the ith ranked unit from the ith set for actual measurement; where i=1,2,…,m. 

(5) Repeat steps (1) through (4) r times to obtain a RSS of size n=mr. 

 

 

The following steps summarizes the SRSS sampling scheme for obtaining a sample of size n=mr: 

(1) Randomly select m2 units from the population. 

(2) Rank the m2 units according to the variable of interest visually or using cheap method. 

(3) Select the (m+(m-1)*(i-1)) th ranked units for actual measurement; where i=1,2,…,m. 

(4) Repeat steps (1) through (3) r times to obtain a SRSS of size n=mr. 

 

NRSS differs from SRSS only in step (3). In NRSS the units selected for actual measurements are 

(
𝑚+1

2
+𝑚 ∗ (𝑖 − 1))th  ranked units when m is odd, for i=1,2,..,m, and (𝑙 + 𝑚 ∗ (𝑖 − 1))th  ranked unit when m is 

even, where 𝑙 =
𝑚

2
+ 1 if 𝑖 is odd and 𝑙 =

𝑚

2
 if 𝑖 is even, and, for i=1,2,..,m. 

 

To illustrate the SRSS and NRSS methods, let us consider two special cases; case 1 (m=3, r=1) and case 2 

(m=4,r=1). Let 𝑌𝑖 ; 𝑖 = 1,2, … ,𝑚2 be the selected as in step (1) above and let 𝑌[𝑖]; 𝑖 = 1,2, … ,𝑚2 be the their order 

statistics. Table 1 and Table 2 show the resulted samples for the two cases mentioned above. From these tables we 

can clearly observe that the NRSS is more spread than the SRSS. 

 

 
Table 1: NRSS and SRSS when m=3 and r=1 

The selected sample The order statistics NRSS SRSS 

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6, 𝑌7, 𝑌8, 𝑌9 𝑌[1], 𝑌[2], 𝑌[3], 𝑌[4], 𝑌[5], 𝑌[6], 𝑌[7], 𝑌[8], 𝑌[9] 𝑌[2], 𝑌[5], 𝑌[8] 𝑌[3], 𝑌[5], 𝑌[7] 

 

Table 2: NRSS and SRSS when m=4 and r=1 

The selected sample The order statistics NRSS SRSS 

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6, 𝑌7, 𝑌8, 𝑌9, 
𝑌10, 𝑌11, 𝑌12, 𝑌13, 𝑌14, 𝑌15, 𝑌16 

𝑌[1], 𝑌[2], 𝑌[3], 𝑌[4], 𝑌[5], 𝑌[6], 𝑌[7], 𝑌[8], 𝑌[9], 

𝑌[10], 𝑌[11], 𝑌[12], 𝑌[13], 𝑌[14], 𝑌[15], 𝑌[16] 

𝑌[3], 𝑌[6], 𝑌[11], 𝑌[14] 𝑌[4], 𝑌[7], 𝑌[10], 𝑌[13] 

 
 

The remainder of this paper is organized as follows. Section 2 introduces the newly proposed sampling schemes. An 

extensive Monte Carlo simulation study to compare of the newly proposed sampling schemes with their competitors 
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are presented in Section 3. The proposed sampling schemes are illustrated and discussed using real data in Section 4. 

Section 5 concludes with discussion and findings 

 

2. The Proposed Sampling Schemes 

 

In this work, we proposed two single-stage sampling schemes which forms alternatives to the already available single-

stage schemes.  One of the proposed single-stage schemes requires the initial selection and ranking of m2 units which 

makes it comparable with SRSS and NRSS schemes that are already discussed earlier. The other one require the initial 

selection and ranking of m3 units which makes it comparable with ENRSS. Two two-stage sampling schemes are also 

proposed and studied. 

 

2.1 The New NRSS  

 

The new NRSS (N-NRSS) scheme is single-stage scheme that is built based on NRSS, but the selected order statistics 

in step (3) in NRSS has different ordering especially when the set size m is even. However, when 𝑚 is odd, both NRSS 

and N-NRSS select the same order statistics. The N-NRSS scheme can be described as follows: 

 

(1) Randomly select m2 units from the population. 

(2) Rank the m2 units according to the variable of interest visually or using cheap method. 

(3) Select the (
𝑚+1

2
+𝑚 ∗ (𝑖 − 1))th  ranked units if 𝑚 is odd and (𝑙 + 𝑚 ∗ (𝑖 − 1))th  ranked unit when m is 

even, where 𝑙 =
𝑚

2
  if 𝑖 ≤

𝑚

2
and 𝑙 =

𝑚

2
+ 1 if 𝑖 >

𝑚

2
; where i=1,2,..,m. 

(4) Repeat steps (1) through (3) r times to obtain a N-NRSS of size n=mr. 

 

The following two cases compare the selected units in N-NRSS with NRSS. It is clear that N-NRSS are even more 

spread than NRSS when 𝑚 is even (Table 4) and, indeed, they are identical when 𝑚 is odd (Table 3). 

Table 3: NRSS and N-NRSS when m=3 and r=1: 

The selected sample The order statistics NRSS N-NRSS 

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6, 𝑌7, 𝑌8, 𝑌9 𝑌[1], 𝑌[2], 𝑌[3], 𝑌[4], 𝑌[5], 𝑌[6], 𝑌[7], 𝑌[8], 𝑌[9] 𝑌[2], 𝑌[5], 𝑌[8] 𝑌[2], 𝑌[5], 𝑌[8] 

 

Table 4: NRSS and N-NRSS when m=4 and r=1: 

The selected sample The order statistics NRSS N-NRSS 

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6, 𝑌7, 𝑌8, 𝑌9, 
𝑌10, 𝑌11, 𝑌12, 𝑌13, 𝑌14, 𝑌15, 𝑌16 

𝑌[1], 𝑌[2], 𝑌[3], 𝑌[4], 𝑌[5], 𝑌[6], 𝑌[7], 𝑌[8], 𝑌[9], 

𝑌[10], 𝑌[11], 𝑌[12], 𝑌[13], 𝑌[14], 𝑌[15], 𝑌[16] 

𝑌[3], 𝑌[6], 𝑌[11], 𝑌[14] 𝑌[2], 𝑌[6], 𝑌[11], 𝑌[15] 

 
2.2 Extended N-NRSS 

The extended N-NRSS (EN-NRSS) scheme is single-stage scheme that is built based on N-NRSS. The EN-

NRSS requires the selection and ranking of m3 units. The EN-NRSS scheme can be described as follows: 

 

(1) Randomly select m3 units from the population. 

(2) Rank the m3 units according to the variable of interest visually or using cheap method. 

(3) Select the (
𝑚2+1

2
+𝑚2 ∗ (𝑖 − 1))th  ranked units if 𝑚 is odd and (𝑙 + 𝑚2 ∗ (𝑖 − 1))th  ranked unit when m 

is even, where 𝑙 =
𝑚2

2
  if 𝑖 ≤

𝑚

2
and 𝑙 =

𝑚2

2
+ 1 if 𝑖 >

𝑚

2
; where i=1,2,..,m. 

(4) Repeat steps (1) through (3) r times to obtain an EN-NRSS of size n=mr. 

 

Table 5 describe EN-NRSS for 𝑚 = 2 and 𝑟 = 1. 

 

Table 5: EN-NRSS when m=2 and r=1: 

The selected sample The order statistics EN-NRSS 

𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, 𝑌6, 𝑌7, 𝑌8 𝑌[1], 𝑌[2], 𝑌[3], 𝑌[4], 𝑌[5], 𝑌[6], 𝑌[7], 𝑌[8] 𝑌[2], 𝑌[7] 
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2.3 Double new neoteric ranked set sampling 

Double new neoteric ranked set sampling (DN-NRSS) is a two-stage design in which N-NRSS is applied in the 

two stages. To draw a DN-NRSS sample, apply the following steps: 

 

(1) Randomly select m3 units from the population and divide them into m sets of size m2 each. 

(2) Apply the N-NRSS on each set to obtain m sets of size m each. 

(3) Merge the sets obtained in step 2 into one set of size m2 and apply N-NRSS on this set to obtain a set of size 

m. This final set will be actually measured. 

(4) Repeat steps 1 through 3 r times to obtain a DN-NRSS sample of size n=mr. 

 

The DN-NRR is illustrated in Table 6 below for m=3. 

 

Table 6: DN-NRSS for m=3 and r=1 
Se

t 

The selected sample The order statistics N-NRSS merge DN-NRSS 

1 𝑌1
1, 𝑌2

1, 𝑌3
1, 𝑌4

1, 𝑌5
1, 𝑌6

1, 𝑌7
1, 𝑌8

1, 𝑌9
1 𝑌[1]

1 , 𝑌[2]
1 , 𝑌[3]

1 , 𝑌[4]
1 , 𝑌[5]

1 , 𝑌[6]
1 , 𝑌[7]

1 , 𝑌[8]
1 , 𝑌[9]

1  (𝑋1, 𝑋2, 𝑋3)= 

(𝑌[2]
1 , 𝑌[5]

1 , 𝑌[8]
1 ) 

𝑋1, 𝑋2, 𝑋3, 
𝑋4, 𝑋5, 𝑋6, 
𝑋7, 𝑋8, 𝑋9 

𝑋[2], 𝑋[5], 𝑋[8] 

2 𝑌1
2, 𝑌2

2, 𝑌3
2, 𝑌4

2, 𝑌5
2, 𝑌6

2, 𝑌7
2, 𝑌8

2, 𝑌9
2 𝑌[1]

2 , 𝑌[2]
2 , 𝑌[3]

2 , 𝑌[4]
2 , 𝑌[5]

2 , 𝑌[6]
2 , 𝑌[7]

2 , 𝑌[8]
2 , 𝑌[9]

2  (𝑋4, 𝑋5, 𝑋6)= 

𝑌[2]
2 , 𝑌[5]

2 , 𝑌[8]
2  

3 𝑌1
3, 𝑌2

3, 𝑌3
3, 𝑌4

3, 𝑌5
3, 𝑌6

3, 𝑌7
3, 𝑌8

3, 𝑌9
3 𝑌[1]

3 , 𝑌[2]
3 , 𝑌[3]

3 , 𝑌[4]
3 , 𝑌[5]

3 , 𝑌[6]
3 , 𝑌[7]

3 , 𝑌[8]
3 , 𝑌[9]

3  (𝑋7, 𝑋8, 𝑋9)
= 𝑌[2]

3 , 𝑌[5]
3 , 𝑌[8]

3  

 

2.4 Double systematic ranked set sampling 

 

In a similar fashion of DN-NRSS, the Double systematic ranked set sampling (DSRSS) is a two-stage 

scheme in which SRSS is applied in the two stages. The following steps summarizes DSRSS: 

 

(1) Randomly select m3 units from the population and divide them into m sets of size m2 each. 

(2) Apply the SRSS on each set to obtain m sets of size m each. 

(3) Merge the sets obtained in step 2 into one set of size m2 and apply SRSS on this set to obtain a set of size m. 

This final set will be actually measured. 

(4) Repeat steps 1 through 3 r times to obtain a DSRSS sample of size n=mr. 

 

The DN-NRR is illustrated in the Table 7 for m=3 and r=1. 

 

Table 6: DSRSS for m=3 and r=1 
Se

t 

The selected sample The order statistics SRSS merge DSRSS 

1 𝑌1
1, 𝑌2

1, 𝑌3
1, 𝑌4

1, 𝑌5
1, 𝑌6

1, 𝑌7
1, 𝑌8

1, 𝑌9
1 𝑌[1]

1 , 𝑌[2]
1 , 𝑌[3]

1 , 𝑌[4]
1 , 𝑌[5]

1 , 𝑌[6]
1 , 𝑌[7]

1 , 𝑌[8]
1 , 𝑌[9]

1  (𝑋1, 𝑋2, 𝑋3)= 

(𝑌[3]
1 , 𝑌[5]

1 , 𝑌[7]
1 ) 

𝑋1, 𝑋2, 𝑋3, 
𝑋4, 𝑋5, 𝑋6, 
𝑋7, 𝑋8, 𝑋9 

𝑋[3], 𝑋[5], 𝑋[7] 

2 𝑌1
2, 𝑌2

2, 𝑌3
2, 𝑌4

2, 𝑌5
2, 𝑌6

2, 𝑌7
2, 𝑌8

2, 𝑌9
2 𝑌[1]

2 , 𝑌[2]
2 , 𝑌[3]

2 , 𝑌[4]
2 , 𝑌[5]

2 , 𝑌[6]
2 , 𝑌[7]

2 , 𝑌[8]
2 , 𝑌[9]

2  (𝑋4, 𝑋5, 𝑋6)= 

𝑌[3]
2 , 𝑌[5]

2 , 𝑌[7]
2  

3 𝑌1
3, 𝑌2

3, 𝑌3
3, 𝑌4

3, 𝑌5
3, 𝑌6

3, 𝑌7
3, 𝑌8

3, 𝑌9
3 𝑌[1]

3 , 𝑌[2]
3 , 𝑌[3]

3 , 𝑌[4]
3 , 𝑌[5]

3 , 𝑌[6]
3 , 𝑌[7]

3 , 𝑌[8]
3 , 𝑌[9]

3  (𝑋7, 𝑋8, 𝑋9)
= 𝑌[3]

3 , 𝑌[5]
3 , 𝑌[7]

3  

 

3. Simulation Study 

 

In this section we performed an extensive Monte Carlo simulation study to assess the performance of the proposed 

sampling schemes for estimating the population mean for several symmetric and asymmetric popular statistical 

distributions. The selected distributions were considered by many authors; see for example Hanandeh et al., (2022) 

and the references therein. The proposed schemes are compared with their counterparts; namely NNRSS, ENRSS 

(Taconeli and Cabral, 2019), MRSS(RSS) (Samuh et al., 2021), and MRSS(ERSS) (Hanandeh et al., 2022).  
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To assess the effect of the set size, 𝑚, we considered different set size values ranging from 3 to 6. Note that for larger 

set sizes, the proposed schemes are not feasible in practice especially those requiring ranking 𝑚2 units at each stage, 

therefore larger 𝑚 values were not considered. To increase sample size one may choose a larger 𝑟, however, the 

efficiency of the proposed methods with respect to SRS will not be affected by the value of 𝑟. Therefore, we set 𝑟 = 1 

in all of our simulations. Please note that all samplings are done from infinite populations 

 

Different scenarios were considered by combining each set size with each sampling method. For each scenario, 

N=100,000 datasets were selected from each distribution and the mean square error (MSE) of the mean estimate were 

calculated. sampling schemes were then compared using the relative efficiency (RE) of the mean estimators based on 

the proposed sampling schemes when compared with the mean estimator based on SRS. Let �̅�𝑀𝑖, denote the sample 

mean based on sampling scheme 𝑀 and dataset 𝑖 and let µ be the true population mean, the MSE of  �̅�𝑀 is defined as  

𝑀𝑆𝐸(�̅�𝑀) =
∑ (�̅�𝑀𝑖−𝜇)

2𝑁
𝑖=1

𝑁
, 

and the RE of �̅�𝑀 with respect to �̅�𝑆𝑅𝑆 is defined as 

𝑅𝐸(�̅�𝑀) =
𝑀𝑆𝐸(�̅�𝑆𝑅𝑆)

𝑀𝑆𝐸(�̅�𝑀)
. 

The results of the simulation studies are given in Tables 7 to 10. The following summarizes the findings 

- For logistic and student-t distributions, DSRSS is the most efficient method, followed by EN-NRSS and 

ENRSS. 

-  For other symmetric distributions, EN-NRSS and ENRSS perform almost the same and are the most 

efficient methods compared to the other sampling schemes, followed by DN-NRSS and NNRSS.  

-  For asymmetric distributions, EN-NRSS is the most efficient scheme followed by ENRSS and DN-NRSS 

especially as for even m. 

In general, we recommend EN-NRSS for asymmetric distributions, DRSS for logistic and student-t distributions, 

and either EN-NRSS or ENRSS for any other symmetric distributions. 

 

Table 7: Relative efficiency for RSS-based estimators under perfect ranking when m=3 

Distribution DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 
U(0,1) 3.043 2.408 2.406 6.592 7.589 7.589 6.534 4.168 

N(0,1) 2.652 3.628 3.653 7.113 8.047 8.047 7.123 6.925 

logistic(0,1) 2.424 4.329 4.33 7.645 8.613 8.613 7.636 8.559 

student-t(4) 2.078 5.574 5.59 9.317 10.325 10.325 9.3 11.467 

Beta(3,3) 2.827 3.06 3.063 6.66 7.636 7.636 6.668 5.681 

ArcSin(0,1) 3.022 1.903 1.896 6.883 8.114 8.114 6.862 3.102 

Beta(5,2) 2.676 2.818 2.799 6.569 7.544 7.544 6.586 4.976 

Rayleigh(1) 2.63 3.029 3.032 6.754 7.607 7.607 6.8 5.523 

Half Normal(2) 2.489 2.403 2.404 6.543 7.327 7.327 6.559 4.207 

Exponential(1) 2.032 2.032 2.035 6.405 7.238 7.238 6.368 3.422 

Gamma(2,3) 2.261 2.526 2.506 6.612 7.502 7.502 6.595 4.338 

ChiSquare(3) 2.192 2.304 2.305 6.585 7.287 7.287 6.557 3.947 

LogNormal(0,1) 1.488 2.448 2.438 7.629 8.791 8.791 7.644 4.038 

Pareto(1,3) 1.486 3.052 3.047 8.806 10.849 10.849 8.841 4.507 

Weibull(0.5,1) 1.297 2.118 2.125 7.309 8.297 8.297 7.304 3.483 

Gamma(0.5,1) 1.706 1.635 1.637 6.11 6.977 6.977 6.14 2.702 

 

Table 8: Relative efficiency for RSS-based estimators under perfect ranking when m=4 

Distribution DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 
U(0,1) 4.295 3.484 3.346 11.457 13.969 14.852 16.447 8.019 

N(0,1) 3.541 5.095 3.554 13.207 14.602 14.557 12.126 12.836 

logistic(0,1) 3.096 5.94 3.776 14.609 15.814 15.342 11.329 15.652 

student-t(4) 2.541 7.684 4.381 18.16 19.231 18.283 11.775 20.767 

Beta(3,3) 3.897 4.352 3.422 12.179 14.023 14.342 13.23 10.65 

ArcSin(0,1) 4.313 2.792 3.31 12.888 15.019 16.063 20.789 6.288 

Beta(5,2) 3.649 3.558 3.306 11.085 13.437 14.041 12.292 7.712 

Rayleigh(1) 3.46 3.802 3.362 11.343 13.553 14.071 12.156 8.586 
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Half Normal(2) 3.296 2.742 3.149 9.441 12.403 13.509 11.38 5.375 

Exponential(1) 2.525 1.958 2.935 7.457 10.831 12.55 9.271 3.43 

Gamma(2,3) 2.893 2.675 3.145 9.222 12.19 13.341 10.492 5.091 

ChiSquare(3) 2.76 2.35 3.062 8.401 11.704 13.085 9.983 4.302 

LogNormal(0,1) 1.667 2.113 3.359 6.95 10.982 13.279 10.558 3.5 

Pareto(1,3) 1.532 2.49 4.054 7.607 11.544 14.144 12.974 3.878 

Weibull(0.5,1) 1.45 1.706 3.018 5.841 9.08 11.4 9.67 2.87 

Gamma(0.5,1) 2.09 1.465 2.641 6.064 9.607 11.728 7.985 2.45 

 

Table 9: Relative efficiency for RSS-based estimators under perfect ranking when m=5 

Distribution DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 
U(0,1) 5.679 4.365 3.257 20.427 23.212 23.212 20.291 13.599 

N(0,1) 4.447 7.328 5.256 20.578 23.361 23.361 20.64 20.673 

logistic(0,1) 3.845 9.107 6.432 21.764 24.578 24.578 21.629 25.249 

student-t(4) 2.891 12.197 8.631 25.187 28.798 28.798 25.184 32.517 

Beta(3,3) 5.101 6.037 4.374 19.993 22.655 22.655 20.029 17.568 

ArcSin(0,1) 5.747 3.144 2.432 21.189 23.993 23.993 21.036 11.089 

Beta(5,2) 4.641 3.547 3.084 19.068 21.845 21.845 19.211 10.084 

Rayleigh(1) 4.453 4.13 3.472 18.817 21.906 21.906 18.931 11.263 

Half Normal(2) 4.144 2.214 2.132 17.354 20.08 20.08 17.259 6.114 

Exponential(1) 2.992 1.267 1.345 14.263 16.629 16.629 14.177 3.436 

Gamma(2,3) 3.508 1.994 2.001 16.308 18.89 18.89 16.333 5.409 

ChiSquare(3) 3.329 1.661 1.698 15.551 17.811 17.811 15.482 4.503 

LogNormal(0,1) 1.801 1.331 1.432 12.418 14.024 14.024 12.371 3.36 

Pareto(1,3) 1.666 1.574 1.688 15.99 15.955 15.955 16.012 4.439 

Weibull(0.5,1) 1.556 1.036 1.128 10.306 11.406 11.406 10.231 2.59 

Gamma(0.5,1) 2.427 0.864 0.953 12.029 14.233 14.233 12.141 2.33 

 

Table 10: Relative efficiency for RSS-based estimators under perfect ranking when m=6 

Distribution DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 
U(0,1) 7.24 5.598 5.039 29.718 33.957 34.553 34.676 21.037 

N(0,1) 5.387 9.123 5.361 30.618 34.45 34.39 29.453 29.995 

logistic(0,1) 4.51 11.392 5.724 32.522 35.56 35.195 28.615 36.032 

student-t(4) 3.202 15.095 6.694 38.995 41.332 40.566 30.7 46.847 

Beta(3,3) 6.308 7.614 5.148 29.29 33.533 33.775 30.737 25.757 

ArcSin(0,1) 7.349 4.091 5.57 31.542 35.345 36.029 38.408 17.849 

Beta(5,2) 5.698 3.71 4.811 25.366 30.982 31.868 29.671 11.981 

Rayleigh(1) 5.434 4.373 4.932 25.254 30.604 31.458 29.882 13.584 

Half Normal(2) 5.012 2.129 4.401 20.223 27.507 29.278 29.251 6.617 

Exponential(1) 3.508 1.148 3.811 13.831 21.109 23.693 26.692 3.416 

Gamma(2,3) 4.144 1.867 4.302 17.871 24.996 27.014 27.81 5.601 

ChiSquare(3) 3.921 1.527 4.106 16.287 23.756 26.077 27.903 4.62 

LogNormal(0,1) 1.923 1.152 3.641 10.032 15.492 17.749 27.804 3.155 

Pareto(1,3) 1.793 1.416 4.476 10.617 15.917 18.209 31.484 3.499 

Weibull(0.5,1) 1.765 0.921 3.168 7.916 12.334 14.35 25.449 2.451 

Gamma(0.5,1) 2.767 0.767 3.258 10.337 17.272 20.084 24.325 2.24 

 

4. Real Data Example 

In this section we will analyze the spati2 dataset that is available in the R-package `Imfor’ (Mehtatalo, 2018). The 

dataset was collected by Pukkala (1989) and consists of the heights and diameters of 1678 Scots pine trees in Ilomantsi, 

Finland. The variable of interest is the height of trees and the aim is to estimate the mean of the trees heights. Figure 

1 shows the distribution of trees heights and the scatter plot of diameter vs heights. It can be seen that the heights are 
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unimodal, skewed to the right, and have a strong positive correlation with diameter (Pearson’s correlation =0.866). 

The summary statistics of heights are presented in Table 11. 

 

Since the diameter of the trees is more accessible and easy to rank visually, the data will be analyzed twice: First, 

ranking will be done according to the height variable which is considered perfect ranking. Second, ranking will be 

done according to the diameter variable, that is imperfect ranking. We considered the same set sizes (m=3,4,5, and 6). 

Foe each set size, 100,000 datasets were samples from the heights data using the sampling schemes DRSS, 

MRSS(RSS), MRSS(ERSS), NNRSS, ENRSS, EN-NRSS, DN-NRSS, and DSRSS. The relative efficiency of the 

proposed schemes with respect to SRS are presented in Table 12 for perfect ranking and Table 13 for imperfect 

ranking. The result agrees with the simulation study for asymmetric distributions. The newly proposed EN-NRSS 

slightly outperforms other sampling schemes, regardless whether the ranking is perfect or imperfect, followed by 

ENRSS and DN-NRSS.  

 

 
 

Figure 1: Histogram of trees heights (left) and scatter plot of diameter vs heights (right) 

 

Table 11: Descriptive statistics of trees heights (in meter) 

N Mean Min Q1 Median Q3 Max 

1678 9.566 1.9 6 8 11.7 28 

 

Table 12: Relative efficiency of different sampling schemes with perfect ranking 

m DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 

3 2.3329 2.8234 2.8234 5.336 6.0278 6.0278 5.336 3.668 

4 3.0726 3.0326 2.7619 7.209 11.16 12.2737 8.2034 3.8033 

5 3.9119 2.4917 2.4649 17.9963 21.7443 21.7443 17.9963 3.8618 

6 4.7117 2.3047 3.616 19.4607 28.8618 30.2444 21.9428 3.9429 

 

Table 13: Relative efficiency of different sampling schemes with imperfect ranking 

m DRSS MRSS(RSS) MRSS(ERSS) NNRSS ENRSS EN-NRSS DN-NRSS DSRSS 

3 1.8102 2.2993 2.3118 2.6482 2.7391 2.7537 2.6368 2.8492 

4 2.1158 2.393 2.0075 2.8656 3.3838 3.5158 3.3538 2.7698 

5 2.4082 2.4787 2.3124 3.8867 4.1161 4.1186 3.8775 2.6496 

6 2.659 2.3647 2.2589 3.6645 4.3791 4.4526 4.2859 2.6515 
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5. Discussion and Conclusion 

In this paper we proposed four sampling schemes based on NRSS and SRSS, to estimate the population mean. 

These sampling schemes are compared with the old sampling schemes through an extensive Monte Carlo 

simulation study as well as a real data example on heights of pine trees. 

It is observed that some of the newly proposed methods, namely EN-NRSS and DN-NRSS outperform all 

previously proposed methods especially for asymmetric distributions. This also can be observed from the real 

data example in both cases when ranking is done perfectly or with error. EN-NRSS is followed by ENRSS in the 

real data example. 

For symmetric distributions, the newly proposed schemes EN-NRSS and DSRSS outperform other schemes 

followed by NNRSS and ENRSS. This can be clearly seen for logistic and student’s t distributions. 

 It is worth mentioning that EN-NRSS and ENRSS requires ranking m3 units which might not be an easy task in 

practice especially for moderate and large m, therefore, it might be easier to consider applying DN-NRSS or 

NNRSS which provide a competitive performance to EN-NRSS.  

As a future work, the efficiency of the proposed methods in estimating other population parameters, such as the 

variance, is to be considered. To the best of our knowledge, most work has focused on the estimation of the 

population mean. 
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APPENDIX: R code for the simulation Study 

 
 

rnd=function(ss) rnorm(ss) 

mu=0 

 

#runif(ss) 

#mu=0.5 

 

#rnorm(ss) 

#mu=0 

 

#rlogis(ss) 

#mu=0 

 

#rt(ss,df=4) 

#mu=0 

 

#rbeta(ss,3,3) 

#mu=0.5 

 

# (sin(0.5*pi*runif(ss)))^2 

#mu=0.5 

 

#rbeta(ss,5,2) 

#mu=5/7 

 

#sqrt(rexp(ss,1)) 

#mu=gamma(1.5) 

 

#abs(rnorm(ss,mean=0,sd=2)) 

#mu=2*sqrt(2/pi) 
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#rexp(ss,1) 

#mu=1 

 

#rgamma(ss,2,rate=3) 

#mu=2/3 

 

#rgamma(ss,1.5,scale=2) 

#mu=3 

 

#rlnorm(ss) 

#mu=exp(0.5) 

 

#(1-runif(ss))^(-1/3) 

#mu=1.5  

 

#rweibull(ss, 0.5, 1) 

#mu=gamma(3) 

 

#rgamma(ss,0.5,scale=1) 

#mu=0.5 

 

iter=1e5 

dic=3 

 

time1=Sys.time() 

 

 

for(m in c(3,4,5,6)) 

{ 

r=1 

n=m*r 

k=floor(m/2) 

ymat=matrix(0,m,m) 

 

xbar1=rep(NA,iter) ## SRS 

xbar2=rep(NA,iter) ## DRSS 

xbar3=rep(NA,iter) ## MRSS(RSS) 

xbar4=rep(NA,iter) ## MRSS(ERSS) 

xbar5=rep(NA,iter) ## NNRSS 

xbar6=rep(NA,iter) ## ENRSS 

xbar7=rep(NA,iter) ## EN-NRSS 

xbar8=rep(NA,iter) ## DN-NRSS 

xbar9=rep(NA,iter) ## DSRSS 

 

 

for(j in 1:iter) 

{ 

 

##### SRS ###### 

xdata=NA 

xsrs=rnd(n)    

xbar1[j]=mean(xsrs) 

 

##### DRSS ####### 

 

xdata=NA 
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for(i in 1:r) 

{ 

x=array(rnd(m^3),dim=c(m,m,m)) 

xs=apply(x,c(2,3),sort) 

y=apply(xs,3,diag) 

y=apply(y,2,sort) 

xdata=c(xdata,diag(y)) 

} 

xdata=xdata[-1] 

xbar2[j]=mean(xdata) 

 

##### RSS then MRSS ##### 

 

xdata=NA 

 

for(i in 1:r) 

{ 

x=array(rnd(m^3),dim=c(m,m,m)) 

xs=apply(x,c(2,3),sort) 

y=apply(xs,3,diag) 

 

if(k==(m/2)) 

{ 

   ys=apply(y,2,sort) 

   data=c(ys[k,1:k],ys[k+1,(k+1):m]) 

   }else{ 

   data=apply(y,2,median) 

} 

 

xdata=c(xdata,data) 

 

} 

xdata=xdata[-1] 

xbar3[j]=mean(xdata) 

 

##### ERSS then MRSS ##### 

 

xdata=NA 

 

for(i in 1:r) 

{ 

x=array(rnd(m^3),dim=c(m,m,m)) 

a=apply(x,c(2,3),min) 

b=apply(x,c(2,3),max) 

 

if(k==(m/2)) 

{ 

   ymat[1:k,]=a[1:k,] 

   ymat[(m-k+1):m,]=b[(m-k+1):m,] 

   ymat=apply(ymat,2,sort) 

   a=ymat[k,] 

   b=ymat[k+1,] 

   data=c(a[1:k],b[(k+1):m]) 

   }else{ 

   c1=apply(x,c(2,3),median) 

   ymat[1:k,]=a[1:k,] 

   ymat[(m-k+1):m,]=b[(m-k+1):m,] 
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   ymat[k+1,]=c1[k+1,] 

   data=apply(ymat,2,median) 

} 

 

xdata=c(xdata,data) 

} 

xdata=xdata[-1] 

xbar4[j]=mean(xdata) 

 

##### NRSS then NRSS (NNRSS) ##### 

 

xdata=NA 

 

for(i in 1:r) 

{ 

x=matrix(rnd(m^3),m,m^2) 

xs=apply(x,1,sort) 

 

if(k==m/2) 

{ 

ll=rep(c((m+2)/2,k),k) 

id=ll+m*(0:(m-1)) 

y=xs[id,] 

ys=sort(y) 

data=ys[id] 

}else{ 

id=(m+1)/2+m*(0:(m-1)) 

y=xs[id,] 

ys=sort(y) 

data=ys[id] 

} 

xdata=c(xdata,data) 

} 

xdata=xdata[-1] 

xbar5[j]=mean(xdata) 

 

##### ENRSS ##### 

 

x=rnd(m^3) 

xs=sort(x) 

 

if(k==m/2) 

{ 

ll=rep(c((m^2+2)/2,m^2/2),k) 

id=ll+m^2*(0:(m-1)) 

data=xs[id] 

}else{ 

id=(m^2+1)/2+m^2*(0:(m-1)) 

data=xs[id] 

} 

xbar6[j]=mean(data) 

 

 

 

##### EN-NRSS ##### 
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if(k==m/2) 

{ 

ll=rep(c(m^2/2,(m^2+2)/2),each=k) 

id=ll+m^2*(0:(m-1)) 

data=xs[id] 

}else{ 

id=(m^2+1)/2+m^2*(0:(m-1)) 

data=xs[id] 

} 

 

xbar7[j]=mean(data) 

 

 

##### NEW NRSS then New NRSS ##### 

 

xdata=NA 

 

for(i in 1:r) 

{ 

x=matrix(rnd(m^3),m,m^2) 

xs=apply(x,1,sort) 

 

if(k==m/2) 

{ 

ll=rep(c(k,k+1),each=k) 

id=ll+m*(0:(m-1)) 

y=xs[id,] 

ys=sort(y) 

data=ys[id] 

}else{ 

id=(m+1)/2+m*(0:(m-1)) 

y=xs[id,] 

ys=sort(y) 

data=ys[id] 

} 

xdata=c(xdata,data) 

} 

xdata=xdata[-1] 

xbar8[j]=mean(xdata) 

 

 

##### SRSS then SRSS ##### 

 

xdata=NA 

 

for(i in 1:r) 

{ 

x=matrix(rnd(m^3),m,m^2) 

xs=apply(x,1,sort) 

id=(m-1)*(0:(m-1))+m 

y=xs[id,] 

ys=sort(y) 

data=ys[id] 

xdata=c(xdata,data) 

} 

xdata=xdata[-1] 

xbar9[j]=mean(xdata) 
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} 

 

mse1=sum((xbar1-mu)^2)/iter 

mse2=sum((xbar2-mu)^2)/iter 

mse3=sum((xbar3-mu)^2)/iter 

mse4=sum((xbar4-mu)^2)/iter 

mse5=sum((xbar5-mu)^2)/iter 

mse6=sum((xbar6-mu)^2)/iter 

mse7=sum((xbar7-mu)^2)/iter 

mse8=sum((xbar8-mu)^2)/iter 

mse9=sum((xbar9-mu)^2)/iter 

 

cat(round(mse1/mse2,dic),round(mse1/mse3,dic),round(mse1/mse4,dic),round(mse1

/mse5,dic),round(mse1/mse6,dic),round(mse1/mse7,dic),round(mse1/mse8,dic),rou

nd(mse1/mse9,dic),"\n") 

 

} 

 

 

time2=Sys.time() 

print(time2-time1) 

 




