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Abstract 

The Gamma and Log-Normal distributions are frequently used in reliability to analyze lifetime data. The 

two distributions overlap in many cases and make it difficult to choose the best one. The ratio of 

maximized likelihood (RML) has been extensively used in choosing between them. But the Kullback-

Leibler information is a measure of uncertainty between two functions, hence in this paper, we examine the 

use of Kullback-Leibler Divergence (KLD) in discriminating either the Gamma or Log-Normal 

distribution. Therefore, the ration of minimized Kullback-Leibler Divergence (RMKLD) test statistic is 

introduced and its applicability will be explained by two real data sets. Although the consistency of the new 

test statistic with RML is convinced, but the KLD has higher probability of correct selection when the null 

hypothesis is Gamma.  

Keywords: Gamma Distribution, Kullback-Leibler Divergence, Log-Normal 

Distribution, Model Discrimination, Probability of Correct Selection, Ratio of Maximized 

Likelihood.  

Introduction 

Generally, positively skewed data play an important role in the reliability analysis. There 

are some well-known statistical distributions to model such data. For instance, Weibull, 

Inverse Gaussian, Gamma and Log-Normal distributions have been used in analyzing 

skewed positive data. These distributions are often interchangeable and commonly used 

to model certain lifetimes in reliability and survival analysis (Wiens, 1999). Although 

these models may provide similar data fit for moderate sample sizes, still it is desirable to 

select the correct model and make the best possible decision based on observed data. 

Often choosing a particular model is difficult and the relevant effect of mis-selection of 

model can be quite severe (Kundu and Manglick, 2005). 

 

Gamma distribution has been used frequently in reliability analysis to describe the 

distribution and behaviour of lifetime data. Characteristics and details on this distribution 

has been widely studied by Cohen and Whitten (1988) and Burnham and Anderson 

(2002). On the other hand, Log-Normal distribution is commonly used to model lifetimes 

in reliability and survival analysis, among several other distributions. However, survival 

times of patients with certain types of cancer, failure times of semiconductor devices, and 

insurance claim payments are a few of examples where can be well modeled by either 
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distributions. See Meeker and Escobar (1998), Blishke and Murthy (2000) and Crow and 

Shimitzu (1988)and the references therein for an overview on the two models. 

 

Selection of the best model among several potential and candidate distributions is a prime 

problem of interest in lifetime analysis (Lawless, 1982). It is well-known that Gamma 

and Log-Normal distributions can be used quite effectively to analyze positive skewed 

data sets (Wiens, 1999). It is not easy to discriminate between the two distributions 

because they are quite flexible with possible overlapping behaviors in some cases. The 

problem of discrimination between the two distributions for testing whether some given 

data follow one of them is not a new subject in statistics and it has been well studied in 

the literature, so far. For instance, see (Dumonceaux and Antle, 1973; Kundu and 

Manglick, 2004; Pascual, 2005; Pasha et. al., 2006; and Dey and Kundu, 2009). The idea 

has been examined by discriminating between Gamma and Weibull distributions (Bain 

and Englehardt, 1980; Fearn and Nebenzahl, 1991; and Mohd Saat et al., 2008), between 

Gamma and Log-Normal distributions (Firth, 1988; Wiens, 1999; Kundu and Manglick, 

2005). The subject has been extended to select between Log-Normal and Weibull (and 

also further other potential distributions) and discriminating more than two distributions 

(Dumonceaux and Antle, 1973; Dey and Kundu, 2009; Basu et al., 2009; Dey and 

Kundu, 2012; Bromideh, 2012). 

 

So far, the ratio of maximized likelihood (RML) is mostly used in the literature to choose 

suitable models among others. But in some cases it is not the best test statistic and 

definitely it relays on sample size. For instance, to discriminate between Weibull and 

Log-Normal, RML is not a suitable selection criteria due to lack of inclusion of the 

location parameter of Log-Normal ( ) and on the other hand, for small sample size it has 

low power (Dumonceaux and Antle, 1973). Mohd Saat et al (2008) compared RML with 

Vuong's closeness test to discriminant between Gamma and Weibull, in which they found 

both methods relatively similar. Similar work to compare RML with Kolmogorov-

Smirnov and Chi-Squared (with asymptomatic properties) has been studied and some 

inconsistency among them are reported (Basu et al, 2009). Despite of significant amount 

of work on discrimination by different methods, there is no much work to use the KLD 

and compare it with alternatives test statistic (Bromideh, 2012). However, this paper aims 

to fill this gap by examining selection between Gamma and Log-Normal distributions. 

 

Due to increasing applications of lifetime models, special attention is given to the 

discrimination between Gamma and Log-Normal distributions. Therefore, we consider 

the problem of discriminating between the two distributions. Further, this paper aims to 

introduce a new test statistic based on Kullback-Leibler information 

(distance/divergence) for model selection purposes. An advantage of this method is that it 

incorporates information contained in both models. Second, all parameters of both 

models play important role in the testing statistic. Generally, the KLD between two 

models (P and Q) indicates that it can be used to determine "how far away" a probability 

distribution P (say, Gamma) from another distribution Q, (say Log-Normal) (Burnham 

and Anderson, 2002). Recently, Bromideh (2012) introduced a new test statistics based 

on KLD to discriminate between two models. Applicability of his approach needs to 

generate critical values and then judge to reject or accept the null hypothesis. In this 

paper we extended his method by elimination of such calculation and make the algorithm 
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very simple to test the hypotheses. In fact, we proposed the ratio of minimized KLD 

(RMKLD) as a test statistic, and hence, there is no need to generate critical values, which 

is given in the following sections. 

 

The rest of the paper is organized as follows. In the following section, a brief presentation 

of Gamma and Log-Normal distributions will be provided. In section 3, the proposed test 

statistic (RMKLD) will be discussed and the simulated probability of correct selection 

(PCS) for different parameters and sample sizes will be reported. Two real data sets are 

analyzed in section 4 to explain how the proposed method works in practice and their 

PCS will be reported. Finally, we will conclude the discussion in the last section. 

Preliminary: Gamma and Log-Normal Distributions 

Gamma and Log-Normal distributions are among the possible models to analysis lifetime 

data in reliability and survival analysis. Both distributions are well-known and their 

properties have been comprehensively discussed in statistical literature (Burnham and 

Anderson, 2002); but the notation is somehow different. To make it clear, the Gamma 

and Log-Normal distributions are recalled. 

 

A positive random variable X  is said to has a Gamma distribution, denoted by  

( , )Ga   , when it has the probability density function (PDF) of  
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A numerical analysis is required to estimate the unknown parameters of   and   in a 

Gamma distribution. The developed R codes to estimate the parameters of a Gamma 

distribution can be shared upon request. 

 

A random variable X  is distributed as Log-Normal, denoted as 2( , )LN   , if ln( )X  is 

Normally distributed, e.g. 2ln( ) ( , )X N   . The PDF of X  is given by:  

 
2

2

2

1 (ln( ) )
( | , ) = ( )

22

x
g x exp

x


 




     (3) 

where > 0, > 0x   and > 0 . The MLE of   and 2  are given below, respectively:  
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Model Selection: Gamma or Log-Normal? 

Let 1 2, , , kx x x  are independent and identically distributed (iid) random variables from 

any one of the two probability distributions. Consider testing these hypotheses: 

 0 : ( , )iH X Ga          (5) 

against 

 2

1 : ( , )iH X LN          (6) 

 

The main purpose of this paper is testing (5) against (6). Among the various testing 

methods, the most attention has been taken into consideration by goodness-of-fitness and 

RML. Initially, Dumonceaux and Antle (1973) introduced a test statistic with the concept 

of ratio of two likelihoods. Previously, a simplified version of RML (as the ratio of Log-

logarithm of two distributions) is widely used (Kundu and Manglick, 2005; Pascual, 

2005; Mohd Saat et al, 2008). We recall the RML for testing (5) against (6) as: 

 
ˆˆ( , )

= ln
ˆ ˆ( , )

Ga

LN

L
T

L

 

 

 
 
 

       (7) 

where LNL  and GaL  denotes on likelihoods of Log-Normal and Gamma distributions, 

respectively (see Kundu and Manglick, 2005). Recently, Bromideh (2012) introduced 

KLD as a new test statistic to discriminate between Weibull and Log-Normal 

distributions, but it relies on generated critical values to test the hypotheses. To make it 

easy to follow, we extended his method by replacing the KLD with RMKLD which is 

presented in the following subsection. 

Kullback-Leibler Divergence based Test Statistic 

In probability and information theory, the Kullback-Leibler divergence (also information 

discrepancy, information gain, and relative entropy) is a non-symmetric measure of the 

difference (dissimilarity) between two probability distributions f and h. The Kullback-

Leibler information between two models f and h is defined for continuous functions as: 

( )
( , ) = ( ) ( )

( )

f x
KLD f h f x ln dx

h x      (8) 

 

It denotes the "information lost when h is used to approximate f or the distance from h to 

f." In other words, the KLD is a measure of inefficiency of assuming that the distribution 

is h when the true distribution is f. Since the measure from f to h is not the same as the 

measure from h to f, then it can be conceptualized as a "directed/oriented distance" 

between the two models (Burnham and Anderson, 2002). 

 

The KLD is a natural distance function between models and it is a fundamental quantity 

in science and information theory. Also, it is a logical base for model selection in 

conjunction with likelihood inference. Values of KLD are not based on only the mean 

and variance of the distributions; rather, the distributions in their entirety are the subject 
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of comparison. The later is regarded an advantage of the KLD as a test statistic. It is well 

known that ( , ) ( , )KLD h f KLD f h  and ( , ) 0KLD f h   and the equality holds if and 

only if =f h  (Burnham and Anderson, 2002). The smaller ( , )KLD f h  means that "f" is 

preferred." 

 

However, the KLD (based test statistic) is considered as a ruler to measure the similarity 

between the two hypotheses/distributions. We define our test statistic as the natural 

logarithm of two ratios of KLDs. The idea is similar to RML, in which we are interested 

in selection of a model maximizing the likelihood. But in the new test statistic, we are 

interested to select the model minimizing the KLD, that's why we named it as ratio of 

minimized KLD (RMKLD). To simplify the concept, we introduce the RMKLD testing 

procedure as follows:  1  

•   Calculate KLD(f, h) and KLD(h, f)  

•   Compute 
( , )

= ln
( , )

KLD f h
KLD

KLD h f

 
 
 

  

•  Select f if < 0KLD .  

 

In the following we provide KLD calculation for Gamma and Log-Normal distributions. 

Kullback-Leibler Divergence of Gamma and Log-Normal 

The KLD between a Log-Normal and Gamma distributions is defined as: 

0

0
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= ( ( )) ( )ln( ( ))

LN
LN Ga LN

Ga

LN LN Ga

h x
KLD h x f x h x dx

f x

H h x h x f x dx








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where ( )Gaf x  denotes on Gamma distribution and ( )LNh x  is the PDF of Log-Normal 

distribution and ( ( ))LNH h x  is the Entropy of Log-Normal distribution. 

 

Finally, the KLD test statistic for testing Log-Normality vs. Gamma is given by: 

2

2

1
( ( ), ( )) = ln( ( )) (ln( ) ) ln(2 )

2

1
exp( )

2

LN GaKLD h x f x e     
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
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  (10) 

 

However, small values of KLD  in (10), indicates that the data come from a Log-Normal 

distribution (Burnham and Anderson, 2002). As we are considering the choice of a model 

as a test of hypothesis, it is important to allow either of the models to be the null 

hypothesis. We suppose that the researcher would assign to the null hypothesis the model 

which prefers to use, unless there is convincing evidence that one should use the other. In 

order to allow the researcher this choice, we next provide the KLD for testing a Gamma 
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vs. Log-Normal distribution. In other words, the KLD for testing 0 : ( , )H x Ga    vs. 
2

1 : ( , )H x LN    is given by: 

2

2

( ( ), ( )) = ln( 2 ) ln( ( )) (1 (0, ))

1
{[ ln( ) ( )] (1, )}

2

Ga LNKLD f x h x    

   


   

   
  (11) 

where ( , )n   is the thn  polygamma function (i.e, the thn  derivative of the digamma 

function). Again, the smaller values of (Error! Reference source not found.) emphasize 

on Gamma distribution. 

 

Finally, the selection procedure is: "Choose the Log-Normal distribution if 

( ( ), ( )
ln < 0;

( ( ), ( )

LN Ga

Ga LN

KLD h x f x

KLD f x h x

 
 
 

 otherwise choose the Gamma distribution as the best 

model." Since it is difficult to compute the exact distributions of ( ( ), ( ))LN GaKLD h x f x  

and ( ( ), ( ))Ga LNKLD f x h x , therefore, we use Mote Carlo simulations to compute the PCS 

for different sample sizes and parameters. Detail of simulation is provided in the 

following section. 

Simulation: PCS of RMKLD 

In this section we explain how the proposed RMKLD test statistic works for different 

parameters and sample sizes. The Monte Carlo simulations are used to compute the 

probability of correct selection for both KLD tests provided in (10) and (11). We consider 

different sample sizes ( = 20,30,50,100n ) and different parameters of the null 

distributions. In the previous similar studies, it's found that   and   have a negligible 

impact on RML and by simulation we found the same results in our KLD approach. We, 

therefore, set them to be equal to 1. 

 

First, we consider the case of (5) when the distribution of null hypothesis is Gamma. For 

this case, we set = (0.5,1.0,1.5,2.0),  and generate a random sample of size n from a 

( ,1).Ga   We compute ( ( ), ( ))Ga LNKLD f x h x  and ( ( ), ( ))LN GaKLD h x f x  from the equation 

(10) and (11), respectively. We, therefore, replicate the process 15,000 times and 

compute the percentage of the times if < 0KLD  as the PCS for Gamma distribution. We 

have also computed the PCS for RML method and the results are reported in Table 1. 
 

  n      20   30   50   100  

  0.5   0.9531   0.9815   0.9967   1.0000  

 1.0   0.8447   0.9005   0.9576   0.9922  

RMKLD  1.5   0.7793   0.8359   0.9067   0.9709  

 2.0   0.7405   0.7948   0.8667   0.9439  

  0.5   0.8589   0.9151   0.9647   0.9955 

 1.0   0.7763   0.8341   0.9103   0.9725  

RML   1.5   0.7321   0.787   0.8637   0.9451  

 2.0   0.7052   0.7605   0.8326   0.9159  



Discrimination between Gamma and Log-Normal Distributions by Ratio of Minimized Kullback-Leibler Divergence  

Pak.j.stat.oper.res.  Vol.IX  No.4 2013  pp441-451 447 

The PCS simulated by Monte Carlo (with 15,000 iteration) when the null distribution is 

Gamma.  

 

From Table 1, we understand that KLD works better than the RML, because it generates 

higher PCS (about 4 10% ) in particular for small sample size. In other words, the error 

type I for KLD is remarkably less, compared to the RML one. For instance, consider the 

(0.5,1)Ga . The PCS for KLD is 95.31% and 85.89% for RML, which indicates the error 

type I ( ) equals to 4.69 for KLD and 14.11 for RML. It is also found that both methods 

behave similarly, for example, as sample size increases the PCS captures higher values, 

as expected. Moreover, as shape parameter ( ) increases, the PCS decreases. 

 

Second, we consider the case of (6); in which the null hypothesis denotes on Log-

Normality and the alternative is Gamma. In this case, we set = (0.5,0.8,1.0,1.5)  and 

generate a random sample of size n from 2(1, ).LN   We compute ( ( ), ( )),LN GaKLD h x f x  

( ( ), ( )),Ga LNKLD f x h x  and ,RMKLD  as the logarithm of the ratio of the two KLDs. We, 

therefore, replicate the process 15,000 times and compute the percentage of the cases if 

< 0RMKLD  as the PCS for Log-Normal. Results are reported in Table 2, in which we 

also reported the PCS for RML test for comparison purposes. 
 

   n      20   30   50   100  

  0.5   0.6255   0.6619   0.7225   0.8061  

 0.8   0.6701   0.7179   0.7843   0.8815  

RMKLD  1.1   0.6761   0.7333   0.8107   0.9023  

 1.5   0.6433   0.7157   0.7994   0.9009  

  0.5   0.6263   0.6749   0.7384   0.8241  

 0.8   0.7087   0.7611   0.8291   0.9247  

RML  1.1   0.7604   0.8197   0.8935   0.9645  

 1.5   0.7993   0.8665   0.9349   0.9873  

 

The PCS simulated by Monte Carlo (15,000 iteration) when the null distribution is Log-

Normal.  

 

From the Table 2, RMKLD performs same to RML for small  , but as   increases PCS 

for KLD decreases which is in contrast with RML test. This is due to the fact that as 

variance of a Log-Normal increases, its shape sharply concentrates on the right side and it 

gets far from Gamma distribution shape. Also, the RML is highly affected by .  

However, the error type I for RMKLD is almost higher than RML, especially for  

> 0.5 . 

Data Analysis: Implementation of the RMKLD Test 

To illustrate the use and applicability of the RMKLD test statistic, we analyze two real 

life-data sets in which a selection between Gamma and Log-Normal is of a prime interest. 
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Data 1. We consider the following observations from Mohd Saat et al (2008) in which 

they tried to test whether the data come from a Gamma or a Log-Normal distribution. The 

data are the average duration of Hypopnea in seconds for 25 subjects of Obstructive 

Sleep Apnea (OSA): 14.7, 17.8, 16.5, 17.7, 28.5, 18.1, 32.2, 27.6, 22.3, 31.8, 22.0, 23.1, 

31.6, 18.4, 28.3, 16.5, 21.8, 23.7, 27.6, 17.2, 20.0, 20.6, 19.0, 18.7, 19.2. 

 

For the data at hand, we have: ˆ =19.325 , ˆ =1.148  (for Gamma distribution); 

ˆ = 3.074 , and ˆ = 0.226  for Log-Normal distribution. The data were initially analyzed 

by Mohd Saat et al (2008) for discriminating between Weibull and Gamma distributions. 

By RML test, they reported that the data come from a Gamma distribution. But when 

compared between Gamma and Log-Normality, we found that Log-Normal fits well. So, 

by using the RMKLD, we decided to test the data if they fit well with a Gamma or a Log-

Normal distribution. 

 

We have ( ( ), ( )) = 0.004358LN GaKLD h x f x  and ( ( ), ( )) = 0.004755,Ga LNKLD f x h x  and 

then, 
( ( ), ( ))

= ln = 0.0872 < 0;
( ( ), ( ))

LN Ga

Ga LN

KLD h x f x
KLD

KLD f x h x

 
 

 
 and consequently, we can not 

reject the Log-Normality. The PCS for RMKLD and RML in this case is the same at the 

value about 58% . 

 

Again the Log-Normality is confirmed and both test statistics are consistent. The fitted 

Gamma and Log-Normal distributions along with the original data are shown in Figure 1. 

The figure shows that it's difficult to discriminant between the two distributions due to 

their very close fitness and overlapping. 

 

  

Figure 1:   The histogram of data 1 and the two fitted distribution functions.   
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Data 2. Suppose the following observations (as given by Lieblein and Zelen (1956) for 

the lifetime) are used to test whether the data come from a Gamma or a Log-Normal. The 

data given arose in tests on endurance of deep groove ball bearings. The data are the 

number of million revolutions before failure for each of the lifetime tests and they are: 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

 

For these data we obtain ˆ = 4.1506  and ˆ = 0.5215  for Log-Normal distribution and 

ˆ = 4.02873  and ˆ =17.92744  for the Gamma model. By the RML test, Gamma model 

fits better than Log-Normal. Note that Kundu and Manglick (2005) accepted Log-Normal 

by a mistake (mis-calculation of log-Likelihood of Gamma)! 

 

Again, from (10) and (11) we have ( ( ), ( )) = 0.02288528LN GaKLD h x f x  and 

( ( ), ( )) = 0.02208866,Ga LNKLD f x h x  and then = 0.03542948 > 0;RMKLD  and 

consequently, we reject the Log-Normality and conclude that Gamma fits better with data 

set 2. The PCS for RMKLD is 67%  and for RML is 65%  in this case. Since in this case, 

the PCS for Gamma is better than the Log-Normal, then accepting Gamma fitness 

generates the less error type I, with respect to Log-Normal distribution. Finally, the 

consistency of RMKLD with RML is confirmed. The Figure 2 visualize the fitted 

distributions on the data 2 and suitability of Gamma is convinced. 

  

Figure 2:   The histogram of data 2 and the two fitted distribution functions.   
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Conclusion 

In this paper we consider the problem of discriminating between two overlapping 

families of distribution functions, namely Log-Normal and Gamma. It is easy to realize 

the concept of Kullback-Leibler Divergence (information or distance) based test statistic 

and its usage in practice, but its application on discrimination of two known and 

overlapping distributions has less attention. The prime aim of this paper is to introduce a 

new test statistic, namely ratio of minimized KLD. It is observed that the proposed test 

statistic is consistent with alternative testing statistic, say RML. It is also found that the 

RMKLD works better than RML for small sample size when the null hypothesis is 

Gamma. On the other hand, when the null hypothesis is Log-Normal, it's cautious to use 

RMKLD. This behaviour needs more investigation from theoretical and simulation point 

of views to understand the main reason of such behaviours. Remind that the comparison 

of test statistics with each others is another story, which can cover in the future papers. 

Finally, it is suggested to interested research to test the approach for other similar 

distributions, such as (Generalized) Gamma, GE, Inverse Gaussian, ... and compare the 

result with RML and as well as other testing approaches. Finding the exact and/or 

asymptotic distribution of the proposed test statistic can be an interesting research topic 

in this regard. 

References 

1. Bain, L.J. and Engelhardt, M. (1980). "Probability of correct selection of Weibull 

versus gamma based on likelihood ratio," Comm. Statist. Ser. A. 9, 375-381.  

2. Blishke, W.R. and Murthy, D.N.P. (2000). "Reliability modeling, prediction and 

optimization," Wiley Interscience Publications.  

3. Bromideh, Ali-Akbar (2012). "Discriminating Between Weibull and Log-Normal 

Distributions Based on Kullback-Leibler Divergence", Istanbul University 

Econometrics and Statistics e-Journal, Vol. 16, Issue 1, pages 44-54.  

4. Burnham, K. P., and Anderson, D. R. (2002). "Model selection and multimodel 

inference: a practical information-theoretic approach," 2nd eds., Springer, New 

York.  

5. Cohen, A.C. and Whitten, B.J. (1988). "Parameter estimation in reliability and 

life span models," Marcel Dekker Inc, New York.  

6. Crow, E.L. and Shimitzu, K. (1988). "Log-Normal Distributions, Theory and 

Applications," Marcel Dekker Inc., New York.  

7. Dey, A. K. and Kundu, D. (2009). "Discriminating among the Log-Normal, 

Weibull and Generalized Exponential distributions," IEEE Transactions on 

Reliability , vol. 58, no. 3, 416-424.  

8. Dey, A. K. and Kundu, D. (2012). "Discriminating between the Weibull and Log-

normal distributions for type-II censored data" Statistics ,vol. 46, no. 2, 197 - 

214, 2012.  



Discrimination between Gamma and Log-Normal Distributions by Ratio of Minimized Kullback-Leibler Divergence  

Pak.j.stat.oper.res.  Vol.IX  No.4 2013  pp441-451 451 

9. Dumonceaux, R., and Antle, C.E., (1973). "Discrimination between the log-

normal and the Weibull distributions," Technometrics 15 (4), 923-926.  

10. Fearn, D.H. and Nebenzahl, E. (1991). "On the maximum likelihood ratio method 

of deciding between the Weibull and Gamma distributions", Communications in 

Statistics - Theory and Methods, vol. 20, 579-593.  

11. Firth, D. (1988). "Multiplicative errors: Log-Normal or Gamma?, Journal of the 

Royal Statistical Society, Ser. B, 2, 266-268.  

12. Gross, A.J., and Clark, V.A. (1975). "Survival distribution: reliability application 

in the biomedical science," John Wiley & Sons Inc.  

13. Lawless, J.F., (1982). "Statistical Models and Methods for Lifetime Data," Wiley, 

New York.  

14. Meeker and Escobar (1998). "Statistical Methods for Reliability Data," New 

York: John Wiley & Sons Inc.  

15. Mohd Saat, N. Z.; Jemain, A. A. and Al-Mashoor, S. H. (2008). "A Comparison 

of Weibull and Gamma Distributions in Application of Sleep Spnea," Asian 

Journal of Mathematics and Statistics, 1 (3), 132-138.  

16. Kundu, D. and Manglick, A. (2004). "Discriminating between the Weibull and 

Log-Normal distributions", Naval Research Logistics, vol. 51, 893-905.  

17. Kundu, D. and Manglick, A. (2005). "Discriminating between the Log-Normal 

and gamma distributions", Journal of the Applied Statistical Sciences, vol. 14, 

175-187, 2005.  

18. Pascual, F.G. (2005). "Maximum likelihood estimation under misspecied Log-

Normal and Weibull distributions", Communications in Statistics - Simulation  

and Computations vol. 34, No. 3, 503 - 524.  

19. Pasha, G. R., Shuaib Khan, M. and Pasha, Ahmed Hesham, (2006). 

"Discrimination Between Weibull and Log-Normal Distributions For Lifetime 

data", Journal of Research (Science), Bahauddin Zakariya University, Multan, 

Pakistan. Vol. 17, No.2, April, pp. 103-114.  

20. Wiens, B.L. (1999). "When Log-Normal and Gamma modles give different 

results: a case study," The American Statistician, 53, 2, 89-93. 


