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Abstract

The bivariate distributions are useful for the joint modeling of two random variables. In this paper, we have
presented a bivariate version of the exponentiated family of distributions. Some desirable properties of the proposed
bivariate family of distributions have been explored. These include the conditional distributions, the joint and
conditional moments, dependence measures, reliability analysis, and maximum likelihood estimation of the
parameters. A specific member of the proposed family has been explored for the power function baseline
distribution giving rise to the bivariate exponentiated power function distribution. Some properties of the derived
bivariate exponentiated power function distribution have been explored. The derived bivariate exponentiated power
function distribution is fitted on some real data sets to see its suitability. It is found that the derived bivariate
exponentiated power function distribution performs better than the competing distributions for modeling of the
used data.
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1. Introduction

The probability distributions are being used in many areas of life, ranging from engineering to medicine. The
probability distributions are also being used in finance and management. The rising complexity of available data has
attracted several researchers to propose new probability distributions. In the recent past, the researchers have shifted
their attention to generating the families of distributions. The exponentiated family of distributions; proposed by Gupta
et al. (1998); is a simple, yet powerful, family of distributions and is obtained by exponentiation of the cumulative
distribution function (cdf) of any baseline distribution. Since its emergence, the exponentiated family of distributions
has been studied by several authors. Gupta and Kundu (2001) have used the exponential baseline distribution in the
exponentiated family to propose an exponentiated exponential distribution. Nadarajah (2005) has proposed an
exponentiated Pareto distribution by using the Pareto distribution; Pareto (1897); distribution as a baseline distribution
in the exponentiated family. Kumar et al. (2017) have proposed an exponentiated Burr—XII distribution by using the
Burr—XII distribution as a baseline distribution. An exponentiated power function distribution has been proposed by
Arshad et al. (2020) by using the power function distribution as a baseline distribution in the exponentiated family.
More details about the exponentiated family of distributions can be found in Nadarajah and Kotz (2006) and Al-
Hussaini and Ahsanullah (2015).

Eugene et al. (2002) have proposed the beta family of distributions by using the logit of the beta distribution. The beta
family of distributions provides the exponentiated family of distributions as a special case. Cordeiro and Brito (2012)
have used the power function distribution in the beta family of distributions to propose a beta power function
distribution. Alzaatreh et al. (2013) have proposed a general method of generating new families of distributions by
using the combination of any two distributions; one transformer and one transformed. This family of distributions is
known in the literature as the 7-X family of distributions.

In several situations, the joint modeling of two random phenomena is required and in this case, some bivariate
distribution is needed. The bivariate distributions are not easy to study and in some cases, even a unique density
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function is not available. Gumbel (1960) has proposed a method of generating a bivariate distribution by using the
univariate marginals. The method proposed by Gumbel is a member of a much larger class, known as copula. The
copulas and the bivariate distributions are nicely discussed by Nelsen (2006) and Balakrishnan and Lai (2009).

The bivariate families of probability distributions have not been much explored. Sarabia et al. (2014) have proposed
a bivariate beta generated family of distributions by using a bivariate beta distribution of Olkin and Liu (2003). This
family of distributions has been used by Algarni and Shahbaz (2021) to propose a bivariate beta-inverse Weibull
distribution.

Ganji et al. (2018) have extended the 7—X family of distributions of Alzaatreh et al. (2013) to the bivariate case.
Darwish et al. (2021) have proposed a bivariate transmuted family of distributions by using a simplified version of the
bivariate 7-X family of distributions, proposed by Ganji et al. (2018). This proposed bivariate transmuted family of
distributions is a simplified version of the Cambanis family of distributions, Cambanis (1977).

In this paper, we have proposed a new bivariate exponentiated family of distributions that provides the univariate
exponentiated families of distributions as the marginals. The structure of the paper follows. In Section 2, some
desirable materials and methods are discussed. A new bivariate exponentiated family of distributions (BExFD) is
proposed in Section 3 and some of its desirable properties are discussed in Section 4. In Section 5, a new bivariate
exponentiated power function distribution is proposed by using the power function distribution as a baseline
distribution in the BExFD giving rise to the bivariate exponentiated power function (BExPF) distribution. Some
properties of the derived BExPF distribution are discussed in Section 6. Section 7 contains some numerical studies for
the BExPF distribution. Conclusions and recommendations are given in Section 8.

2. Materials and Methods

In this section, we have given some desirable materials and methods that are helpful in deriving the new BExFD. The
exponentiated family of distributions; Gupta et al. (1998); is a simple family of distributions which is obtained by
exponentiating the cdf of any baseline distribution. The cdf of the probability density function (pdf) of the
exponentiated family of distributions is given as

a a-1
Fpo(x)=[Gy(x)]" and f,, ;(x)=agy(x)[Gy(x)]" :xeR,a>0. (1)
The exponentiated family of distributions has been studied for various baseline distributions by various authors. For
details, see Al-Hussaini and Ahsanullah (2015). The beta family of distributions is another popular family that is
obtained by Eugene et al. (2002) by using the logit of the beta distribution. The cdf of the beta family of distributions
is given as

1 G(x) b-1
Fy g (x):mjo o (1= w) ™ dw, @)
where B(a, b) is the complete beta function. The exponentiated family of distributions appears as a special case of the
beta generated family of distributions for » = 1. The beta family of distributions has been explored by various authors
for different baseline distributions G(x). The beta family of distributions has been extended to the bivariate case by
Sarabia et al. (2014) by using a bivariate beta distribution of Olkin and Lie (2003). The joint cdf of this family of
distributions is given as

1 Gy(%) ¢Gi(x) Wlal—lw2az -1 (1 —w )ag +p-1 (1 —w, )l11+ﬁ—1
F, I A — dwdw, , 3
e, (%) B(ay,a,, ) '[0 J“’ (1=ww, )" e *
where B(ai, a2, ) is the extended beta function defined as
() (1w L(a)T(B)T(r)

et W w

Bla,B,7)= L2 dwdw, =

S TR T R )
The marginal families of distributions of (3) are the univariate beta families of distributions, given in (2). The bivariate
beta family of distributions, given in (3), has been used by Algarni and Shahbaz (2021) to propose a bivariate beta
inverse Weibull distribution.
Alzaatreh et al. (2013) have proposed a general method of proposing the univariate families of distributions. The cdf
of this family of distributions, named as the 7—X family of distributions, is given as

Foy(x)= [kt = R[W{G(x)} ] a <t <bixeR, 4)

where r(¢) is the density function of any transformer random variable and G(x) is the cdf of any transformed
distributions. The function W[G(x)] is any real values function such that W[G(x)] € [a, b], W(0) — a, and W(1) — b.

A New Bivariate Exponentiated Family of Distributions: Properties and Applications 138



Pak.j.stat.oper.res. Vol.21 No. 22025 pp 137-161 DOL: http://dx.doi.org/10.18187/pjsor.v21i2.4863

The 7-X family of distributions has been extended to the bivariate case by Ganji et al. (2018). The joint cdf of the
bivariate 7-X family of distributions is
Wz[Gz("z )] Wx[Gx(xx )]
Fa (o) = [

uyuy Jduyduy 5 ay <uy <b ;a, <u, <b,, (5)
where r(u1,u2) is the joint density function of some random variables with support on [a1,b1]x[a2,b2]. Also, Wi[G1(x1)]
and W>[Ga(x2)] are some continuous functions of Gi(x1) and G(x2) such that Wi(0)—ai, Wi(1)—bi, W2(0)—a> and
Wi(1)—b,. Darwish et al. (2021) have proposed a simpler version of (5) when the support of 7(u1,u2) is on [0,1]x[0,1].
The family (5), in this case, is
Gy(x) (Gi(x)
F, (x17x2)_jo ,[o
The bivariate family of distributions can be used to generate new bivariate families of distributions for different
choices of r(u1, uz). It is to be noted that the Gumbel bivariate family of distributions; Gumbel (1960); can be obtained
by using
ruuy)=1+a(1-2u)(1-2u,),
in (6). Also, the bivariate family of distributions by Ali et al. (1978) can be obtained by using
(l—a)+a(a—l)(l—ul)(l—u2)+2aulu2

3
[l—a(l—ul)(l—uz)}
in (6). Darwish et al. (2021) have used (6) to propose a bivariate transmuted family of distributions. In this paper, we

have proposed a new bivariate exponentiated family of distributions by using (6). The new BExFD is proposed in the
following Section.

r(uy,uy ) duduy 5 0 < (u,u,)<1. (6)

r(ul,u2)=

>

3. A New Bivariate Exponentiated Family of Distributions
In this section, we have obtained a new bivariate exponentiated family of distributions (BExFD). The new bivariate
family has been obtained by using

[1-(1-uf ) (1-u2)]
in (6). The joint cdf of the new BExFD is
F,(x,x,)= J.OGZ(XZ)J.GI(XI)Zab w T u! [1 - (l —u )(l A )]_3 du,du,

0

-5 (uy,u,) €[0,1]x[0,1] ; a,6 >0

or

R, (xpxz): G/ (xl)G; (xz) - — G/ (XI)}GE (fz) . ™

The joint cdf, (7), can also be written as

G/ (x,)Gy (x G/ (x,)G (x
Fi,z(xlaxz)z 1( 1) 2( 2) =— ( 1) 2( 2);(x1,x2)eR2 ;(a,b)>0,
=g (x)e (%) AL(x.x)
where ¢ (x)=1-G/(x), 9(x,)=1-G;(x,) and A, (x,x,)=1-¢,(x)9,(x,). The density function

corresponding to (7) is

Jin (xl’x2) =

2abg (%), (%,)G " (%) G (x,) _ 2abg (%) g, (%,)G " (x)G" " (x,)

(G ()G () -G (5)GE ()] [1-{1-G2 ()} {1- G ()} ]

)

or

5 2a-1 21
f1,z(x1axz)= abgl(xl)gz(xz)Gl (xl)GZ (XZ);(xl,xz)eRz;(a,b)>O.

[1 —-¢ (xl )(Pz (xz )]3
The marginal cdf’s and pdf’s for (7) and (8) are
F(x)=G'(x); fi(x)=ag (x)G " (x):x,eR;a>0

and
F(x%,)=G)(x); fo(x,)=bg,(x,)G "' (x,);x,eR;b>0,
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which are the univariate exponentiated families of distributions. The conditional distribution of X; given X = x, for

the new BExFD is
2ag,(x)G " (x)G? (x
fuz(x1|x2): 1( 1) 1 ( 1) 2( 2)

[1-{1-G (0)}{1-G2 (=)}

Also, the conditional distribution of X> given X; = x; is
2bg, (x,)G " (x,)G* (x
fz|1(xz|x1): 2( 2) 2 (2) 1(1)

[1-{1-G (0)}{1-G2 (=)}

We will, now, discuss some useful properties for the new BExFD.

i (x,x,)eR? 5 (a,b)>0. )

i (x,x,)eR? 5 (a,b)>0. (10)

4. Properties of the New Exponentiated Family of Distributions
In this section, some useful properties of the new BExFD have been discussed. These properties are given in the
following sub-sections.

4.1. The Joint and Conditional Moments
The moments are useful in studying certain useful properties of a distribution. The (r, s)th order joint moment for a
bivariate distribution is defined as

7 —E XrXé j j X\ x5 fr 5 (x,%, ) dxdx,
The joint moment for the new BExFD is
2abgl xl)gz (xz)Gza l(xl)sz 1(x2)
wo=] ]

[1-{1-G; (x)} {1-G} (xz)}T

Making the transformation G/’ (x,)=v, and G, (x,)="v,, the joint moment for the new BEXFD is

_2H[ ()] [G5" (4 ] v [1=(=w)(1=v,)] " dne, . (11)

The moments can be obtained for any baseline distribution. The ratio moment can be easily written from (11) by
replacing either » with — or s with —s.

The conditional moments for the new BExFD can be obtained from the conditional distribution of X; given X> = x, or
from the conditional distribution of X, given X = x,. Specifically, the 7th conditional moment of X; given X, = x; is

2a-1 b
gy = B = (s = [ g 28 L))y

w1 a 3
[1 - {1 -G (x )} {1 -G (x, )}]
Using the transformation Gy’ (x1 ) =v,, the conditional moment of X given Xz =x» is

'ur/(X.\xz) =2G) ()cz)jolv1 [Gl’l (vll/“ )T [1—(1—vl){1—G§’ (x, )}J_3 v, . (12)

Similarly, the sth conditional moment of X, given Xj = x; is given as

W =260 (x) [ [6 ()] - 1-Go ()} (1-v) ], (13)

The conditional moments can be obtained for specific baseline distribution.

dx,dx, .

4.2. The Bivariate Reliability and Hazard Rate Functions
The joint reliability function is useful to see the joint survival of two components. The joint reliability function is
defined as, see Moore (2016),

R(xl,xz) =1-F (xl)—F2 (x2)+F],2 (xl,xz) .
The bivariate reliability function for the bivariate exponentiated family of distributions is
[1 -G (x )] |:1 -G, (x, )] |:G1a (x)+ G, (x, )] _ (%), (x, )|:G1a (x)+ G, (x, )]
[1-{1-G7 (x)}{1- G (x.)}] A (%,x,) '

The joint reliability function can be obtained for any baseline distribution.
The joint hazard rate function is defined as, see Basu (1971),

R(xl,x2)= (14)
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h, (xl’xz) 2222:2;

The joint hazard rate function for the new BExFD is
h (xl +%2 ) - 2absg, (xl )g2 (x2 ) G (xl ) Gy (xz )

[1_G1a (% )][I_GS (x, ):H:Gla (x)+G (%, )][1_{1_(;1“ (% )} {1_ G; (x, )}]2

or

h(x.%,) = 2abg, (%), (%,)G" " (%)G" " (x,)
1242 ) = B .
o (%) ()AL (%%, )|:G1 (%)+6G; (x, )J
The joint hazard rate function can be obtained for any baseline distribution.

(15)

4.3. The Hazard Rate and Mean Residual Life Vectors

The joint hazard rate function, (15), is useful to see the instantaneous failure of both of the components. It is,
sometimes, required to see the instantaneous failure of individual components by considering the effect of the other
component. This can be easily done by obtaining the hazard rate vector that is defined as

/
0 0
h(xl,x2)={—glnR(xl,xz) —glnR(xl,xQ)} . (16)

1 2
The entries of the hazard rate vector for the new BExFD are

R (xm) = ag,(x)G" ()]G (x)+2G) (x,) -G ()G (x,)]

(
ax, [1-Gy () [1-{1=G (0} {1-G2 ()} [ G () + G5 ()]
)

17)
_ag (x,)G! (xl)[G“ x)+Gy (%) {1+ (x, }]
¢’1(x1)A1‘2(x15x2)|: ( )+ (xz):| ’
and
—ilnR(x,x) bg,(x,)G;"" l(xz)[zGa(xl)Jer(xz) 7 (x%)G (xz)]
o, [1-G2 () )[1-{1-G7 (o)} {1-G ()} | 67 () + G2 ()] s

bgz (xz)GZb 1(x2)[ ( ){1+¢’2 (xz)} Gz( )]
1z (xz )AI‘Z (xlﬂxz )I:Glu (xl ) +G, (xz ):|
The hazard rate vector can be obtained by using (17) and (18) in (16).

The mean residual life vector is another useful measure in bivariate reliability analysis. The mean residual life vector
is defined as

m(x,x,)=m (x,%),m (x,x,)] (19)
where

m, (x,%,) = E(X, —x | X, > x, X, >x2)=R(x11’x2) :R(xl,xz)dxlzR(xf’xz)ll, (20)
and

my (%,%,) = E(X, —x5,| X, > x,X, >x,) = R(xll’xz) :R(xl,xz)dxz - R(xixz)zz. 1)

Now, for the new BExFD, we have
) w[l_Gla (xl)][Glu (xl)+Gf(x2)]
I, = J' (%, ) dx, = [1 G, (xz)]jxl [1—{1—G1“(xl)}{l—Gf(xz)}]

Using the transformation, v, = G}’ (x; ) , the above integral can be written as

1°
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I:I—Gf (x, )j| Il (1_V1)|:V1 +G; (x, ):I Warl g,
agl(xl) G'a(xl)lil_(l_vl){l_Gg (xz)}] 1 1

-G ()] & | 1 .

:ng;(x;:lzogﬁzj (XZ)J‘GF(XI)VII/‘{ 1(1_\/1 )j II:V1 +G§ (xz ):Idvl.
1M =

Solving the integral, we have

%zw LS Py R s

I =

(22)
b 1.
-G, (XZ){I_IG{'(»-.) (;aJJrsz»
where I / B(a,b is the incomplete beta function ratio. Similarly, we have
[1 G ( x1 ] - 1 1
I, = +1,j+2 || —————<1-1, —+1,j+2
S N R s

el (xl){l—fgg(m[%’j”jﬂ

The mean residual life vector is obtained by using (22) and (23) in (20) and (21) and then using the resulting
expressions in (19). The hazard rate and mean residual life vectors can be obtained for any baseline distribution.

4.4. Stress—Strength Reliability

The stress and strength reliability is often required in many areas of engineering. If it is assumed that the strength of
a component is a positive random variable X; and the stress on that component is another positive random variable X>
then the stress—strength type reliability is obtained as

R=P(X, >X2):J.:J.OXI Sia (%3, ) dxydx, .

Now, suppose that the strength, X, and stress, X», have a joint distribution as given in (8) then the stress—strength type
reliability is

R=P(X, <X1):J:.[<:I Fra (323, ) divydl, _,[ J‘Xl 2abg, (%) g, (%) G I(E)GbeEXz)dXdel
[1-{1-G7 ()} {1-G2 (%)}
Now, using the transformation v, = G; (x, ), we have
_J~ J~ ‘) 2ag xl)G ol (xl)vz dvds,
[1-{1-G7 ()} (1-7,)]
or
R=["ag,(x)G"" (x)G (x)[1-{1-G! (x)}{1-G: ()} | ey, - 24)

b
2
If X1 and X> have the same distribution, that is if G, (xl) =G, (x1 ) = G()c1 ), then the reliability is
R [ e ()G ),
[1={1-6" (x){1-G" (%)}
Using the transformation v, = G (x, ) , the reliability is

R=[ e [1=(1=v,) (13" )] v, . (25)

Further, if a = b then we have

R= J.vl[ (1-v) 2Jdalvl:l

The reliability coefficient, R, given in (24) is useful when X; and X, have different parent distributions.
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4.5. The Dependence Measures

The dependence measure is a useful measure to see the strength of interdependence between two variables and various
dependence measures are available for this purpose. The dependence between two variables can be studied generally
or locally. The most popular general measures of dependence for two variables are Kendall’s Tau and Spearman’s
Rho; see Balakrishnan and Lai (2009) and Nelsen (2006). A popular measure of local dependence has been introduced
by Holland and Wang (1987). In the following, we have discussed these dependence measures for the new BExFD.

4.5.1. Kendall’s Tau
The Kendall’s Tau coefficient is obtained by using
r=4 : :Fm (x,%,) f5 (3%, ) doxydx, —1.
Now, using the density and distribution functions of the new BExFD, we have
e I I G} (xl)Gb (x,) 2abg, (x,)g, (JCZ)GIZ“'1 (xl)GZZb'l(xz)
== 1-G1 (%) ][ 1-GE (x,)] [1-{1-G! ()} {1-G (, )}]3
_ 8Jm on abg,(x)g, (%,)G " (x)G" " (x,)
o d o . 4
[1-{1-G¢ ()} 1-62 ()}

Making the transformation Gy’ (x,)=v, and Gy (x,)=v,, we have

=8[ [ Lk dvdv,~1=1.
[1-(1-v)(1-v,)] 3

We can see that Kendall’s Tau is fixed for the new BExFD.

dx,dx, —1

dx,dx, —1

4.5.2. Spearman’s Rho
The Spearman’s Rho coefficient is obtained by using

pP= 12_[:_[:}71‘2 (XI’XZ )fl (xl )fz (x2 )dxldxz -3
Now, using the density and distribution functions of the new BExFD, we have
p=12 J. J-oc abg1 x1 g, xz)Gz” l(xl)GZb 1()(2)

[1 G/ (xl )] [1 -G, (x, )]

Making the transformation G/’ (x,)=v, and G; (x,)=v,, we have

dx,dx, =3 .

V.
[T v, 3= 4239,
LI (1=v)(1=v,) 12777

We can see that Spearman s Rho is also fixed for the new BExFD. We can also see that, for the new BExFD, Kendall’s
Tau is less than Spearman’s Rho.

4.5.3. Local Dependence Measure
The local dependence measure is defined by Holland and Wang (1987) as

o?
oxdy 1nfxy(x J’)

which for the bivariate exponentiated family of distributions is
3abg, (x)g,(x,)G/ (x G (x
j/(xl,xz): 1(1) 2( 2) 1(1) 2( 2)'

[1-{1-G¢ ()} 1-G2 (=)} ]

The local dependence measure can be computed for any baseline distribution.

7(x,y)=

(26)

A New Bivariate Exponentiated Family of Distributions: Properties and Applications 143



Pak.j.stat.oper.res. Vol.21 No. 22025 pp 137-161 DOL: http://dx.doi.org/10.18187/pjsor.v21i2.4863

4.6. Random Sampling
A random observation can be drawn from the new BExFD by using the conditional distribution approach. For this, we

need to solve F(x;)=u, and Fy (x2|x1) =u, for x; and x», where u; and u are uniform random numbers. The
sampling algorithm is given below:
e Generate a random x; observation by solving F, (x, ) =u, forx,. That is, generate x; by solving G;' (x, ) =1,
for x1, or x; is generated as x, = G, (ull/“) .
*  Generate a random x; observation by solving £, (x2|x1) =u, forx,.

Now

Xy X 2b szfl Ga
F'2|1(x2|x1):.|.—o;Jr2\l(W2|xl)dwz:_[ 8 (n)G " ()G (x)

. 3 dw,
[1 - {1 = (xl )} {1 - G; (Wz )}J
Making the transformation G, (wz) =v,, we have
Fy (%)% ) =26 (x, )jo(’“'”)v2 [1={1-67 (x)}(1-v, )]73 dv,
_ G (%)

2 2
[Gfl (x,)+G; (x,)-G' (x,)G5 (x, )]
and hence a random x; observation is generated by solving
G’ (%)

2
[G{‘ (x1 )+ Gé’ (x2 ) -G/ (x1 )Gf (x2 )]
The solution is given as

1/b /b
ul/ZGll X . . ul/ZGll X
xzzG;1 1/2 1(:) :Gz’l(uz)whereuzz 1/5 1(:) .
1-u)” {1-Gf (x,)} 1-u)® {1-Gf (x,)}

A bivariate observation from the new BExFD is therefore obtained by using

=u,.

ul/zGa (x ) v
% =G (w/) and x, =G, (u;) where u; = 1 ul/j {11 G:(x Tl Q27)
] Y 1

A random sample of size n, from BExF'D can, therefore be drawn by using (27) and different values of a and b.

4.7. Maximum Likelihood Estimation of the Parameters
In this section, we have discussed the maximum likelihood estimation for the parameters of BExF'D with any baseline
distributions. For this, we suppose that a bivariate random sample of size » is available from BExFD with baseline

distributions g, (x;;&,) and g, (x,:&, ), where & and &, are the parameter vectors of the baseline distributions having

p1 and p, parameters, respectively. The joint density function for the BExFD in this case is
3
fl,z (x19x2) =2abg, (x1§é1)g2 (x2§é2 )Glz{H (x1§§1 )GZZIH (xz;éz)[l_ {1 -G/ (x1§é1 )}{1 - Gf (xz;éz )}:| .
The log of the density function is
Inf,(x,x,)=In2+Ina+Inb+Ing (x;& )+Ing,(x;8,)+(2a-1)InG, (x;§,)

+(2b=1)InG, (x,38,) =3I 1= {1-Gf (x:8)}{1- G} (x,58,)} |
The log-likelihood function; £="" n f;, (x.x,); is
(=InL(a,b;x.&.&,)=nIn2+nlna+nlnb+Y " Ing (x;:§ )+, Ing,(x,:E,)
+(2a=1)"" G (x,38)+(26-1)D" InG,(x,:8,) (28)
33 [ 1= {1-G7 (338} {1- G (338 )} |
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The derivatives of the log-likelihood function, (28), are

%_ﬁ n ) x1,sg1 ?, (x21’g2)lnG (xll’gl)
2 = a+2;ll’lGl (xliagl z A(xh.,le-,ﬁl,&z) ’ (29)
%_ﬁ n ) leaﬁz)(ﬂl (xm‘: )1nG2 (le-;‘taz)
- b+2,«Z:1:ln G, (xzia‘;z Z A(xli,xz,«,gl,gg) , .
ol = glr(xn;él) = G (Xwé - Gal xlz’él ?, (XZI éZ) (x”;él)
_ 201 34 S 31: 1+
08k ;gl (xli;§1)+( ‘ ); G, (%,:§,) z A(x,x,,381.8,) ( 7
and
ol < g;(xzf;éz xzméz < Gbl x2i;§2)¢1 (xli;él)Gz’(XZ";éz)
_ 2b 1 _3p , 32: 1+
&, g, (le_;};z) z (le éz) Z A(xwxzi;évgz) ( =
where
o (x38) =1-G! (%38, 2 (%,38,) =1-G (2382 ) 5 A% %:381,8, ) =101 (%38 ) 2, (%38, ) »
’ . — a i : ! . a
g1(x1i’§1)_ aék (xlz’al) (xlz’al) 3¢, Gl(xli’al) » & (xZPéZ) a§2k ( Yai> aZ)
0 .
and ( 21,&_,2) a§2k (xngz).

The maximum likelihood estimates of parameters a, b, &, , and &, is obtained by equating the derivatives in (29), (30),

(31: 1-p1), and (32: 1-p») to zero and numerically solving the resulting equations. The entries of the Fisher information
matrix for the new BExFD are given in Appendix 4.

The proposed BExFD can be used to generate different bivariate exponentiated distributions and in the following, we
have discussed one specific member of the family, namely the bivariate exponentiated power function (BExPF)
distribution.

5. A Bivariate Exponentiated Power Function Distribution

The power function distribution is a simple yet powerful distribution in probability theory. The distribution has been
extensively studied by various authors. The moments of lower generalized order statistics for the power function
distribution have been studied by Athar and Faizan (2011). Ahsanullah et al. (2013) have given some characterizations
of the power function distribution by using the lower record values. Arshad et al. (2020) have proposed an
exponentiated power function distribution and have studied some of its useful properties. In the following, we have
obtained a bivariate exponentiated power function (BExPF) distribution by using the power function distribution as a
baseline distribution in the BExFD. For this, suppose that the random variables X; and X> have univariate power
function distributions with the marginal density and distribution functions given as

_ 4
2 (x)=6x] 1/clﬂ & G (x)=(x/c)" ;0<x<¢;¢.,6,>0
and
_ 0,
2, (x,)=6,x7 1/0292 & G, (x,)=(x/c,)" ;0<x,<¢,;¢,,6,>0.
Now, using the marginal distribution functions of the power function distribution in (7) the joint cdf of the BEXPF
distribution is obtained as
af, bo
(xl/cl) (xz/cz) ’

EZ Yo% ) = a b0: a b6
’ ( ) (xl/c1)gl+(x2/cz) 2—(x1/c1)6'(x2/02) ’

(xl /e )agl (xz /e )bgz
1—[1—(x1/c1 )091 J[l—(xz/c2 )bgz ]

The density function corresponding to (33) is

F]’z(xl,xz): ;(xl,xz)e[O,cl] [0 cz] (91,92,51 b) >0. (33)
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Zab(gr1 xfl’l / 0161 ) (32 x;)z—l / ngl )(xl /e )(Za—l)ﬁl (xz /e, )(Zb—l)ez

f1,2 (xl’xz) =

2a6,-1_ 2661
2ab6,0,x} ' 3"

2a6_2b6, 53
¢ G AI,Z (xlﬂxz)

or S (x,x,) =

[1 - {1 —(x /¢ )aal }{1 —(x,/c, )bg2 }T

>

5 (x,x,) €[0,¢,]x[0,¢,] 5 (6,,6,,a,b) >0,

(34)

where A, (xl,xz)=[1-{1_(,Cl /cl)ﬂﬂ} {1_(x2 /cz)bez}] The distribution in (34) will be written as

BExPF (cl,cz,Hl,Hz,a,b) . The plots of the joint density function for ¢ = ¢> = 1 and different values of the other

parameters are given in Figure 1, below.

Figure 1: Plots of the Joint Density Function for BExPF Distribution

(a, b) 61=0.75,6h=125

(0.5, 0.75)
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The plots of the joint density function indicate that when both a and b are less than 1 then the density has a decreasing
trend. Also, when both a and b are greater than 1 then the density function has an increasing trend. We will now
discuss some useful properties of the BExPF distribution.

6. Properties of Bivariate Exponentiated Power Function Distribution
In this section, we have discussed some useful properties for the BExPF distribution. These properties are discussed
in the following sub-sections.

6.1. The Marginal and the Conditional Distributions
The marginal density and distribution functions of X; and X, for the BExPF distribution are readily written as

a6, -1 at)
filx)= %&F(Xl) (XIJ ;0<x, <¢ ,(a,6)>0
¢ G
and
b, x2%™! x )
ﬁ(xﬂz%&ﬂ(xz):(i] ;0<x,<¢,,(b,6,)>0
G &

It is easy to see that the marginal distributions are the exponentiated power function distributions. The conditional
distribution of X; given X, = x; is readily written from (9) as

ol 2o Yoo )7 )
[1—{1—(x1/cl) 1}{1—()(2/6‘2) 2”

or
2a6,-1_bo,
2a6,x;" X,

fl\z(x1|x2): 2a0, b0y A3
G “ ¢ A, (x19x2)

Again, the conditional distribution of X> given X; =x is Written from (10) as

Fn (o)) = 2b(6,x2" /c?)(;/q (3, e ) .
[1_{1_(x1/c1) l}{l—(xz/cz) 2}]

s (x,x,) €[0,¢,]x[0,¢,]; (a,6,6,,6,) > 0 (35)

or

2b0, x“g‘ xzwf1

fZII(x2|xl): 0, 2b0 A3
ale ZAIZ(xl’xz)

;(xl,xz)e[O,cl] [0 cz] (a,0,6,,6,)>0 (36)

The conditional distributions are useful in obtaining the conditional moments of the distribution that we have obtained
in the following.

6.2. The Joint Moments
The (7, s)th joint moment for the ExFD is given in (11) as

—ZII[ 1/“)] [G ( ;/b)] vlvz[l 1- v1 1 v2 ] dv,dv, ,
where G/ (x1 )=v, and G (x,)=v,. Now, for the power function baseline distribution we have v, =(x,/¢, )ag' or
G (vll/ ”) = e/ . Also, v, = (x,/c, )bg2 or G, (v;/ b) =¢,v}"” and hence the (r, s)th joint moment for the BEXPF
distribution is
W, = 2'[1'[ (clrvlr/“a )(szv;/bﬁ )vlv2 [1 —(1=v)(1-v,) }_3 dv,dv,

1/at, 41, 5/b0 + J+3
_Clczjj Jeditly /w lz]—)(l Vl) (1 Vz)dvld"za
or

0 1" 7
e =cfcéZMB[L+2,j+1]3(§+2,j+1].

i J! a6, g
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Now, using the infinite sum of the beta function, see Gradshteyn and Ryzhik (2007), we have
; s r s r s
=2¢/¢;B| —+2,1 |B| —+2,1 |,F, | (LL3);| —+3,—+3 |;1], 37
My 162 [091 j (b@z J3 2|:( )[a1 ) j :I (37)

where 3F5[(a1,02,03);(f1,52);z] is the generalized hypergeometric function defined as

&) [(0!1,az’a3);(ﬂl,ﬂ2);z:| _ :Z;(:) (01()21()‘:2(?[;;2(;{‘3 )k 7:'

and (a)x is the Pochammar’s symbol given as

>

r (a + k)
I'(a)
and I'(a) is the complete gamma function. The product moments given in (37) can be used to compute marginal means
and variances. Also, the moment expression in (37) can be used to compute the correlation coefficient between the
two variables. The values of the correlation coefficient for ¢; = ¢; = 1 and for selected values of the other parameters
are given in Table C.1 in Appendix C. Also, the surface plots of the correlation coefficient for various values of 8,

6, a, and b are given in Figure 2, below.

E

(@), =a(a+1)(a+2)(a+k-1)=

Figure 2: Surface Plots of the Correlation Coefficient for BExPF Distribution
6,=0.50 6, =275

6:=0.75

6 =225

From the above plot, we can see that, for the BExPF distribution, the correlation coefficient between the two variables
is always positive. We can, also, see that if 8, and 6, are greater than 1 then the correlation coefficient is much higher
as compared with the case when one of these two parameters is less than 1.

6.3. The Conditional Moments

The conditional moments are useful for studying the properties of the conditional distributions. The expressions for
the conditional moments for the BExF'D are given in (12) and (13). Now, from (12), the conditional moment of X,
given Xo = x, is

ﬂr/(xl\xz) =2G, (xz)j;V1 [Gfl (Vll/a )]r [1 —(1—V1){1 -Gy (x, )}]73 dv, ,

where v, =G/ (x,) . Now, for the power function distribution, we have v, = (x, /¢, )m91 or G (vll/ ‘ ) =¢p/** and hence

the rth conditional moment of X; given X2 = x; is
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Uy =260 () [ [1-(-w)1-G: (x, )}]‘3 v,

—clz ”3 G (x ){I—sz(xz)}jL)lvl"/“‘g'”(l—vl)jdvl.

Solving the integral, we have

Jj+3 j r .
uﬁ(xl‘,fcl; I )Gf(xz){l—Gf(xz)}jB(a—el+2,]+lj.

J!
Again, using the infinite sum of the beta function, see Gradshteyn and Ryzhik (2007), we have

,ur/(Xlxz)=c{G§(x2)B(aLHI+2,1] {13 9+31 G"(xz)} (38)

where 2Fi[a1,a0;;z] is the Gauss hypergeometric function defined as

oK [al,aQ;ﬂ;z]:iwi

k=0 (’B)k k' .
Similarly, the sth conditional moment of X, given X; = x; is derived as
/ S a § a
() =G (xl)B(E+2,1J F[l 33— b0, +3;1-G; (x1 )} (39)

The conditional moments, given in (38) and (39), are useful in obtaining the conditional means and variances.

6.4. The Joint Reliability and Hazard Rate Functions
The joint reliability function for the BEXFD is given in (14) as

Rio) LG (1= )67 ()63 ()]
15%2 [1_{1_G1" (xl)}{l—Gé7 (xQ)}}

Using the marginal cdf’s of the power function distribution in the above equation, the joint reliability function for the
BEXPF distribution is

1

—Alz(x1,x2)|:{1_(x1/cl)a91}{1_(x2/cz)bgz}{(xl/ )" +(x /e )bgz}] (40)

where A, (x17x2):|:1_{1_(x1 /e )ag'}{l_(xz /e, )bﬂz}] Again, the joint hazard rate function for the proposed

R(xl,xz):

BEXFD is given in (15) as
h(x.x,) = 2abg, ()&, (%,) G (%)G"" (x,)
1042 ) = P :
? (x1 )(01 (x1 )Alz,z (xl > Xy )|:G1 (xl )+ Gf (xz )J
Now, using the marginal pdf’s and cdf’s of the power function distribution in the above equation, the joint hazard rate
function for the BExPF is
2ab6,0,x;“* ' x3"%!

() =20 () {14 () (/) + (/) | ] (41)

Further, the entries of the hazard rate vector for the BExPF distribution can be obtained by using the marginal density
and distribution functions of the power function distribution in (17) and (18) and are

abt* [ (n/a)" +2(xw e ~(u /)" (x/e)"” |

0
——InR(x,x,)= - - , (42)
0ox, A, (xl,xz)[l—(xl/cl) 4 J[(xl/cl) ° +(x2/cz)bﬂ
and
sz gbgz_l 2 1 10‘9I 2 zbgz_ 1 10‘9I 2 2[”92
LR n) =y Aefe)” rlsfe) /)" Lo/ (43)

o, a5 () [1-(a/e)™ [ (n /)™ + (/)™ |
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The plots of the joint hazard rate function, given in (41), for ¢ = ¢ = 1 and for different values of the other parameters

are given in Figure 3 below.

Figure 3: The Joint Hazard Rate Function for the BExPF Distribution

(a, b) 61=0.75,6=125 61=1.75, 6, =2.50

(0.5,0.75)

(0.75. 1.25)

(1.5.0.75)

(2.5.3.0)

The plot of the joint hazard rate function indicates that the BEXPF distribution has a monotonically increasing hazard

rate.

6.5. The Stress—Strength Reliability Coefficient
The stress-strength reliability coefficient is given as

R=P(X,<X,)=["ag (x)G" (x)G" (x)[1-{1-G (x)}{1- G (x )}]_2 dx, .

Now, for the power function baseline distribution, we have
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g (x)= Gxi/ch ; G, (%) =(x/q )3‘ and G, (x,)=(x/c, )92 )
The stress-strength reliability coefficient is, therefore,

R=[" a[%ﬁj [Z—j(a% {:—:JZWZ [1 - {1 ~(x,/c )" }{1 —(x/e,)" }T dx, .

Using the transformation x, /¢, =v, = dx, = ¢,dv,, the reliability coefficient is

2b6,
c U w0 22b0, p b6, -2
R=a0, [C—lj jo yareet [1 —(1 — ){1 —(¢/c,) v }J dv, . (44)
2
If ¢1 = 2, then a simplified version of the stress-strength reliability coefficient is
-2
R= a@lj-;vfg‘*wfl [1—(1—\)1"‘9‘ ){l—vlbgZ }:l dv, .

The values of the reliability coefficient, (44), for various values of 6, 8-, a, and b are given in Table C.2 in Appendix
C. Also, the plots of the reliability coefficient for c¢; = ¢> and different combinations of 6, 6, a, and b are given in
Figure 4 below.

Figure 4: Surface Plots of the Reliability Coefficient for BExPF Distribution
6,=0.50 6, =2.75

6,=0.75

6,=2.25

We can see, from the above plot, that if 6, is greater than 1 then the reliability coefficient is on the lower side for
almost all values of a and b. Also, if 8, is greater than 1 and 6, is less than 1 then the reliability is on the higher side.
We can also see, from Table 4.2, that the reliability coefficient is equal to 0.5 if a8, = bO;.

6.6. The Local Dependence Measure
The local dependence measure for the BEXFD is given in (26) as

Y (3,,) = 3abg, (x,)g, (x,)G (x)G; (x,) |

[1-1-6G: ()} {1-G ()}

Using the marginal pdf’s and cdf’s of the power function distribution, the local dependence measure for the BExPF
distribution is
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3ab(91x1ﬂ71/61q)(ezngfl/czgz)(xl/cl) (xz/cz) " _ 3ab6,0,x, a+1 1x§b+1)02_1

[1 - {1 - (xl/cl )aol } {1 h (xz/cz )Wz }] Cl(aﬂ)gl Cghﬂ)gz A12~2 (xl Xy )

The local dependence measure can be computed for specific values of the parameters.

y(xl,x2)= (45)

6.7. Random Sampling
Random sampling from BExPF distribution can be easily done by (27). The steps to draw a random observation from
the BExPF distribution are given below:

. . ) 1
e Generate a random observation x; by solving (x, /)" =u, or x, = clul/ “

e Generate a random observation x; by solving

1/2(x1/c1)
1- ul/z{ —(xl/cl)ag‘}

A random sample can be generated for a specific sample size and for specific values of the parameters.

b

*1/6,

[ * * . .
(x,/c,)* =u, for x, where u, = or obtain x; by using x, =c,u,

6.8. Maximum Likelihood Estimation of the Parameters

In this section, we have discussed the maximum likelihood estimation for the parameters of BExPF distribution. For
this, suppose that (xi1, x21), (x12, X22), ...... , (X1, X2,) be a random sample of n bivariate observations from BExPF
distribution. The likelihood function is, then,

2% 4" h" 911 911 H n 2a91 -1 n x2{792 -1

=1 11 i=1""2i
2nm91 2nb€2 n 3
I I AIZ xmle

where A, (x,;,x,)= [1—{1—(xh./c1 )a ‘ } {1—(x2,./c2 )a ' H .
The log-likelihood function is
(= lnL(Hl,Hz,a,b;xl,xz) =nln2+nné, +nnb,+nlna+nlnb—-2nab, Inc, —2nbb, Inc,

+(2a6,-1) " Inx, +(266, —1) D" Inxy, =3>"" A, (x5, )-

It is easy to see that the maximum likelihood estimators of ¢; and ¢; are ¢1 = Xi(u.n) and é2 = X2(u:n), Where Xi(u. s the

L(6,,6,,a,b;x,,x,) =

(46)

largest observation among x;; and Xxa(.» is the largest observation among x,, . The maximum likelihood estimators

of the other parameters are obtained by solving the likelihood equation. For this, we first see that the derivatives of
the log-likelihood function, (46), with respect to the unknown parameters are

n v 6 (x,/c) " 11=(xy /¢, )" Yin(x,, Jc
Ua:%:n(é—2911n01j+20121nx”—32 | (/c) { (xai/c2) } (x/e:)

a i-1 i-1 Al,z (x1i7 x2i)

, (47)

: o, 0, (/) {1 (/)" (/)

ol 1 2 (X /6 1:/€1 2i/ €2
U =—=n|—-206,1 20, Inx,, -3 s 48
" ob n(b : nczj+ 2; o ; A1,2(9611'59621‘) 0

)

ot (1 u " xh/cl) {1_(xzf/cz) Z}ln(xli/cl)
——2al 2a)'1 , 49
6~ 50 [ \ ¢ n01]+ aizzl: e Z Al,z (xmxzi) @)

n n bxl./c b, 1— xi/C af, In .xl./C
and Ug, 5[ [L_2blnc2J+2bzlnx2i_3z ( 2 2) { ( 1 1) } ( 2 2).
2 89 02 i=1 i=1 ALZ (xli . x2i )

The maximum likelihood estimators of a, b, 61, and 6, are obtained by simultaneously solving the equations U, =0,

(50)

U,=0, U, =0, and U, =0. The entries of the Fisher information matrix for BExPF distribution are given in

Appendix B.
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7. Numerical Studies
In this section, we have given some numerical studies for the BExPF distribution. These contain simulation and real
data applications.

7.1. Simulation Study
In this section, we have given extensive simulation study to see the consistency of the maximum likelihood estimates.
The simulation algorithm is given below:
1. Draw random samples of different sizes from the BExPF distribution.
2. Compute the maximum likelihood estimates of the unknown parameters by using a sample of a specific size.
3. Repeat Steps 1 and 2 for a specific number of times, say N.
4. Compute the expected value and the standard error of each parameter by using

0,=N"Y" 0, and SE(éh):\/(N—l)_lzll(éh/. -6,

where 6, is hth element of the parameter vector 0= (él ,C, ,a,b, 671 , 92) and éhi is the estimated value of /th

parameter at jth simulation.
It is to be noted that the maximum likelihood estimates of ¢; and c¢; are the maximum values in the sample at each
simulation. The results of the simulation for N = 10000 are given in Table 1 below, where entries in the parenthesis
are the standard errors of the estimates.

Table 1: Simulation Results for BExPF Distribution
n c1=3.5 =25 0i=1.5 0,=3.5 a=1.3 b=25

20 3.50054 249937  1.49803  3.49763  1.29763  2.50402
(0.33022) (0.37845) (0.38443) (0.37714) (0.37787) (0.37282)
50 349512 249649  1.50127  3.4894 130121  2.50192
(0.29931)  (0.29677) (0.36804) (0.34797) (0.25812) (0.31275)
100 3.5032 249625  1.49467  3.5063 130137  2.50312
(0.29152) (0.28567) (0.32723) (0.27247) (0.22022) (0.31175)
200 349145 249924 150146  3.50138 129233  2.49563
(0.24297)  (0.26495) (0.20474) (0.25371) (0.17398) (0.28468)
500  3.50016  2.50124  1.50435  3.50414  1.29968  2.50604
(0.22084) (0.14750) (0.16365) (0.24172) (0.17203) (0.27192)
1000 3.49722 249568  1.50467  3.49654  1.29763  2.50281
(0.20608)  (0.13945) (0.13161) (0.14131)  (0.14471) (0.17811)

n c1=4.5 c2=06.5 01=3.7 0=2.2 a=2.6 b=1.2

20 449695  6.50389  3.70073 220118  2.60462  1.19935
(0.31909) (0.26914) (0.37643) (0.35961) (0.40048) (0.38921)
50 44972 649886  3.70654  2.19818  2.59828  1.19403
(0.29927) (0.21701) (0.36357) (0.34413) (0.32924) (0.36928)
100 449754 650314  3.70424 220019 259678  1.20341
(0.29813)  (0.12755) (0.34911) (0.31994) (0.21699) (0.24023)
200 449269 65012 3.70479 220018  2.59836  1.20657
(0.26385)  (0.32986) (0.27022) (0.26857) (0.21684) (0.22271)
500  4.49884  6.49903  3.70408 220591  2.59875  1.19895
(0.19845)  (0.36208) (0.24866) (0.16624) (0.13812)  (0.20683)
1000 4.49287  6.49559  3.7036  2.20334  2.59195  1.19828
(0.14104)  (0.30078) (0.23172) (0.08951) (0.13448) (0.18965)

It is evident, from the above table, that the maximum likelihood estimates converge to the true values of the parameters.
We can also see, from the above table, that the standard error of each of the parameters decreases with an increase in
the sample size. We have also given a comparison of the standard errors by using multiple bar charts. These charts are
given in Figure 5 below.
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F igure 5: Standard Errors for Different Estimates

s 7=200 WA=500 We IS eI eSO BAI00 EnRZOL P —
61_35 er=2.5; 61_15 f:=25,a=13,b=25 |—4,5,C‘3—f|.5,31 3.7, 6; _72 a=2.6, b—I"

The above figure indicates that the standard error for each estimate decreases with an increase in the sample size. This
indicates the consistency of the maximum likelihood estimates.

7.2. The Real Data Applications

In this section, we have given two real data applications to see the suitability of the proposed BExPF distribution. The
first data is about the height and forced expiratory volume of 654 children and is obtained from Rosner (1999). The
second data set is about the gross national income of 201 countries of the world for the years 2020 and 2021 and is
obtained from the United Nations Development Program (UNDP) website hdr.undp.org/en/data. The description of
the data is given in Table 2, below.

Table 2: Description of the Two Data Sets

Data n Variables
1 654 Xi: Forced Expiratory Volume
Xo: Height, in meters, of the Children
2 201 Xi: GNI; in US$10000; for 2020

X2: GNI; in US$10000; for 2021

Summary statistics for the two data sets are given in Table 3, below.

Table 3: Summary Measures for the Two Data Sets
Data Min Q: Median Mean Qs Max Var. Skew. Corr.
7 X1 0791 1.981 2.547 2.637 3.118 5793 0.752  0.660 0.868
Xz 1.170 1.450 1.560 1.553  1.660 1.880 0.021 —0.209 )
X1 0.072 0.468 1.240 1.783 2573 7.650 3.045 1.297

X: 0.071 0.467 1.257 1.867 2748 7.895 3.386 1.270

2 0.998

From the summary measures we can see that the variables in both data sets are highly correlated. Also, in data set 1,
one variable is positively skewed and the other is negatively skewed whereas in data set 2 both variables are positively
skewed. The bivariate histograms of the two data sets are given in Figure 6, below.

Figure 6: The Bivariate Histograms of the Two Data Sets
| :

Data Set 1 Data Set 2
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We have fitted four distributions alongside the proposed BExPF distributions. The additional fitted distributions are
e Gumbel Bivariate Power Function Distribution (GBPF); Gumbel (1960)

Fraior (5532) = (O e ) (0™ e ) 1+ @ 1=2(x fa ) | {1-2( /e )} ]
e Huang and Kotz Bivariate Power Function (HKBPF); Hang and Kotz (1999)

Fay (5532) = (6517 el ) (02 et 1+ @f1=2(m fe ) 1= e ) .
e Ali-Mikhil-Haq Bivariate Power Function (AMKBPF); Ali et al. (1978)

a-1 0,1 4 0,
[elxll )[6’2)‘22 )x (a—l)[a’gol (), (xz)—l]+2a(xl/cl) (x,/¢)
¢ o [1 —ag (x) e, (x, )T
where ¢, (x,)=1-(x/c,)" and @, (x,)=1-(x,/c,)".

e Cambanis Bivariate Power Function (CBPF); Cambanis (1997)

f1,2(c) (xl’xz): (‘91)‘191_1/61a )(‘gzngz_l/czZ )[1+0‘{1_2(x1/cl )GI } +}/{1—2(x2/cz )HZ}
+o{1-2(x/e)" H1-2(x/e)" ||

The maximum likelihood estimates of the parameters, with standard errors, are given in Table 4, below. It is to be
noted that the maximum likelihood estimates of ¢; and ¢, in both data sets are the largest observations for each variable.

fl,z(AMK)

>

Table 4: Maximum Likelihood Estimates of the Parameters for Two Data Sets

Data 1 Data 2

Distribution Parameter Estimate S.E. Estimate S.E.
6, 2.7408 0.8533 2.0776 0.2718
Bivariate Exponentiated Power 6> 3.7333 1.3544 2.9154 0.5216
Function Distribution (BEPF) a 0.5976 0.1895 0.3622 0.0713
b 1.8296 0.6429 0.2566 0.0353
. 6, 1.5543 0.1986 0.5632 0.0419
Fui‘ggﬁ%ggﬁi‘ifnpfglﬂ 5 0, 69018 04445 05627  0.0420
a 0.9985 0.3691 0.9873 0.3952
Ali-Mikhil-Haq Bivariate 6, 1.6348 0.1519 0.7523 0.0391
Power Function Distribution 6, 6.9056 0.2204 0.7478 0.0392
(AMKBPF) a 0.9782 0.2874 0.9943 0.2718
o 6, 1.1282 0.0352 0.4830 0.0318
Pljvlfgrl%zﬁ‘citﬁﬁtéﬁ‘;ﬁ:ﬁgn 0, 5.4658 1.6359  0.4851 0.0328
(HKBPF) a 0.9748 0.0663 0.9908 0.1390
y 10.0191 0.4521 24.8227 3.0126
0 1.7652 0.0527 0.6295 0.0318
Cambanis Bivariate Power 6> 2.5925 0.8174 0.6444 0.0339

0.9925 0.1998 0.5352 0.2263
—0.9973 0.0421 0.5352 0.2385
—0.9897 0.1183 0.9998 0.3023

Function Distribution
(CBPF)

D =

We have also computed two goodness of fit measures; namely, Akaike Information Criteria (4/C) and Bayesian
Information Criteria (BIC) to see the suitability of various distributions for modeling the two data sets. The results of
these measures are given in Table 5, below. From this table, we can see that the proposed BExPF distribution fits both
data sets reasonably well as compared with the other competing distributions as it has the largest value of the log-
likelihood function and the smallest values of 4/C and BIC. The Huang-Kotz bivariate power function distribution is
the second best fit for the two data sets. The Gumbel bivariate power function distribution is the worst fitting
distribution for the two data sets.
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Table 5: Goodness of Fit Measures for Various Distributions

Data 1 Data 2
Distribution Log-Like. AIC BIC Log-Like. AIC BIC
BEPFD —693.2603  1394.5206 1412.4530 -510.5166 1029.0332 1046.9656
GBPFD —935.2229  1876.4458 1889.8951 —662.0806 1330.1612 1343.6105
AMHBPFD —793.2604  1592.5208 16059701 —610.5167 1227.0334 1240.4827
HKBPFD —708.1721  1424.3442 14422766 —-551.5903 1111.1806 1129.1130
CBPFD —846.9599 1703.9198 1726.3353 —636.8887 1283.7774 1306.1929

8. Conclusions and Further Recommendations

The joint modeling of two variables is often required in many areas of sciences, engineering, biological sciences, etc.
The development of bivariate distributions is a tedious task. In this paper, we have proposed a bivariate exponentiated
family of distributions (BExF'D) such that the marginals are the exponentiated families of distributions. Some useful
properties of the proposed BExFD are studies. The maximum likelihood estimation of the parameters for the proposed
family is also done. The proposed BExFD has been used to obtain a bivariate exponentiated power function (BExPF)
distribution. Some useful properties of the derived BExPF distribution have been studied. It is found that the variables
in the derived BExPF distribution are always positively correlated. It is also found that the correlation coefficient
increases with an increase in the parameters. The BExPF distribution is used to model some real data and it is found
that the derived BExPF distribution is a better fit as compared with the other competing distributions. It is hoped that
the proposed BExFD will be useful in deriving new bivariate probability distributions for various choices of baseline
distributions. The proposed BExFD can also be used for two different baseline distributions to obtain the new bivariate
distributions for modeling more complex data.
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Appendix A: Entries of the Fisher Information Matrix for BExFD

The entries of the Fisher information matrix for the BExF'D are given below. In these entries, we have
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0 0
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1(1 1) oL, 1(1 1) 1(1 1) 3¢, 1(1 1) 2(2 2) 08, 2(2 2)
P PY 2
GZ’(XZi;gz):aGZ(XZi;gz) gl(xlz’gl) 552 gl(xlz’gl) ”( 1,,":1) a‘ik (xli;gl)’
0? 82
g;'(le.;gz) 2 & (le,e‘;z)and G”(xznéz) ( zlaéz)
o0&, o8,
The entries are given below.
82 __n 3 < G xlma.vl (le,ﬁz)% (le,gz)ln G, (xmg)
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Appendix B: Entries of the Fisher Information Matrix for BExPF Distribution

The entries of the Fisher information matrix for the BExPF distribution are given below. In these entries we have
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The entries are given below
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Appendix C: Correlation and Stress-Strength Reliability Coefficient for BExPF Distribution

DOL: http://dx.doi.org/10.18187/pjsor.v21i2.4863

Table C.1: Correlation Coefficient for BExPF Distribution

a

b 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.5 0.2386 03030 0.3375 03583 0.3716 0.3805 0.3865 0.3907 0.3935 0.3955
1.0 02603 0.3367 0.3805 0.4086 0.4277 0.4412 0.4510 0.4583 0.4638 0.4680
ﬁ, 1.5 02645 0.3455 0.3935 04253 0.4476 0.4638 0.4759 0.4851 0.4924 0.4980
T 2.0 0.2645 03476 03978 0.4317 0.4559 04737 04873 0.4979 0.5063 0.5130
< 2.5 0.2633 03473 0.3989 0.4341 0.4595 0.4785 0.4931 0.5046 0.5138 0.5212
ﬁj 3.0 0.2617 03463 03987 0.4348 0.4610 0.4808 0.4962 0.5083 0.5181 0.5261
T 3.5 02602 03450 03979 0.4346 0.4615 0.4819 0.4978 0.5104 0.5206  0.5290
< 4.0 02587 03436 03970 04341 04614 04823 04986 0.5116 0.5222  0.5309
T 45 02574 03423 03959 04334 04611 04823 04989 05122 05231 0.5321
5.0 0.2562 0.3411 0.3949 0.4326  0.4606 0.4821 0.4990 0.5125 0.5236  0.5328
0.5 0.3805 03978 0.3987 0.3970 0.3949 0.3930 0.3913 0.3899 0.3886  0.3875
~ 1.0 04412 04737 04808 0.4823 04821 0.4814 0.4805 0.4797 0.4789 0.4782
@ 15 04638 05063 05181 0.5222 05236 0.5240 0.5240 0.5238 0.5235 0.5231
T 2.0 04737 05229 05382 0.5443 0.5470 0.5484 0.5490 0.5493 0.5494 0.5494
< 25 04785 05324 0.5502 0.5578 0.5616 0.5636 0.5648 0.5655 0.5659  0.5662
ﬁ 3.0 0.4808 0.5382 0.5578 0.5667 0.5713 0.5739 0.5755 0.5765 0.5772 0.5776
T. 3.5 04819 05418 0.5630 0.5728 0.5780 0.5811 0.5831 0.5844 0.5853  0.5859
< 40 04823 0.5443 0.5667 0.5772 0.5830 0.5864 0.5887 0.5902 0.5913  0.5920
T 45 04823 05459 05693 0.5805 0.5867 0.5905 0.5929 0.5946 0.5959  0.5968
5.0 04821 0.5470 0.5713 0.5830 0.5895 0.5936 0.5963 0.5981 0.5995 0.6005
0.5 03865 0.4510 04759 0.4873 0.4931 0.4962 0.4978 0.4986 0.4989 0.4990
1.0 03988 04773 0.5118 0.5298 0.5403 0.5468 0.5510 0.5539 0.5560 0.5574
2 1.5 03979 04819 05206 0.5418 0.5547 0.5630 0.5687 0.5728 0.5758  0.5780
T 2.0 03956 0.4822 0.5233 0.5463 0.5606 0.5700 0.5766 0.5814 0.5850 0.5877
< 2.5 03933 04815 0.5240 0.5482 0.5634 0.5735 0.5807 0.5860 0.5899  0.5930
ﬁ 3.0 03913 04805 0.5240 0.5490 0.5648 0.5755 0.5831 0.5887 0.5929 0.5963
T. 3.5 0389 04795 0.5237 0.5493 0.5656 0.5766 0.5845 0.5904 0.5949 0.5984
< 40 03882 04786 0.5234 0.5494 0.5660 0.5774 0.5855 0.5915 0.5962  0.5998
T 45 03871 04778 05230 05493 0.5662 0.5778 0.5861 0.5923 0.5971  0.6009
5.0 03861 04771 0.5226 0.5492 0.5663 0.5781 0.5866 0.5929 0.5978 0.6017
0.5 0.5026 0.5212 0.5239 0.5240 0.5234 0.5228 0.5222 0.5217 0.5212 0.5208
~ 10 05326 0.5644 0.5727 0.5759 0.5773 0.5780 0.5783 0.5785 0.5786  0.5786
ﬁ. 1.5 0.5396 0.5775 0.5888 0.5936 0.5960 0.5975 0.5983 0.5989 0.5994 0.5997
c‘? 2.0 0.5416 0.5831 0.5961 0.6018 0.6049 0.6068 0.6081 0.6089 0.6095 0.6100
< 2.5 0.5421 0.5859 0.6000 0.6064 0.6100 0.6122 0.6136 0.6146 0.6154 0.6159
c"\; 3.0 05421 05874 0.6024 0.6093 0.6131 0.6155 0.6171 0.6183 0.6192 0.6198
T 3.5 05419 05884 0.6039 0.6112 0.6153 0.6178 0.6196 0.6208 0.6217  0.6225
< 40 05416 0.5890 0.6050 0.6125 0.6168 0.6195 0.6213 0.6226 0.6236 0.6244
T 45 05413 05894 0.6058 0.6135 0.6179 0.6207 0.6226 0.6240  0.6250  0.6259
5.0 0.5411 0.5897 0.6063 0.6143 0.6188 0.6217 0.6236 0.6251 0.6261 0.6270
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Table C.2: The Reliability Coefficient for BExPF Distribution
a
b 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.5 0.8305 0.6586 0.5000 0.3834 0.3073 0.2557 0.2187 0.1910 0.1695 0.1523
1.0 09159 0.8305 0.7443 0.6586 0.5757 0.5000 0.4356 0.3834 0.3414 0.3073

3 1.5 09441 0.8876 0.8305 0.7731 0.7156 0.6586 0.6028 0.5495 0.5000 0.4557
T 2.0 09581 09159 0.8734 0.8305 0.7875 0.7443 0.7013 0.6586 0.6166  0.5757
< 25 09665 09329 0.8989 0.8648 0.8305 0.7961 0.7616 0.7271  0.6927  0.6586
ﬁj 3.0 09721 09441 009159 0.8876 0.8591 0.8305 0.8018 0.7731 0.7443 0.7156
T 3.5 09761 09521 09280 09038 0.8795 0.8550 0.8305 0.8059 0.7813 0.7567
< 40 09791 09581 0.9371 09159 0.8947 0.8734 0.8520 0.8305 0.8090 0.7875
T 45 09814 09628 09441 0.9253 0.9065 0.8876 0.8686 0.8496 0.8305 0.8114

5.0 09833 0.9665 0.9497 09329 09159 0.8989 0.8819 0.8648 0.8477 0.8305

0.5 0.2557 0.1266 0.0841 0.0629 0.0503 0.0419 0.0359 0.0314 0.0279 0.0251
~ 10 05000 02557 0.1695 0.1266 0.1011 0.0841 0.0720 0.0629  0.0559 0.0503
@ 15 0658 03834 02557 0.1910 0.1523 0.1266 0.1084 0.0947 0.0841 0.0756
T 2.0 0.7443 0.5000 0.3414 0.2557 0.2039 0.1695 0.1450 0.1266 0.1124 0.1011
< 25 0791 05919 0.4243  0.3201 02557 0.2125 0.1818 0.1588 0.1409  0.1266
ﬁ 3.0 0.8305 0.6586 0.5000 0.3834 0.3073 0.2557 0.2187 0.1910 0.1695 0.1523
T. 3.5 0.8550 0.7074 0.5644 0.4441 0.3583 0.2987 0.2557 0.2233 0.1982 0.1781
< 40 08734 0.7443 0.6166 0.5000 0.4081 0.3414 0.2926 0.2557 0.2269 0.2039
T 45 08876 0.7731 0.6586 0.5495 0.4557 03834 0.3293 02880 0.2557 0.2298

5.0 0.8989 0.7961 0.6927 0.5919 0.5000 0.4243 0.3655 0.3201 0.2844 0.2557

0.5 0.7813 0.5644 03972 0.2987 0.2384 0.1982 0.1695 0.1480 0.1314 0.1181
1.0 028916 0.7813 0.6707 0.5644 0.4709 03972 03414 0.2987 0.2653 0.2384
ﬁ, 1.5 09280 0.8550 0.7813 0.7074 0.6345 0.5644 0.5000 0.4441 0.3972 0.3583
T 2.0 09461 0.8916 0.8366 0.7813 0.7259 0.6707 0.6166 0.5644 0.5154 0.4709
< 25 09569 09135 0.8697 0.8256 0.7813  0.7369  0.6927 0.6489 0.6059  0.5644
ﬁj 3.0 09641 09280 0.8916 0.8550 0.8182 0.7813 0.7443 0.7074 0.6707 0.6345
T 3.5 09693 09384 09073 0.8760 0.8445 0.8130 0.7813 0.7496 0.7179  0.6864
< 40 09731 09461 09189 0.8916 0.8642 0.8366 0.8090 0.7813 0.7536  0.7259
T 45 09761 09521 09280 0.9038 0.8795 0.8550 0.8305 0.8059 0.7813  0.7567

5.0 09785 0.9569 0.9353 09135 0.8916 0.8697 0.8477 0.8256 0.8035 0.7813

0.5 04170 0.2086 0.1383 0.1034 0.0825 0.0687 0.0588 0.0514 0.0457 0.0411
1.0 06870 04170 0.2792 0.2086 0.1664 0.1383 0.1183 0.1034 0.0918  0.0825
ﬁ, 1.5 0.7923 0.5847 0.4170 0.3143 0.2510 0.2086 0.1784 0.1558 0.1383  0.1243
? 2.0 0.8448 0.6870 0.5367 0.4170 0.3352 0.2792 0.2389 0.2086 0.1851 0.1664
< 25 08762 07501 0.6249 0.5095 0.4170 0.3491 0.2993 02616 0.2321  0.2086
ﬁ 3.0 0.8970 0.7923 0.6870 0.5847 0.4922 0.4170 0.3590 0.3143 0.2792 0.2510
'ﬂi 3.5 09119 0.8223 0.7320 0.6425 0.5569 0.4803 0.4170 0.3664 0.3260 0.2933
s 4.0 0.9230 0.8448 0.7659 0.6870 0.6097 0.5367 0.4717 0.4170 03721 0.3352

45 09316 0.8623 0.7923 0.7220 0.6523 0.5847 0.5214 0.4651 0.4170 0.3766
5.0 09385 0.8762 0.8133 0.7501 0.6870 0.6249 0.5651 0.5095 0.4599 0.4170
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