
Pak.j.stat.oper.res. Vol.21 No.3 2025 pp 305-321 DOI: http://dx.doi.org/10.18187/pjsor.v21i3.4793

Point and Interval Estimation Techniques for the
2S-Lindley Distribution Under Type-II Censoring

Joul Kanjo1, Akbar Asgharzadeh1,∗,
Mohammad Z. Raqab2

∗Corresponding author: a.asgharzadeh@umz.ac.ir

1. Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar 47416-1407, Iran,
joul.kanjo@gmail.com & a.asgharzadeh@umz.ac.ir
2. Department of Statistics & Operations Research, Kuwait University, Al-Shadadiyya, Kuwait

& Department of Mathematics, The University of Jordan, Amman 11942, Jordan, mraqab@ju.edu.jo

Abstract

Recently, Chesneau et al.(2020) introduced a new distribution called the 2S-Lindley distribution, which is based on
the sum of two independent Lindley random variables with the same parameter. In this paper, we employ different
methods to estimate the unknown parameter of the 2S-Lindley distribution using Type-II censored samples. These
methods include the moment-based method, maximum likelihood estimation, the bootstrap method, and Bayesian
inference. We provide both point and interval estimates for the parameter using each method. We also consider a real
dataset that follows the 2S-Lindley distribution, for which various estimates are calculated and analyzed. Finally, we
conduct a simulation study to illustrate and compare the effectiveness of these methods.
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1. Introduction

One of the statistical models that has attracted the attention of many statisticians in recent years is the Lindley dis-
tribution. This distribution is a competitor to the exponential distribution, but in terms of many mathematical and
statistical properties, it is more flexible than the exponential distribution. In recent years, various generalizations of
this distribution have appeared in the theory of distributions, which have been used in various fields. See, for example,
Bakouch et al.(2012), Ghitany et al.(2013), Asgharzadeh et al.(2017a), Abdi et al.(2019) and Chesneau et al.(2023).
Inferential methods for the Lindley distribution have been discussed by many authors, mostly including estimation and
prediction with different types of data, e.g., Al-Mutairi et al.(2013), Gupta and Singh(2013), Valiollahi et al.(2017),
Asgharzadeh et al.(2018, 2017b), and Goel and Krishna(2022).

Chesneau et al.(2020) introduced the 2S-Lindley distribution, which represents the sum of two independent and iden-
tically distributed random variables following the common Lindley distribution. The 2S-Lindley distribution with the

Point and Interval Estimation Techniques for the 2S-Lindley Distribution Under Type-II Censoring 305



Pak.j.stat.oper.res. Vol.21 No.3 2025 pp 305-321 DOI: http://dx.doi.org/10.18187/pjsor.v21i3.4793

parameter γ > 0, denoted by 2S-L(γ), has the following probability density function (pdf)

fγ(x) =
γ4

(1 + γ)2

(
x3

6
+ x2 + x

)
e−γx, x > 0, γ > 0.

This pdf can be written as a combination of three gamma distribution pdfs as follows:

fγ(x) =
1

(1 + γ)2

[
fGAM (x, 4, γ) + 2γfGAM (x, 3, γ) + γ2fGAM (x, 2, γ)

]
,

where fGAM (x, k, γ) is the pdf of a gamma distribution with parameters k and γ, denoted as GAM(k, γ), given by

fGAM (x, k, γ) =
γk

Γ(k)
xk−1e−γx, x > 0, k > 0, γ > 0,

where Γ(k) =
∫∞
0

tk−1e−tdt denotes a gamma function.
The cumulative distribution function (cdf), for x > 0 and γ > 0, can be obtained as

Fγ(x) = 1− 1

6(1 + γ)2

[
γ3x3 + (6γ3 + 3γ2)x2 + (6γ3 + 12γ2 + 6γ)x+ (6γ2 + 12γ + 6)

]
e−γx.

Note that fγ(x) and Fγ(x) can rewritten as

fγ(x) =
γ4

6(1 + γ)2
a(x) e−γx, x > 0, γ > 0. (1)

and
Fγ(x) = 1− 1

6(1 + γ)2

[
γ3a(x) + γ2b(x) + γc(x) + 6

]
e−γx, (2)

where a(x) = x3 + 6x2 + 6x, b(x) = 3x2 + 12x + 6 and c(x) = 6x + 12. Here, b(x) and c(x) are the first and
second derivatives of a(x), respectively.
The hazard rate function (hrf) is an important function in reliability, defined as the ratio of the pdf to the complementary
cdf. For the 2S-L(γ) distribution, the hrf is given by (for x > 0 and γ > 0)

h(x) =
fγ(x)

F̄γ(x)
=

fγ(x)

1− Fγ(x)
=

γ4a(x)

γ3a(x) + γ2b(x) + γc(x) + 6
.

It can be shown that the hrf of this distribution increases at first and then remains almost constant. In the real world,
there are some situations in reliability and survival analysis, where the failure rate behaves like this. For example,
many electronic and mechanical devices may have a higher failure rate initially. After fixing the initial failures and
the warranty period, these devices enter a stage where their failure rate is fixed for a long time until they fail. This
stage is called the useful lifetime period. In some chronic diseases (such as some cancers), as the disease progresses
in the early and middle stages, the probability of death increases initially. However, with proper management and
early treatments, the disease may be controlled and the risk stabilized. Also, during the recovery times after heavy
surgeries, the mortality rate due to infection and surgical complications is high at the beginning. But after a while, the
risk stabilizes. Therefore, the 2S-Lindley distribution is suitable for modeling these types of lifetimes and recovery
times.
Chesneau et al.(2020) studied the basic statistical and mathematical features of this distribution including moments,
characteristic function, stochastic ordering, order statistics, and by analyzing four reliability and survival data sets, they
showed the power of this distribution compared to Lindley and exponential distributions. Hamedani and Najaf(2021)
showed that the assumption of ”independence” of 2 random variables in the 2S-Lindley distribution can be replaced
by the much weaker assumption of ”sub-independence” of 2 random variables. They then gave some characteristics
of the 2S-Lindley distribution. Recently, Chesneau et al.(2023) proposed the Poisson 2S-Lindley distribution by com-
pounding the 2S-Lindley and Poisson distributions.

Let X1, X2, ..., Xn be an independent and identically distributed (iid) sample from the 2S-L(γ) distribution with the
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pdf and cdf given in Eqs. 1 and 2, respectively. Suppose we are only able to observe the first m order statistics
X1:n < X2:n < . . . < Xm:n, commonly referred to Type-II censored sample. For the sake of simplicity in notation,
we will denote the random variables X1:n < X2:n < . . . < Xm:n by X1 < X2 < . . . < Xm. Our goal in this paper is
to explore the inference of model parameters for the 2S-L(γ) distribution under Type-II censoring, covering both point
and interval estimation. We investigate various techniques for estimating γ, including the moment-based method, the
maximum likelihood method, bootstrap and Bayesian methods. Additionally, we evaluate the so obtained estimates
and assess their effectiveness in practice. To our knowledge, no previous work has analyzed censored data based on
the 2S-Lindley distribution.
The organization of the paper is as follows. Section 2 introduces the maximum likelihood method to derive the
maximum likelihood estimate MLE of γ and provides approximate confidence intervals (CIs) based on the asymptotic
normality of this estimator. Section 3 considers the moment-based method, obtaining a point estimate and an exact
CI for γ. In Section 4, we examine the bootstrap method. Section 5 presents Bayes estimates and Bayesian credible
intervals using Lindley’s approximation and importance sampling techniques. Section 6 applies these techniques to
practical data to show their application. A Monte Carlo simulation study is performed to assess the performance of
the proposed techniques in Section 7. Finally, the findings and future insights are described in Section 8.

2. Maximum likelihood method

In this section, we derive the maximum likelihood estimator (MLE) of γ using a Type-II censored sample from the 2S-
Lindley distribution. We then discuss the asymptotic normality of this MLE and proceed to obtain the corresponding
CIs for the model parameter. For the MLE of γ for the case of a complete sample, see Chesneau et al.(2020).

2.1. Maximum likelihood estimation

The likelihood function of γ given the observed Type-II censored sample x1 < x2 < · · · < xm from the 2S-L(γ)
distribution is

L(γ, x) =
n!

(n−m)!

{
m∏
i=1

fγ(xi)

}
[1− Fγ(xm)]

n−m
.

By using Eqs. (1) and (2), we have

L(γ, x) ∝ γ4m

(1 + γ)2n

m∏
i=1

a(xi) e
−γ

∑m
i=1 xi−(n−m)γxm

[
γ3a(xm) + γ2b(xm) + γc(xm) + 6

]n−m

. (3)

The log-likelihood function is

l(γ, x) = lnL(γ, x) =Constant+ 4m ln γ − 2n ln(1 + γ)− γ

[
m∑
i=1

xi + (n−m)xm

]
+ (n−m) ln

[
γ3a(xm) + γ2b(xm) + γc(xm) + 6

]
.

(4)

Now, the MLE of γ, γ̂, is computed by solving the likelihood equation:

d l(γ, x)
dγ

=
4m

γ
− 2n

1 + γ
−

m∑
i=1

xi − (n−m)xm + (n−m)

(
3γ2a(xm) + 2γb(xm) + c(xm)

γ3a(xm) + γ2b(xm) + γc(xm) + 6

)
= 0, (5)

with respect to γ. Numerical methods can be used to solve the above likelihood equation. This equation can also be
solved using some functions in mathematical or statistical software.

To verify that the MLE exists and is unique, let us define ϕ(γ) = d l(γ;x)
dγ . The limits of ϕ(γ), when γ approaches 0

and ∞ respectively, are:

lim
γ→0

ϕ(γ) = +∞, lim
γ→∞

ϕ(γ) = −
m∑
i=1

xi − (n−m)xm < 0.
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Also, after some algebra, it can be shown that

ϕ′(γ) =
d2l(γ, x)

dγ2
=
(2n− 4m)γ2 − 8mγ − 4m

γ2(1 + γ)2
− (n−m)

×
[
3a2mγ4 + 4ambmγ3 + 2b2mγ2 + 2(bmcm − 18am)γ + (c2m − 12bm)

(amγ3 + bmγ2 + cmγ + 6)2

]
,

where am = a(xm), bm = b(xm) and cm = c(xm) for the simplicity in the notations. Now, since bmcm − 18am =
72(xm + 1) > 0 and c2m − 12bm = 72 > 0, we can conclude that ϕ′(γ) < 0 when 2n − 4m < 0 (or m > n

2 ).
Therefore, when m > n

2 , the function ϕ(γ) is a continuously decreasing function on the interval (0,∞), which
decreases monotonically from +∞ to a negative value. Hence, the MLE of γ, which is the root of the equation
ϕ(γ) = 0, exists and is unique when m > n

2 . In other words, the existence and uniqueness of the MLE is guaranteed
when the proportion of censored data is less than 50% of the sample size, which is usually the case in practice.

2.2. Approximate CI

The approximate CIs (ACIs) are obtained based on the asymptotic normality of the MLEs. According to Bartlett(1953),
these CIs are known for providing the shortest intervals on average in large samples. When sample sizes are large,
the MLE γ̂ approximately follows a normal distribution with mean γ and variance σ2

γ . Here σ2
γ = 1

I(γ) and I(γ) =

−E
(

d2l(γ,X)
dγ2

)
, represents the expected Fisher information of the sample. Therefore, the approximate distribution of

the pivotal quantity

γ̂ − γ√
1

I(γ)

,

is a standard normal. This give a 100(1− α)% approximate CI for γ as(
γ̂ACI
l , γ̂ACI

u

)
= γ̂ ± z1−α

2

1√
I(γ)

,

where z1−α
2

is the
(
1− α

2

)
th percentile of the standard normal distribution.

We can approximate the expected Fisher information I(γ) by the observed Fisher information Î(γ̂) = −d2l(γ;X)
dγ2 |γ=γ̂ ,

and construct the 100(1− α)% approximate CI as(
γ̂ACI
l , γ̂ACI

u

)
= γ̂ ± z1−α

2

1√
Î(γ̂)

, (6)

see e.g., Casella and Berger(2024). The use of the observed Fisher information is superior to the expected Fisher
information (see Efron and Hinkley(1978)). Note that from the results given in the previous section, the observed
Fisher information is given by

Î(γ̂) =− (2n− 4m)γ2 − 8mγ − 4m

γ2(1 + γ)2
|γ=γ̂ +(n−m)

×
[
3a2mγ4 + 4ambmγ3 + 2b2mγ2 + 2(bmcm − 18am)γ + (c2m − 12bm)

(amγ3 + bmγ2 + cmγ + 6)2

]
γ=γ̂

.

It should be noted here that the lower bound of the approximate CI in (6) can be a negative value. Since γ > 0, we can
propose a modified approximate CI as follows:

(
γ̂ACI
l+ , γ̂ACI

u

)
=

(γ̂ − z1−α
2

1√
Î(γ̂)

)
+
, γ̂ + z1−α

2

1√
Î(γ̂)

 ,
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where k+ = max{0, k}.

In an alternative approach to ensure that the lower bound of the approximate CI is not become a negative value, some
logarithmic transformations can be used on the parameter. Here, we use the logarithmic transformation ln γ. The MLE
of ln γ is ln γ̂. Using the Delta Method, the mean and variance of ln γ̂ can be approximated by

E(ln γ̂) ≈ ln γ, and V ar(ln γ̂) ≈ 1

γ2I(γ)
,

see e.g., Casella and Berger(2024). Now, since the approximate distribution of

ln γ̂ − ln γ√
1

γ̂2Î(γ̂)

,

is a standard normal, we have

P

−z1−α
2
<

ln γ̂ − ln γ√
1

γ̂2Î(γ̂)

< z1−α
2

 = 1− α,

from which we get the 100(1− α)% approximate CI for γ using log transformed MLE as

(
γ̂ACI∗

l , γ̂ACI∗

u

)
=

γ̂ exp
(
− z1−α

2

1

γ̂

√
Î(γ̂)

)
, γ̂ exp

(
z1−α

2

1

γ̂

√
Î(γ̂)

) . (7)

3. Moment-based method

Here, we consider the moment-based method (or pivotal-based method) for estimating the unknown parameter γ from
the 2S-L(γ) distribution under Type-II censored data.

3.1. Moment-based estimation

Moment-based estimator (MBE) is based on the use of the probability integral transformation (PTT) theorem and a
well-known result for spacings of order statistics due to Sukhatme (1937). Suppose X1 < X2 < · · · < Xm is a
Type-II censored sample from the 2S-L(γ) distribution with cdf Fγ(x) in Eq. (2). Using the PTT theorem, the random
variables Y1 < Y2 < · · · < Ym with

Yi = − ln
(
1− F (Xi, γ)

)
= − ln

{
1

6(1 + γ)2

[
γ3a(Xi) + γ2b(Xi) + γc(Xi) + 6

]
e−γXi

}
= ln 6 + 2 ln(1 + γ) + γXi − ln

[
γ3a(Xi) + γ2b(Xi) + γc(Xi) + 6

]
, i = 1, 2, ...,m,

are a Type-II censored sample from a standard exponential distribution, Exp(1). In addition, the spacings Ti =
(n− i+ 1)(Yi − Yi−1), i = 1, ...,m, with Y0 = 0, are themselves iid random variables from the Exp(1) distribution.

To obtain the MBE of γ, denoted as γ̂MBE , let us define W (γ) ≡ W (X; γ) = 2
∑m

i=1 Ti. It can be shown that

W (γ) = 2

m∑
i=1

Ti = 2

m∑
i=1

si

(
ln 6 + 2 ln(1 + γ) + γxi − ln

[
γ3a(Xi) + γ2b(Xi) + γc(Xi) + 6

])
, (8)

where s1 = ... = sm−1 = 1 and sm = n −m + 1. It is also clear that the distribution of W (γ) is a chi-square with
2m degrees of freedom, i.e., W (γ) ∼ χ2

2m. Moreover, W (γ)/2m converges in probability to 1. Then, we can obtain
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the MBE estimate of γ as the unique solution of the equation W (γ) = 2m, or the equation

m∑
i=1

si

(
ln 6 + 2 ln(1 + γ) + γxi − ln

[
γ3a(xi) + γ2b(xi) + γc(xi) + 6

])
= m. (9)

Let us now investigate that the Eq. (9) has exactly one solution. By differentiating and some calculations, it is easy to
check that

d

dγ

(
ln 6 + 2 ln(1 + γ) + γxi − ln

[
γ3a(xi) + γ2b(xi) + γc(xi) + 6

])

=
2

1 + γ
+ xi −

3γ2a(xi) + 2γb(xi) + c(xi)

γ3a(xi) + γ2b(xi) + γc(xi) + 6

=
(x4

i + 6x3
i + 6x2

i )γ
4 + (x4

i + 8x3
i + 12x2

i )γ
3

(1 + γ)
[
(x3

i + 6x2
i + 6xi)γ3 + 3(x2

i + 4xi + 2)γ2 + 6(xi + 2)γ + 6
]

≥ 0.

This shows that dW (γ)
dγ ≥ 0, and therefore W (γ) is monotonic increasing in γ ∈ (0,+∞). On the other hand, since

W (γ) is a continuous function with limγ→0 W (γ) = 0 and limγ→+∞ W (γ) = +∞, the equation W (γ) = 2m has a
unique solution in (0,+∞). As a result, we can guarantee that MBE exists and is unique.

3.2. Exact confidence interval

Here, an exact CI for the parameter γ of the 2S-L(γ) distribution is investigated. To obtain an exact CI (ECI) for γ,
consider the random variable

W (γ) = 2

m∑
i=1

si

(
ln 6 + 2 ln(1 + γ) + γXi − ln

[
γ3a(Xi) + γ2b(Xi) + γc(Xi) + 6

])
,

given in Eq. (8). This random variable is a pivotal quantity (or pivot) since it is a function of X and γ whose distribution
does not depend on the parameter γ . We can use this pivot to construct an ECI for γ. Since W (γ) ∼ χ2

2m, we have

P
(
χ2
α/2,2m < W (γ) < χ2

1−α/2,2m

)
= 1− α,

where χ2
α/2,2m and χ2

1−α/2,2m represent the lower and upper α/2 percentage points of χ2
2m, respectively. Since W (γ)

is a monotonic increasing function in γ, we can invert the above interval to obtain the 100(1− α)% ECI(
γ̂ECI
l , γ̂ECI

u

)
=
(
W−1

(
χ2
α/2,2m

)
,W−1

(
χ2
1−α/2,2m

))
, (10)

where W−1(t) is the solution of γ for the equation W (γ) = t.

4. Bootstrap method

Bootstrap is a straightforward approach to approximate the sampling distribution of estimators, especially to investi-
gate their biases and standard errors. This approach was first introduced by Efron and Hinkley(1978) and has received
much attention in recent decades. For more details and developments, see Efron and Tibshirani(1993). The bootstrap
method is based on resampling. In this method, first a random sample is taken from the target population and then
resampling is done based on the original sample. Then, in each iteration, the desired estimator value is computed.
The average of these values is used to approximate the bias of the estimator and the variance of these values is used
to approximate the standard error of the estimator. Usually, the bootstrap method is used when the distribution of the
estimators is not known and the sample size is small, and as a result large sample methods cannot be used.
Here we consider the percentile bootstrap method, which is a common and popular method. Then, we discuss the
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estimation of parameter γ using parametric bootstrap (PB) method. The BP method involves resampling from a
known distribution, where the parameter is estimated from generated samples. The following algorithm is employed
to obtain the BP estimates of γ of the 2S-L(γ) distribution:

1. Using the original sample x = (x1, x2, . . . , xm), compute the MLE of γ , γ̂.

2. Based on the MLE γ̂ obtained in Step 1, generate a random sample of size n from the 2S-L(γ̂) distribution and
derive the first m order statistic(s), x(1) = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
m ).

3. Calculate the MLE of γ based on x(1), say γ̂(1).

4. Repeat the first two steps B times and obtain γ̂(1), γ̂(2), . . . , γ̂(B).

5. Sort γ̂(1), γ̂(2), ..., γ̂(B) calculated in the previous step as γ̂[1], γ̂[2], . . . , γ̂[B].

After that, a two-sided 100(1− α)% BP CI of γ is given by the form(
γ̂PBCI
l , γ̂PBCI

u

)
=
(
γ̂([Bα/2]), γ̂([B(1−α/2)])

)
. (11)

Also, using the bootstrap estimates γ̂(1), γ̂(2), ..., γ̂(B), the biase and standard error of the MLE γ̂ can be estimated as

B̂ias(γ̂) = γ̂ − γ̂,

and

ŜE(γ̂) =

√√√√ 1

B − 1

B∑
i=1

(
γ̂(i) − γ̂

)2
where

γ̂ =
1

B

B∑
i=1

γ̂(i),

is the average of the bootstrap estimates. The estimator γ̂ is known as the BP point estimate of γ, which we denote it
by γ̂PBE .
Note that in the non-parametric bootstrap method, there is no assumption about the type of population distribution.
Additionally, bootstrap samples are generated by resampling with replacement from the original sample. So, the steps
for the non-parametric bootstrap procedure are similar to the parametric bootstrap. The only difference is that in non-
parametric bootstrap , the bootstrap samples x(1), . . . , x(B) are generated by random sampling with replacement from
the original data x = (x1, x2, ..., xm). In this paper, since the population distribution is known, we used the parametric
bootstrap.

5. Bayesian method

In a Bayesian approach, a prior distribution is considered as an initial beliefs about an unknown parameter before
seeing any data. Once we have the data, we update this prior knowledge by incorporating the new information to form
the posterior distribution. This posterior distribution is then used for estimation and making other inferences. Here
we consider the GAM(α1, α2) distribution as a prior distribution for γ, where α1 and α2 are the prior parameters (or
hyperparameters), i.e., we consider the prior pdf as πα1,α2

(γ) = fGAM (γ, α1, α2). Combining the likelihood function
in Eq. (3) and the prior pdf, we can derive the posterior pdf of γ given the data x as

π(γ | x) ∝ πα1,α2(γ) L(γ, x)

∝ γ4m+α1−1

(1 + γ)2n
e
−γ

(∑m
i=1 xi+(n−m)xm+α2

) [
γ3a(xm) + γ2b(xm) + γc(xm) + 6

]n−m

.
(12)

Here we compute the Bayesian estimator (BE) of γ under the quadratic loss (or squared error loss)

L(γ, γ̂) = (γ̂ − γ)2,
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which is the most common and popular loss function in Bayesian estimation. The BE of γ under this loss function,
denoted by γ̂BE is the posterior mean, i.e., γ̂BE = E(γ | x). Because we can not find the posterior mean in a closed
form, the BE of γ can not be calculated directly. Instead, we use numerical methods to approximate the BE. Here, two
approximate methods are employed to obtain the BE: Lindley’s method and importance sampling method. First, note
that we can write the BE of γ of as the ratio of two integrals in the following form:

γ̂BE =

∫∞
0

γπ(γ | x)dγ∫∞
0

π(γ | x)dγ
,

since
∫∞
0

π(γ | x)dγ = 1.

5.1. Lindley’s approximation

Lindley’s method is an approximate method for calculating the BEs, which was first proposed by Lindley in 1958. In
this approximate method, one must first write the BEs as the ratio of two integrals and then use the approximation.
In the literature, it is common to use the Lindley’s approximation method to calculate the BEs when the posterior
distribution has a complicated form, see e.g., Sharma et al.(2017) and Asgharzadeh et al.(2017b). For the case when the
statistical model includes only one parameter, such as the 2S-Lindley model under study, the Lindley’s approximation
for any function U(γ) of γ is as follows:

E (U(γ) | X = x) = U(γ) +
1

2
[U2(γ) + 2U1(γ)ρ1(γ)] σ

2
γ +

1

2
l3(γ)U1(γ)σ

4
γ , (13)

where for i = 1, 2, 3 and j = 1, 2

li(γ) =
∂i

∂γi
l(γ, x),

Uj(γ) =
∂j

∂γj
U(γ),

and
ρ1(γ) =

∂

∂γ
ρ(γ), ρ(γ) = ln(π(γ)).

Now, from the gamma prior pdf πα1,α2
(γ), we have ρ1(γ) =

α1−1
γ − α2. To get the BE of γ, we consider U(γ) as

U(γ) = γ, from which we obviously obtain U1(γ) = 1 and U2(γ) = 0. Also, the third-order derivative of l(γ; x) can
be found as follows

l3(γ) =
8m

γ3
− 4n

(1 + γ)3
+ (n−m)A(m, γ, xm) + (n−m)B(m, γ, xm),

where

A(m, γ, xm) =
6a3mγ6 + 12a2mbmγ5 + (12amb2m − 6a2mcm)γ4 + (10a2mcm + 4b2m − 4ambmcm − 252a2m)γ3

(amγ3 + bmγ2 + cmγ + 6)3

and B(m, γ, xm) is equal to the expression:

(6ambmcm + 6amc2m − 252ambm)γ2 + (2amc2m + 4bmc2m − 36amcm − 72b2m)γ + (216am + 2c3m − 12amcm − 24bmcm)

(amγ3 + bmγ2 + cmγ + 6)3
,

with am = a(xm), bm = b(xm) and cm = c(xm).
Now, by replacing the above expressions in Eq. (13), the BE of γ using Lindley’s approximation, denoted by γ̂BEL,
is

γ̂BEL = γ̂ +

(
α1 − 1

γ̂
− α2

)
σ2
γ̂ +

1

2
l3(γ̂) σ

4
γ̂ , (14)

where γ̂ is the MLE of γ.
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5.2. Importance sampling method

Here, the importance sampling technique is employed to generate samples from the posterior distribution and then
approximate the BE of the parameter γ. First, note that the posterior pdf of γ in Eq. (12) can be expressed in an
alternative form:

π(γ | X) ∝ πα′
1,α

′
2
(γ) g(x, γ), (15)

where πα′
1,α

′
2
(γ) is a gamma pdf with shape parameter α′

1 = 4m + α1 and scale parameter α′
2 =

∑m
i=1 xi + (n −

m)xm + α2, and g(x; γ) is given by

g(x, γ) =

[
γ3a(xm) + γ2b(xm) + γc(xm) + 6

]n−m

(1 + γ)2n
.

Now, using (15), we can rewrite the BE of γ as

γ̂BE = E(γ | x) =

∫∞
0

γ π(γ | x)dγ∫∞
0

π(γ | x)dγ
,

=

∫∞
0

γ πα′
1,α

′
2
(γ) g(x, γ)dγ∫∞

0
πα′

1,α
′
2
(γ) g(x, γ)dγ

,

=
Eπ′ [γ g(x, γ)]
E [g(x, γ)]

,

where Eπ′(.) denotes the expectation with respect to the gamma pdf π′(γ) = πα′
1,α

′
2
(γ). So, we can approximate the

BE γ̂BE as

γ̂BE ≈
1
M

∑M
i=1 γi g(x, γi)

1
M

∑M
i=1 g(x, γi)

,

based on a random sample γ1, ..., γM generated from the gamma distribution with parameters α′
1 and α′

2, i.e., GAM(α′
1, α

′
2).

Consequently, we can compute the BE of γ using the following two-step algorithm:

step1. Generate γ1, . . . , γM from the GAM(α′
1, α

′
2) distribution,

step 2. Choose

γ̂BEI =

∑M
i=1 γi g(x | γi)∑M
i=1 g(x | γi)

(16)

as the BE of γ using the importance sampling technique.
Now, we find the Bayesian credible interval (BCI) for γ using the technique given in Chen and Shao(1999). For this
purpose, suppose Π(γ | x) be the posterior cdf corresponding to the posterior pdf of π(γ | X), and γ(δ) (for 0 < δ < 1)
is the δ-th quantile of γ defined as:

γ(δ) = inf {γ : Π(γ | x) ≥ δ} .

For a given value of γ∗, we clearly have

Π(γ∗ | x) = E{Iγ≤γ∗(γ) | x} =

∫∞
0

Iγ≤γ∗(γ) π(γ | x)dγ∫∞
0

π(γ | x)dγ
,

where Iγ≤γ∗(γ) is the indicator function defined by

Iγ≤γ∗(γ) =

{
1 γ ≤ γ∗,
0 γ > γ∗.

Therefore, as described before, we can approximate Π(γ∗ | x) as

Π̂(γ∗ | x) ≈
1
M

∑M
i=1 Iγi≤γ∗(γi)g(x, γi)
1
M

∑M
i=1 g(x; γi)

,
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based on the random sample γ1, ..., γM generated from the GAM(α′
1, α

′
2) distribution.

Now, let us sort the generated sample γ1, ..., γM as γ1:M , ..., γM :M , and define

wi =
g(x, γi:M )∑M
i=1 g(x, γi:M )

.

Then, we can approximately rewrite Π̂(γ∗ | x) as

Π̂(γ∗ | x) =


0 γ∗ < γ(1),∑i

j=1 wj γi:M < γ∗ < γi+1:M ,

1 γ∗ ≥ γM :M .

Consequently, an approximate value for γ(δ) can be given as:

γ̂(δ) ≈
{

γ(1) δ = 0,

γ(i)
∑i−1

j=1 wj < δ ≤
∑i

j=1 wj .

Finally, to construct a 100(1− δ)% highest posterior density (HPD) BCI for γ, we consider all the BCIs given as:(
γ̂[

j
M ], γ̂[

j+[(1−δ)M]
M ]

)
, j = 1, 2, ...,M − [(1− δ)M ],

where [k] is the largest integer function that represents the greatest integer less than or equal to k. Among all these
BCIs, the interval with the shortest length will be a 100(1− δ)% HPD BCI for γ.

6. Real data analysis

Here we consider a real data set and discuss the various estimation techniques described in this paper using this data
set. This data set is taken from Gross and Clark(1976) and shows the relief times (in minutes) of 20 patient(s) re-
ceiving analgesics. Recently, Chesneau et al.(2020), using various goodness-of-fit tests, showed that the 2S-Lindley
distribution fits these data very well and can be a suitable distribution for modeling this data set. The data in ascending
order are given in Table 1 below.

Table 1: Relief times data.

1.1354 1.2872 1.3124 1.4550 1.4794 1.5112 1.6012 1.6879 1.7463 1.7128

1.7755 1.8946 1.8124 1.9965 2.0023 2.2187 2.3283 2.7128 3.0235 4.1846

To achieve the Type-II censored sample, suppose that in this study, as soon as the 16th relief time was observed, the
experiment was stopped and the relief times of the remaining 4 patient(s) were not observed. Therefore, we are faced
with a Type-II censored sample with n = 20 and m = 16. All the computations were performed using the statistical
software R.
Based on these data, we computed point and interval estimates of γ from the 2S-Lindley distribution using the various
estimation techniques described in Sections 2 to 5. The results for point estimation are summarized in Table 2 and the
results for interval estimation are summarized in Table 3. To calculate the interval estimates (or CIs), we considered
the confidence level to be 1 − α = 0.95. Also, in the Bayesian technique, the GAM(a1, a2) prior distribution with
a1 = a2 = 0.001 was used to calculate the Bayesian point and interval estimates. Although this prior distribution is a
proper prior distribution, it is approximately a non-informative prior distribution.

Since the MBE (and its corresponding CI) and MLE involve solving some nonlinear equations, the function "uniroot"
in R was used to solve the corresponding nonlinear equations and calculate these estimates. We can also use the graph-
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ical method to compute the MBE and MLE. In Figure 1, we provided the plots of ϕ(γ) and w(γ). As we can see,
ϕ(γ) and w(γ) are strictly decreasing and strictly increasing in terms of γ, respectively (as shown theoretically in
Section(s) 2 and 3). The intersection of the graph of these functions with the horizontal axis, i.e. the roots of the
equations ϕ(γ) = 0 and w(γ) = 0 respectively represent the MLE and MBE. Theses plots again show the existence
and uniqueness of the MLE and MBE.

Table 2: Point estimates of γ for the relief times data.

Technique MBE MLE PBE BEL BEI

Point estimate 1.5127 1.4374 1.4621 1.4386 1.4561

Table 3: Interval estimates of γ for the relief times data.

Technique Interval estimate

ECI (1.1502, 1.9154)

ACI (1.0648, 1.8101)

ACI∗ (1.1092, 1.8628)

PB-CI (1.0968, 1.9133)

BCI (1.2466, 1.7767)
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Figure 1: Plots of ϕ(γ) and w(γ) for the relief times data.

7. Simulation and numerical comparisons

Given that many of the point estimators discussed in this paper are computed numerically and lack explicit formulas,
assessing their performance requires a simulation study. For this, we conduct a Monte Carlo simulation study designed
to evaluate and compare the effectiveness of these estimators, both point and interval. Our simulation is performed for
different Type-II censoring schemes, two default values for the parameter γ, and two distinct prior distributions. In
this context, let us consider the following Type-II censoring schemes:

(n,m) = (7, 4), (10, 7), (15, 11), (15, 12), (20, 16), (20, 17), (25, 20), (25, 21), and (25, 22).
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We use two default values for γ: γ = 0.75 and γ = 1.5. For the prior distributions of γ, we consider GAM(0.001, 0.001)
and GAM(3, 3). While the first prior is nearly non-informative, the later is informative.
Based on different censoring scheme, two default values for the parameter γ and two priors considered above, we ran-
domly generated samples of the 2S-L(γ) distribution and for each generated sample, we calculated the point estimates
MBE, MLE, PBE, BEL and BEI. We also calculated different 95% CIs of γ for each generated sample. We compared
the performance of point estimates in terms of mean squared error MSE, based on N = 3000 simulations. The MSE is
the most popular and fundamental measure for evaluating different estimators, which includes two components, bias
and variance. The estimated MSE in the simulation is calculated as

M̂SE = N−1
N∑
i=1

(γ̂i − γ)
2
,

where γ̂i is the estimate of γ obtained in the ith simulation (for i = 1, 2, ..., N ).
The performance of different CIs including ECI, ACI, ACI∗, bootstrap and Bayesian CIs are evaluated based on their
average interval lengths (AILs) and simulated coverage probabilities (CPs). If (Li, Ui) represents a CI for γ obtained
in the ith iteration of the simulation, then the simulated CP (SCP) is computed as SCP = N−1

∑N
i=1 I(Li,Ui)(γ),

where I(.) is the indicator function.

The simulation results are given in Tables 4-7. The estimated MSE (EMSE) of the different point estimates of γ are
presented in Tables 4 and 5. The AIL and SCP of the different CIs are shown in Tables 6 and 7. From Tables 4
and 5, we see that the Bayesian point estimates perform better than the other point estimates, even based on the prior
GAM(0.001, 0.001). The MLE works better than the MBE. The bootstrap estimation does not perform well and gives
the largest EMSE in most cases considered. Also, the Bayes estimates with the prior GAM(3, 3) perform better than
the Bayes estimates with the prior GAM(0.001, 0.001), which is reasonable. In comparing the Bayes estimates based
on the Lindley method and the importance sampling method, Lindley’s Bayes estimates have a better performance.

For the interval estimation, it is evident from Tables 6 and 7 that for most cases, the SCP of different intervals are
close to the true 95% confidence level. Bayesian intervals using the prior GAM(3, 3) are shorter than those using the
prior GAM(0.001, 0.001). The approximate CIs based on the asymptotic normality of the MLE are shorter than the
exact CIs. The bootstrap method generally performs poorly, producing the longest intervals in most cases considered.
Additionally, approximate CIs based on the asymptotic normality of log MLE are larger than those based on the MLE.
Finally, as shown in Tables 4-7, as m increases (with n fixed), the EMSE of the point estimates and the AIL of the CIs
both decrease. This can be explained by the fact that as m increases, the amount of information from the data grows,
leading to improved performance of both point estimates and CIs.
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Table 4: The EMSE of the different point estimates when γ = 0.75.

GAM(0.001, 0.001) GAM(3, 3)

n m MBE MLE PBE BEI BEL BEI BEL

7 4 0.0525 0.0489 0.0518 0.0493 0.0487 0.0400 0.0373

10 7 0.0238 0.0224 0.0267 0.0239 0.0237 0.0220 0.0218

15 11 0.0154 0.0147 0.0168 0.0143 0.0141 0.0135 0.0137

12 0.0141 0.0136 0.0151 0.0142 0.0141 0.0134 0.0134

20 16 0.0097 0.0094 0.0101 0.0095 0.0094 0.0093 0.0093

17 0.0095 0.0093 0.0101 0.0094 0.0093 0.0091 0.0091

25 20 0.0079 0.0076 0.0081 0.0077 0.0077 0.0076 0.0075

21 0.0078 0.0075 0.0080 0.0071 0.0073 0.0072 0.0072

22 0.0075 0.0072 0.0077 0.0073 0.0071 0.0071 0.0070

Table 5: The EMSE of the different point estimates when γ = 1.5.

GAM(0.001, 0.001) GAM(3, 3)

n m MBE MLE PBE BEI BEL BEI BEL

7 4 0.2498 0.2358 0.3424 0.2386 0.2355 0.0856 0.0547

10 7 0.1178 0.1118 0.14212 0.1165 0.1163 0.0641 0.0540

15 11 0.0718 0.0687 0.0793 0.0646 0.0641 0.0449 0.0419

12 0.0652 0.0622 0.0710 0.0622 0.0603 0.0444 0.1253

20 16 0.0458 0.0445 0.0496 0.0507 0.0470 0.0375 0.0351

17 0.0447 0.0432 0.0481 0.0485 0.0431 0.0367 0.0329

25 20 0.0357 0.0341 0.0372 0.0380 0.0346 0.0312 0.0280

21 0.0350 0.0337 0.0368 0.0402 0.0336 0.0319 0.0275

22 0.0331 0.0320 0.0346 0.0403 0.0308 0.0314 0.0252
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Table 6: The AIL and SCP for the different CIs when γ = 0.75.

GAM(0.001, 0.001) GAM(3, 3)

n m ECI ACI ACI∗ PB-CI BCI BCI
7 4 AIL 0.759 0.758 0.786 0.880 0.731 0.691

SCP 0.940 0.956 0.930 0.914 0.951 0.969
10 7 AIL 0.567 0.564 0.576 0.608 0.556 0.539

SCP 0.941 0.940 0.933 0.930 0.954 0.960
15 11 AIL 0.455 0.451 0.458 0.470 0.439 0.432

SCP 0.953 0.952 0.955 0.942 0.951 0.955
12 AIL 0.435 0.431 0.437 0.448 0.426 0.419

SCP 0.955 0.955 0.955 0.946 0.945 0.947
20 16 AIL 0.375 0.371 0.374 0.382 0.363 0.359

SCP 0.957 0.952 0.958 0.949 0.944 0.949
17 AIL 0.370 0.366 0.369 0.376 0.353 0.349

SCP 0.943 0.948 0.941 0.940 0.940 0.938
25 20 AIL 0.339 0.335 0.338 0.341 0.324 0.321

SCP 0.954 0.950 0.944 0.940 0.942 0.947
21 AIL 0.333 0.329 0.332 0.336 0.311 0.309

SCP 0.949 0.947 0.951 0.944 0.929 0.931
22 AIL 0.328 0.324 0.326 0.330 0.295 0.293

SCP 0.958 0.962 0.957 0.953 0.913 0.919
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Table 7: The AIL and SCP for the different CIs when γ = 1.5.

GAM(0.001, 0.001) GAM(3, 3)

n m ECI ACI ACI∗ PB-CI BCI BCI

7 4 AIL 1.635 1.639 1.708 1.949 1.590 1.296
SCP 0.949 0.964 0.943 0.922 0.945 0.953

10 7 AIL 1.215 1.210 1.241 1.326 1.169 1.042
SCP 0.946 0.945 0.935 0.935 0.942 0.949

15 11 AIL 0.951 0.945 0.960 0.999 0.895 0.837
SCP 0.947 0.950 0.949 0.945 0.925 0.940

12 AIL 0.922 0.916 0.929 0.953 0.822 0.779
SCP 0.954 0.949 0.952 0.936 0.891 0.923

20 16 AIL 0.805 0.799 0.808 0.824 0.664 0.642
SCP 0.950 0.963 0.952 0.947 0.869 0.897

17 AIL 0.786 0.780 0.788 0.807 0.604 0.587
SCP 0.949 0.951 0.955 0.941 0.818 0.863

25 20 AIL 0.708 0.703 0.709 0.720 0.554 0.542
SCP 0.957 0.954 0.959 0.949 0.833 0.867

21 AIL 0.705 0.699 0.705 0.717 0.509 0.498
SCP 0.948 0.952 0.952 0.936 0.791 0.820

22 AIL 0.685 0.679 0.685 0.696 0.464 0.457
SCP 0.933 0.938 0.939 0.937 0.737 0.780
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8. Concluding remarks

In this study, we examined various estimation techniques for Type-II censored samples from the 2S-L(γ) distribu-
tion. We provided point estimates using methods including MLE, MBE, bootstrap, and Bayesian approaches, and
constructed confidence intervals for the model parameters. Our simulation results indicate that Bayesian methods
show superior point and interval estimatess compared to the others. While this paper focused on estimation for the
2S-Lindley distribution with Type-II censored data, future research could tackle the prediction of future failures in
reliability and survival analysis, assuming a 2S-Lindley lifetime distribution. Another area for future work could in-
volve studying stress-strength reliability with Type-II censored data. Additionally, the estimation methods discussed
can be adapted for other data types, such as progressively censoring or record data. We are currently working on these
extensions.
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