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Abstract  

This paper introduces a new extension of the exponential distribution tailored for enhanced reliability and risk 

analysis. We incorporate several insurance risk indicators like the value-at-risk, tail mean-variance, tail value-at-

risk, tail variance, and maximum excess loss to significantly refine reliability risk assessments. These indicators 

offer vital insights into the financial consequences of extreme risk events and potential for substantial losses. To 

assess these risk indicators, we explore various non-Bayesian estimation techniques, including maximum likelihood 

estimation, ordinary least squares estimation, Anderson-Darling estimation, right tail Anderson-Darling estimation, 

and left tail Anderson-Darling estimation of the second order. Our approach involves a comprehensive simulation 

study with varying sample sizes, followed by empirical risk analysis using these methods. We also evaluate the 

applicability of the new model on two real reliability data sets. Finally, we apply the risk indicators including the 

value-at-risk (VaRq), tail mean-variance (TMVq), tail value-at-risk (TVaRq), tail variance (TVq) and maximum 

excess loss (MELq) to analyze reliability risk using failure (relief) and survival data. Finally the peaks over a 

random threshold value-at-risk (PORT-VaRq) analysis under the failure and survival data is presented. 

 

Key Words: Characterizations; Extreme failure data; Key risk indicators; Risk analysis; Reliability; Threashold 

value-at-risk; PORT-VaRq. 

 

 

1.Introduction 

The exponential (E) distribution is widely used in risk analysis and reliability, but it has several limitations. 

First, it assumes a constant failure rate, which is unrealistic for many real-world systems where failure rates increase 

or decrease over time. Second, it lacks a memory property, meaning past failures do not influence future risk, making 

it unsuitable for aging systems. Third, it often underestimates the probability of extreme failures, leading to poor tail 

risk assessment. Fourth, it is inadequate for modeling systems with multiple failure modes, as real-world failures often 

follow more complex distributions. Fifth, it does not account for wear-out effects, making it inappropriate for many 

mechanical and electronic components. Sixth, it assumes failures are purely random, ignoring environmental and 

operational stress factors. Seventh, it may lead to over-simplified maintenance strategies, potentially increasing system 

risk. Eighth, alternative models like the Weibull or log-normal distributions often provide better accuracy in capturing 

real-world failure behaviors. This paper introduces a new exponential model designed to improve robustness in 

reliability risk analysis. It explores the integration of the risk indicators and applies various estimation methods to 

characterize the model's effectiveness. By delving into these elements, the paper aims to advance the field of reliability 
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engineering, offering refined tools and methodologies for more accurate and comprehensive risk management (see for 

more Bain (2017) details). These and other shortcomings represented the research gap that prompted us to present the 

extended exponentiated exponential (ExEE) distribution. 

 

Starting with the exponentiated exponential (EE) distribution, a random variable (RV)  𝑋  is said to have the EE 

distribution (see Gupta et al. (1998)) if its probability density function (PDF) is given by 

𝑔𝚊,𝚋(𝓍)|(𝓍 > 0, 𝚊 > 0 and 𝚋 > 0) = 𝚊𝚋𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

. (1) 

The corresponding cumulative distribution function (CDF) can be written as  

𝐺𝚊,𝚋(𝓍)|(𝓍 > 0, 𝚊 > 0 and 𝚋 > 0) = (1 − 𝑒−𝚋𝓍)
𝚊

. (2) 

Clearly, for 𝚊 = 1, the EE reduces to the standard E model. If 1 > 𝚊,  the function 𝑔𝚊,𝚋(𝑋)  monotonically decreases 

with 𝓍. If  𝚊 > 1, the function 𝑔𝚊,𝚋(𝑋) attains a mode at 𝓍 =
1

𝚋
log(𝚊).  The statistical properties of the EE model have 

been studied by many authors. Kamari and Alizadeh (2022) introduced a new flexible two parameters class of 

distributions extended type II exponentiated (ExII-G) family.  Due to Kamari and Alizadeh (2022), the CDF of ExII-

G is given by 

𝐹𝛼,𝛽(𝓍) =
1 − [�̄�(𝑋)]𝛼

1 − [�̄�(𝑋)]𝛼 + 𝐺(𝑋)𝛽
|(𝓍 ∈ 𝑅, 𝛼 > 0 and 𝛽 > 0), 

(3) 

where 𝛼, 𝛽 > 0  and  �̄�(𝓍) = 1 − 𝐺(𝓍).  The CDF of the ExEE distribution is given by  

𝐹𝛼,𝛽,𝚊,𝚋(𝓍) =
1 − [1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛼

1 − [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛼 + [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛽
|(𝓍 > 0, 𝛼, 𝛽, 𝚊, 𝚋 > 0), 

(4) 

where  𝓍 > 0,  𝛼 > 0  and  𝛽 > 0  are two shape parameters. We denote it by ExEE (𝛼, 𝛽, 𝚊, 𝚋) . The PDF and HRF 

of ExEE are given by  

𝑓𝛼,𝛽,𝚊,𝚋(𝓍) = 𝚊𝚋𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

[1 − (1 − 𝑒−𝚋𝓍)
𝚊

]
𝛽−1 {𝛽 + (𝛼 − 𝛽)[1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛼
}

{1 − [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛼 + [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛽}2
, 

(5) 

and  

𝒽𝛼,𝛽,𝚊,𝚋(𝓍) =
𝚊𝚋𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

𝚊−1
{𝛽 + (𝛼 − 𝛽)[1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛼
}

[1 − (1 − 𝑒−𝚋𝓍)𝚊]{1 − [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛼 + [1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛽}2
. 

(6) 

 

Recalling (4) and (5) and incorporating the insurance risk indicators such as VaRq, TMVq, TVaRq, TVq and MELq 

significantly enhances reliability risk analysis. These indicators provide crucial insights into the financial impacts of 

extreme risk events and the potential for large losses. The VaRq quantifies the maximum expected loss over a specified 

period with a given confidence level, while the TMVq and TVq assess the variability and potential for extreme 

outcomes in the tail of the distribution. TVaRq, on the other hand, focuses on the expected loss beyond a certain 

quantile, offering a more comprehensive view of risk (see McNeil and Saladin, (1997), Furman and Landsman (2006), 

Landsman (2010), and Mohamed et al. (2024)).  

 

Moreover, following Alizadeh et al. (2024), the PORT-VaRq analysis is conducted under both failure and survival 

data scenarios. This method evaluates the distribution of extreme values exceeding a dynamic threshold, capturing tail 

risk behavior effectively. By applying this framework, the analysis identifies variations in risk exposure across 

different confidence levels. The increasing number of peaks as VaR decreases confirms the robustness of the tail risk 

assessment. Additionally, statistical measures such as the median, mean, and quartiles highlight the changing nature 

of extreme events over varying thresholds (see Alizadeh et al. (2024)). This approach provides a comprehensive 

understanding of risk concentration and the distribution of extreme financial events. Additionally, utilizing diverse 

estimation methods is essential for accurate risk assessment, particularly in calculating failure and survival times. 

Different approaches, such as maximum likelihood estimation, Bayesian methods, and non-parametric techniques, 

each provide unique insights and address various aspects of the data. Employing a range of estimation methods enables 

a more robust evaluation of risk, enhancing the precision and reliability of the analysis. 

 

The characterizations of the (4), (5) and (6) based on two truncated moments, in terms of the hazard function and 

based on the conditional expectation of a function of the random variable are given with details. Alizadeh et al. (2017) 

present a comprehensive study on the generalized odd generalized exponential family of distributions. Hamedani et 

al. (2019) introduces the general exponential class of distributions, expanding the theoretical framework of exponential 

models.  Korkmaz and Yousof (2017) explore the one-parameter exponential model, providing an in-depth analysis 
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of its mathematical properties and practical applications. In a follow-up to their previous work, Hamedani et al. (2018) 

investigate another general exponential class of distributions. Korkmaz et al. (2018b) present an exponential family 

of distributions. Goual et al. (2019) focus on validating the odd Lindley exponentiated exponential distribution using 

a modified goodness-of-fit test. Mansour et al. (2020b) propose a generalization of the reciprocal exponential model 

incorporating the Clayton copula. Bhatti et al. (2022) explore a new moment exponential distribution, focusing on its 

properties and applications. Yadav et al. (2021) investigate the Burr-Hatke exponential distribution, which features a 

decreasing failure rate model. Eliwa, El-Morshedy et al. (2022) introduce the discrete exponential family of 

distributions, presenting both Bayesian and non-Bayesian estimators. Yadav et al. (2022) validate the xgamma 

exponential model using the Nikulin-Rao-Robson goodness-of-fit test. Saber et al. (2022) discusses reliability 

estimation for the remained stress-strength model under the generalized exponential lifetime distribution. Minkah et 

al. (2023) address robust extreme quantile estimation for Pareto-type tails through an exponential regression model. 

Their study contributes to the understanding of extreme value estimation, offering methods for handling robust 

quantile estimation in extreme value analysis. Many other works presented useful extension with application such as 

Zheng (2002), Alizadeh et al. (2023a,b and 2025), Zheng and Park (2004), Kundu and Pradhan (2009), Aslam et al. 

(2010). 

 

For assessing the risk indicators, we focus on non-Bayesian estimation techniques, examining some distinct methods 

to provide a broad perspective on their applications and effectiveness. Among these methods, we highlight maximum 

likelihood estimation (MLE), ordinary least squares estimation (OLSE), Anderson-Darling estimation (ADE), right 

tail Anderson-Darling estimation (RTADE), and left tail Anderson-Darling estimation of the second order (LAD 2) 

methods. First, we presented a comprehensive simulation method under different sample sizes. Second, an empirical 

risk analysis is presented under these selected methods. Third, the applicability on the new model is checked under 

two real reliability data sets. Finally, reliability risk analysis is provided using the VaRq, TMVq, TVaRq and TVq 

under the failure (relief) and survival data. For heavy-tailed distributions, the survival function often behaves 

asymptotically as 

𝑆𝛼,𝛽,𝚊,𝚋(𝓍) ≈ 𝓍−
1
𝕋, 

where 𝕋 is the tail index. To determine the tail index, we analyze the asymptotic behavior of 𝑆𝛼,𝛽,𝚊,𝚋(𝓍) as 𝓍 → ∞. 

For the exponential-type distributions, it is known that their tail is light, meaning they decay exponentially rather than 

following a power law. Thus, the ExEE distribution does not have a heavy tail, and its tail index 𝕋 is zero (or 

approaches zero), meaning the decay is exponential rather than polynomial. This means that the ExEE distribution 

does not belong to the class of distributions with regularly varying tails (such as Pareto, Fréchet, or other heavy-tailed 

models). Since the ExEE distribution decays exponentially, it does not belong to the class of distributions with 

regularly varying tails, such as the Pareto or Fréchet distributions. The Hill estimator will be zero or very close to 

zero, reinforcing this result. 

 

The paper is organized as follows: Section 2 introduces and explores the fundamental properties of the new exponential 

distribution extension, detailing its mathematical characteristics. Section 3 derives and discusses specific 

characterizations of the model, providing theoretical foundations and proofs. Section 4 evaluates various assessment 

methods, comparing their effectiveness and suitability for different types of data. Section 5 presents results from 

simulation studies, illustrating the model's behavior under varying conditions. Section 6 provides an empirical risk 

analysis using real data to validate the model's practical applicability. Section 7 examines the model's applicability in 

diverse contexts, highlighting its flexibility and generalizability. Section 8 applies the model to reliability and risk 

analysis in dialysis, demonstrating its relevance to healthcare settings. The paper concludes by synthesizing findings 

from theoretical, empirical, and practical applications in Section 9. 

 

2. Some properties  

Due to Kamari and Alizadeh (2022), the PDF of the ExEE model can be expressed as 

𝑓𝛼,𝛽,𝚊,𝚋(𝓍) = ∑ 𝐶𝓀

∞

𝓀=0

𝑔𝚊𝓀,𝚋(𝓍), 
(7) 

where  𝑔𝚊𝓀,𝚋(𝓍) = 𝚊𝓀𝚋𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊𝓀−1

,   𝐶0 = 1 + 𝚋0|𝓀 = 0 ,  𝐶𝓀 = 𝚋𝓀|𝓀 ≥ 1  and  𝚋𝓀  is given with details 

in Kamari and Alizadeh (2022). The  𝓻𝓉𝒽  ordinary moment of  𝑋  is given by  𝜇𝓻
′ = 𝐸(𝑋𝓻) =   ∫ 𝓍𝓻∞

−∞
𝑓(𝓍)𝑑𝓍,  

then we obtain  
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𝜇𝓻
′ |𝓻 > −1 = 𝚋−𝓻𝛤(1 + 𝓻) ∑ 𝐶𝓀,𝓋

(𝚊𝓀,𝓻)

∞

𝓀,𝓋=0

, 
(8) 

where 

𝐶𝓀,𝓋
(𝚊𝓀,𝓻)

= 𝚊𝓀𝐶𝓀(−1)𝓋
1

(𝓋 + 1)𝓻+1
(

𝚊𝓀 − 1
𝓋

), 

and 𝛤(1 + 𝛥)|𝛥 ∈ 𝑅+ = 𝛥! = ∏ (𝛥 − 𝓻)𝛥−1
𝓻=0   where  𝐸(𝑋) = 𝜇1

′   is the mean of  𝑋 .  The  𝓻𝓉𝒽  incomplete moment, 

say 𝐼𝓻(−∞, 𝓉) , of  𝓍  can be expressed, from (9), as  

𝐼𝓻(−∞, 𝓉) = ∫ 𝓍𝓻
𝓉

−∞

𝑓(𝓍)𝑑𝓍 = ∑ 𝐶𝓀

∞

𝓀=0

∫ 𝓍𝓻
𝓉

−∞

𝑔𝚊𝓀,𝚋(𝑋)𝑑𝓍, 

then 

𝐼𝓻(−∞, 𝓉)|(𝓻>−𝛿) = 𝚋−𝓻𝛾(𝓻 + 1, 𝚋𝓉) ∑ 𝐶𝓀,𝓋
(𝚊𝓀,𝓻)

∞

𝓀,𝓋=0

, 
(9) 

where  𝛾(𝛥, 𝜍)  is the incomplete gamma function. 

𝛾(𝛥, 𝜍)|(𝛥≠0,−1,−2,...) = ∫ 𝑒𝓍𝑝(−𝓍)
𝜍

0

𝑑𝓍 =
1

𝛥
𝜍𝛥{𝐹1,1[𝛥; 𝛥 + 1; −𝜍]}, 

and  𝐹1,1[⋅,⋅,⋅]  is a confluent hypergeometric function. The first incomplete moment given by (11) with  𝓻 = 1  as  

𝐼1(−∞, 𝓉) = 𝚋𝛾 (2,
1

𝓉
) ∑ 𝐶𝓀,𝓋

(1,𝚊𝓀)

∞

𝓀,𝓋=0

. 

The MGF 𝑀𝑋(𝓉) = 𝐸(𝑒𝓍𝑝(𝓉𝑋)) of  𝑋 can be derived from equation (8) as  𝑀𝑋(𝓉) = ∑ 𝐶𝓀
∞
𝓀=0 𝑀𝚊𝓀,𝚋(𝑇),  where  

𝑀𝚊𝓀,𝚋(𝑇) is the MGF of the EE model with power parameter 𝚊𝓀  

𝑀𝑋(𝓉)|𝓻 > −1 = ∑ ∑
𝓉𝓻

𝓻!

∞

𝓀,𝓋=0

∞

𝓻=0

𝚋−𝓻𝛤(1 + 𝓻)𝐶𝓀,𝓋
(𝚊,𝓻)

. 
(10) 

The  𝓈𝓉𝒽  moment of the residual life of  𝑋  is given by  

𝐴𝓈(𝓉, +∞) =
1

1 − 𝐹𝛼,𝛽,𝚊,𝚋(𝓉)
∫ (𝓍 − 𝓉)𝓈

∞

𝓉

𝑑𝐹(𝑋). 

Therefore, 

𝐴𝓈(𝓉, +∞) =
1

1 − 𝐹𝛼,𝛽,𝚊,𝚋(𝓉)
∑ 𝐶𝓀,𝓋

(𝚊𝓀,𝓈)

∞

𝓀,𝓋=0

𝚋𝓈𝛤(𝓈 + 1, 𝚋𝓉)|𝓈 > −1, 
(11) 

where  

𝐶𝓀,𝓋
(𝚊𝓀,𝓈)

= 𝐶𝓀 ∑(−𝓉)𝓈−𝓻

𝓈

𝓻=0

(
𝓈
𝓻

) , 𝛤(𝛥, 𝓻)|𝓇>0 = ∫ 𝓍𝛥−1
∞

𝓻

𝑒𝓍𝑝(−𝓍) 𝑑𝓍 

and  𝛤(𝛥, 𝓻) = 𝛤(𝛥) − 𝛾(𝛥, 𝓻).  The  𝓈𝓉𝒽  moment of the reversed residual life, say  

𝐴𝓈(0, 𝓉) = 𝐸[(𝓉 − 𝑍)𝓈 | 𝓍 ≤ 𝓉, 𝓉 > 0 and 𝓈 = 1,2, … ]  
uniquely determines  𝐹𝛼,𝛽,𝚊,𝚋(𝓍) . We obtain  

𝐴𝓈(0, 𝓉) =
1

𝐹𝛼,𝛽,𝚊,𝚋(𝓉)
∫ (𝓉 − 𝓍)𝓈

𝓉

0

𝑑𝐹𝛼,𝛽,𝚊,𝚋(𝑋). 

Then, the  𝓈𝓉𝒽  moment of the reversed residual life of  𝑋  becomes 

𝐴𝓈(0, 𝓉) =
1

𝐹𝛼,𝛽,𝚊,𝚋(𝓉)
∑ 𝐶𝓀,𝓋

(𝚊𝓀,𝓈)

∞

𝓀,𝓋=0

𝚋𝓈𝛾(𝓈 + 1, 𝚋𝓉)|𝓻 > −1, 
(12) 

where  𝐶𝓀,𝓋
(𝚊𝓀,𝓈)

= 𝐶𝓀 ∑ (
𝓈
𝓻

)𝓈
𝓻=0 (−1)𝓻𝓉𝓈−𝓻.  

3. Characterizing the new model 

3.1 Based on two truncated moments 

This subsection picks up the characterizations of ExEE distribution based on a relationship between two truncated 

moments. The first characterization applies a theorem of Glänzel (1987). Clearly, the result holds as well when the  

𝐻   is not a closed interval. This characterization is stable in the sense of weak convergence, see Glänzel (1990). 

Proposition 3.1.1.  Let the random variable  𝑋 :  𝛺 → (0, ∞)  be continuous, and let 
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𝒽(𝓍) =
{1 − [1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛼
+ [1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛽
}

2

𝛽 + (𝛼 − 𝛽)[1 − (1 − 𝑒−𝚋𝓍)𝚊]𝛼
 

and  𝑘(𝓍) = 𝒽(𝓍)[1 − (1 − 𝑒−𝚋𝓍)
𝚊

]   for  𝓍 > 0.  Then, the PDF of  𝑋  is given in  (5)  if and only if the function  

𝜂  defined in Glänzel (1987) is 

𝜂(𝓍) =
𝛽

𝛽 + 1
[1 − (1 − 𝑒−𝚋𝓍)

𝚊
],     𝓍 > 0. 

Proof.  If   𝑋   has PDF  (5) , then 

(1 − 𝐹(𝓍))𝐸[𝒽(𝑋) | 𝑋 ≥ 𝓍] = ∫ 𝚊𝚋
∞

𝓍

𝑒−𝚋𝑢(1 − 𝑒−𝚋𝑢)
𝚊−1

[1 − (1 − 𝑒−𝚋𝑢)
𝚊

]
𝛽−1

𝑑𝑢 =
1

𝛽
[1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛽
, 𝓍 > 0, 

and 

(1 − 𝐹(𝓍))𝐸[𝑘(𝑋) | 𝑋 ≥ 𝓍] = ∫ 𝚊𝚋
∞

𝓍

𝑒−𝚋𝑢(1 − 𝑒−𝚋𝑢)
𝚊−1

[1 − (1 − 𝑒−𝚋𝑢)
𝚊

]
𝛽

𝑑𝑢

=
1

𝛽 + 1

1

𝛽
[1 − (1 − 𝑒−𝚋𝓍)

𝚊
]

𝛽+1
, 𝓍 > 0, 

and finally 

𝜂(𝓍)𝒽(𝓍) − 𝑘(𝓍) = −
1

𝛽 + 1
𝒽(𝓍)[1 − (1 − 𝑒−𝚋𝓍)

𝚊
] < 0,   𝑓𝑜𝓻  𝓍 > 0. 

Conversely, if  𝜂  has the above form, then 

𝓈′(𝓍) =
𝜂′(𝓍)𝒽(𝓍)

𝜂(𝓍)𝒽(𝓍) − 𝑘(𝓍)
=

𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
, 

and hence 

𝓈(𝓍) = −𝛽 𝑙𝑜𝑔{[1 − (1 − 𝑒−𝚋𝓍)
𝚊

]} ,   𝓍 > 0. 

In view of Theorem of Glänzel (1987),  𝑋   has PDF  (5).  
 

Corollary 3.1.1.  If  𝑋  :   𝛺 → (0, ∞)  is a continuous random variable and  𝒽(𝓍)  is as in Proposition A.1.1. Then,  

𝑋  has PDF  (5)  if and only if there exist functions  𝑘  and  𝜂  defined in of Glänzel (1987) satisfying the following 

first order differential equation 

𝜂′(𝓍)𝒽(𝓍)

𝜂(𝓍)𝒽(𝓍) − 𝑘(𝓍)
=

𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
. 

Corollary 3.1.2. The general solution of the differential equation in Corollary A.1.1 is 

𝜂(𝓍) = [1 − (1 − 𝑒−𝚋𝓍)
𝚊

]
−𝛽

[
− ∫ 𝛽 𝚊𝚋𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

𝚊−1
×

[1 − (1 − 𝑒−𝚋𝓍)
𝚊

]
𝛽−1

(𝒽(𝓍))
−1

𝑘(𝓍) + 𝐷

], 

where  𝐷  is a constant. 

Proof.   If  𝑋  has PDF  (5) , then clearly the differential equation holds. Now, if the differential equation holds, then 

𝜂′(𝓍) = (
𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
) 𝜂(𝓍) − (

𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
) (𝓺1(𝓍))

−1
𝓺2(𝓍), 

or 

𝜂′(𝓍) − (
𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
) 𝜂(𝓍) = − (

𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

1 − (1 − 𝑒−𝚋𝓍)𝚊
) (𝓺1(𝓍))

−1
𝓺2(𝓍), 

or 

(1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
𝛽

𝜂′(𝓍) − (𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

) (1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
𝛽−1

𝜂(𝓍)

= − (𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

) (1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
𝛽−1

(𝓺1(𝓍))
−1

𝓺2(𝓍), 

or 
𝑑

𝑑𝓍
{(1 − (1 − 𝑒−𝚋𝓍)

𝚊
)

𝛽
𝜂(𝓍)} = − (𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

𝚊−1
) (1 − (1 − 𝑒−𝚋𝓍)

𝚊
)

𝛽−1
(𝓺1(𝓍))

−1
𝓺2(𝓍), 

from which we arrive at 
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𝜂(𝓍) = (1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
−𝛽

[− ∫ (𝚊𝚋𝛽𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)
𝚊−1

) (1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
𝛽−1

(𝓺1(𝓍))
−1

𝓺2(𝓍)𝑑𝓍 + 𝐷]. 

A set of functions satisfying this differential equation is presented in Proposition A.1.1 with  𝐷 = 0.  Clearly, there 

are other triplets  (𝒽, 𝑘, 𝜂)  satisfying the conditions of Theorem of Glänzel (1987). 

 

3.2 Characterization in terms of the hazard function 

The hazard function,  𝒽𝐹 , of a twice differentiable distribution function,  𝐹 , satisfies the following first order 

differential equation 
𝑓 ′(𝑋)

𝑓 (𝑋)
=

𝒽𝐹
′ (𝑋)

𝒽𝐹(𝑋)
− 𝒽𝐹(𝑋). 

It should be mentioned that for many univariate continuous distributions, the above equation is the only differential 

equation available in terms of the hazard function.  In this subsection we present a characterization of the ExEE 

distribution in terms of the hazard function, which is not of the above trivial form. 

Proposition 3.2.1.  Let  𝑋  :   𝛺 → (0, ∞)  be a continuous random variable.  The random variable  𝑋   has pdf  (5)  

if and only if its hazard function  𝒽𝐹(𝓍)  satisfies the following differential equation 

 

𝒽𝐹
′ (𝓍) − (𝚊 − 1)𝑒−𝚋𝓍(1 − 𝑒−𝚋𝓍)

−1
𝒽𝐹(𝓍) = 𝚊𝚋(1 − 𝑒−𝚋𝓍)

𝚊−1
× 

𝑑

𝑑𝓍
{

𝑒−𝚋𝓍 (1 − (1 − 𝑒−𝚋𝓍)
𝛽−1

) [𝛽 + (𝛼 − 𝛽)(1 − (1 − 𝑒−𝚋𝓍)
𝚊

)
𝛼

]

(1 − (1 − 𝑒−𝚋𝓍)𝚊)[(1 − (1 − 𝑒−𝚋𝓍)𝚊)𝛼 + (1 − (1 − 𝑒−𝚋𝓍)𝚊)𝛽]
},  

 

 𝓍 > 0 , with the boundary condition  𝑙𝑖𝑚𝓍→0 𝒽𝐹 (𝓍) = 0  for  𝚊 > 1 . 

Proof. Is straightforward. 

 

3.3 Based on the conditional expectation of certain function of the random variable 

In this subsection we employ a single function  𝜙  of  𝑋  and characterize the distribution of  𝑋  in terms of the 

truncated moment of  𝜙(𝑋).  
Proposition 3.3.1.   Let   𝑋  :   𝛺 →   (𝑒, 𝑓)   be a continuous random variable with CDF  𝐹  .  Let   𝜙(𝓍)   be a 

differentiable function on   (𝑒, 𝑓)   with   𝑙𝑖𝑚𝓍→𝑒+ 𝜙 (𝓍) = 1 .  Then for   𝛿 ≠ 1  ,  𝐸[𝜙(𝑋) | 𝑋 ≥ 𝓍] = 𝛿𝜙(𝓍),   𝓍 ∈
(𝑒, 𝑓),  if and only if 

ϕ(𝓍) = (1 − 𝐹(𝓍))
1
𝛿

−1
,   𝓍 ∈ (𝑒, 𝑓) 

 

Remark 3.3.1   

For  (𝑒, 𝑓) = (0, ∞),   𝜙(𝓍) =
[1−(1−𝑒−𝚋𝓍)

𝚊
]

{1−[1−(1−𝑒−𝚋𝓍)
𝚊

]
𝛼

+[1−(1−𝑒−𝚋𝓍)
𝚊

]
𝛽

}

1/𝛽  and  𝛿 =
𝛽

𝛽+1
,  Proposition 3.3.1. provides a 

characterization of the ExEE distribution. 

 

4.Estimation methods 

MLE method 

Let  𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample (RS) from the ExEE distribution. The log-likelihood function for  𝚿  where  

𝜳 = (𝛼, 𝛽, 𝚊, 𝚋)  is given by ℓ(𝚿) = ∑ 𝑙𝑛[𝑓𝛼,𝛽,𝚊,𝚋(𝑋)]𝑛
𝑖=1  which can be maximized either using the statistical 

programs or by solving the nonlinear system obtained from  ℓ(𝜳)  by differentiation. The score vector  

𝑈(𝜳) = (𝜕ℓ(𝜳)/𝜕𝛼, 𝜕ℓ(𝜳)/𝜕𝛽, 𝜕ℓ(𝜳)/𝜕𝚊, 𝜕ℓ(𝜳)/𝜕𝚋)
T

. 

Setting  

𝜕ℓ(𝜳)/𝜕𝛼 = 0, 𝜕ℓ(𝜳)/𝜕𝛽 = 0, 𝜕ℓ(𝜳)/𝜕𝚊 = 0, 𝜕ℓ(𝜳)/𝜕𝚋 = 0, 
and solving them simultaneously yields the maximum likelihood estimates (MLETs) MLETs for the ExEE family 

parameters. The Newton-Raphson algorithms is employed for the numerically solving in such cases. 

 

OLSE method 

Let  𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖)  denotes the CDF of ExEE model and let  𝓍1 < 𝓍2 < ⋯ < 𝓍𝑛  be the  𝑛  ordered RS. The OLSEs 

are obtained upon minimizing  
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𝑂𝐿𝑆𝐸(𝜳) = ∑[𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖) − 𝑐𝑖,𝑛]
2

𝑛

𝑖=1

, 

where   𝑐𝑖,𝑛 =
𝑖

𝑛+1
 .The LSEs are obtained via solving the following non-linear equations 

0 = ∑ [
𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖)

−𝑐𝑖,𝑛
]

𝑛

𝑖=1

𝐷(𝛼)(𝓍𝑖 , 𝜳),0 = ∑ [
𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖)

−𝑐𝑖,𝑛
]

𝑛

𝑖=1

𝐷(𝛽)(𝓍𝑖 , 𝜳), 

0 = ∑ [
𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖)

−𝑐𝑖,𝑛
]

𝑛

𝑖=1

𝐷(𝚊)(𝓍𝑖 , 𝜳),0 = ∑ [
𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖)

−𝑐𝑖,𝑛
]

𝑛

𝑖=1

𝐷(𝚋)(𝓍𝑖 , 𝜳), 

where  𝐷(𝛼)(𝓍𝑖 , 𝜳),   𝐷(𝛽)(𝓍𝑖 , 𝜳),   𝐷(𝚊)(𝓍𝑖 , 𝜳)  and  𝐷(𝚋)(𝓍𝑖 , 𝜳)  are the values of the first derivatives of the CDF 

of ExEE distribution with respect to  𝛼, 𝛽, 𝚊  and  𝚋  respectively. 

 

ADE 

The ADE are obtained by minimizing the function 

𝐴𝐷𝐸(𝜳) = −𝑛 − 𝑛−1 ∑(2𝑖 − 1)

𝑛

𝑖=1

{𝑙𝑜𝑔 𝐹𝛼,𝛽,𝚊,𝚋 (𝓍𝑖  :  𝑛) + 𝑙𝑜𝑔[1 − 𝐹(𝛾,𝜏)(𝓍−𝑖+1+𝑛  :  𝑛)]}. 

Then, the parameter estimates are obtained by solving the nonlinear equations 
𝜕

𝜕𝛼
[𝐴𝐷𝐸(𝜳)] = 0,

𝜕

𝜕𝛽
[𝐴𝐷𝐸(𝜳)] = 0,

𝜕

𝜕𝚊
[𝐴𝐷𝐸(𝜳)] = 0 and 

𝜕

𝜕𝚋
[𝐴𝐷𝐸(𝜳)] = 0. 

 

RTADE method 

The RTADE are obtained by minimizing the function 

𝑅𝐴𝐷𝐸(𝛾, 𝜏) =
𝑛

2
− 2 ∑ 𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖  :  𝑛)

𝑛

𝑖=1

−
1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

{𝑙𝑜𝑔[1 − 𝐹𝛼,𝛽,𝚊,𝚋(𝓍−𝑖+1+𝑛  :  𝑛)]}. 

 

LAD 𝟐  method 

The LAD2  estimates (LADSOE) are obtained by minimizing  

LAD2(𝑉) = 2 ∑ 𝑙𝑜𝑔[𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖  :  𝑛)]

𝑛

𝑖=1

+
1

𝑛
∑

2𝑖 − 1

𝐹𝛼,𝛽,𝚊,𝚋(𝓍𝑖  :  𝑛)

𝑛

𝑖=1

. 

Then, the parameter estimates can be obtained by solving the nonlinear equations 

𝜕[LAD]2(𝑉)]/𝜕𝛼 = 0, 𝜕[LAD]2(𝑉)]/𝜕𝛽 = 0, 𝜕[LAD]2(𝑉)]/𝜕𝚊 = 0 and ∂[LAD]2(𝑉)]/𝚋 = 0. 

 

5. Assessing methods 

The choice of estimation method plays a crucial role in accurately inferring parameters from data, particularly in the 

context of complex probability distributions. This Section presents a comprehensive simulation study aimed at 

evaluating the performance and behavior of several estimators applied to a specific distribution, utilizing various 

combinations of parameter values and sample sizes. The estimators under investigation include MLE, OLSE, ADE, 

RTADE, and LAD2  methods. Each of these methods holds unique characteristics and assumptions, making their 

comparative analysis essential for selecting the most effective approach in practical applications. The simulation study 

examines three distinct sets of parameter combinations for the target distribution: 

(1):  𝛼0 = 2,   𝛽0 = 2,   𝚊0 = 0.9  and  𝚋0 = 0.5  (see Table 1); 

(2):  𝛼0 = 1.5,   𝛽0 = 1.2,   𝚊0 = 1.2  and  𝚋0 = 0.9  (see Table 2); 

(3):  𝛼0 = 2.5,   𝛽0 = 2,   𝚊0 = 2.5  and  𝚋0 = 2  (see Table 3). 

These combinations encompass a range of scenarios to explore how the estimators respond to varying degrees of 

parameter complexity and distribution characteristics. Furthermore, the impact of sample size on estimator 

performance is investigated using four different sample sizes: 20,50,100,  and  300 . This aspect of the study is crucial 

as it sheds light on the robustness and efficiency of the estimators under different data availability scenarios, providing 

insights into their scalability and reliability in practical settings. The evaluation criteria employed in this simulation 

study include measures of bias (BIAS[⋅]), root mean squared error (RMSE[⋅]), mean absolute differences (Dabs), and 

maximum absolute differences (Dmax). These criteria collectively assess the accuracy, precision, and robustness of the 

estimators across the varied parameter settings and sample sizes, enabling a comprehensive comparison and selection 

of optimal estimation methods for specific modeling contexts. The outcomes of this simulation study are expected to 
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contribute significantly to the understanding of estimator behavior in complex statistical modeling, offering practical 

guidance for researchers and practitioners in selecting appropriate methods for parameter inference based on 

distributional assumptions and data characteristics.  

 

The subsequent sections detail the methodology, results, and implications derived from this comprehensive 

investigation. Based on Table 1: 

1) For  𝑛 = 20 : RTADE appears to be the most effective method with the lowest bias, RMSE, Dabs, and Dmax values, 

indicating accurate and precise parameter estimation. ADE also shows promising performance with reduced bias 

and RMSE compared to MLE and OLSE. MLE and OLSE exhibit moderate performance with notable bias and 

RMSE, highlighting room for improvement. LAD2  demonstrates less desirable performance with substantial 

bias and high RMSE, suggesting limitations in accurate parameter estimation. 

2) For  𝑛 = 50 : MLE stands out as the most effective method with very low bias, low RMSE, and minimal 

discrepancies (Dabs, Dmax) between estimated and true parameter values. OLSE, ADE, and RTADE demonstrate 

consistent and reliable performance with moderate bias and RMSE, as well as reasonable agreement (Dabs, 

Dmax) between estimated and true values. LAD2  exhibits relatively poorer performance with notable bias, higher 

RMSE, and larger discrepancies (Dabs, Dmax) in parameter estimation compared to other methods. 

3) For  𝑛 = 100 : MLE demonstrates excellent performance with very low bias, low RMSE, and minimal 

discrepancies (Dabs, Dmax) between estimated and true parameter values. OLSE, ADE, and RTADE exhibit 

consistent and reliable performance with low to moderate bias, as well as moderate RMSE values and good 

agreement (Dabs, Dmax) between estimated and true values. LAD2  shows reasonable performance with low to 

moderate bias, moderate RMSE values, and acceptable agreement (Dabs, Dmax) between estimated and true 

values. 

4) For  𝑛 = 300 : MLE demonstrates outstanding performance with extremely low bias, low RMSE, and minimal 

discrepancies (Dabs, Dmax) between estimated and true parameter values. OLSE, ADE, RTADE, and LAD 2  

exhibit consistent and reliable performance with low bias, moderate RMSE values, and good agreement (Dabs, 

Dmax) between estimated and true values. RTADE stands out with particularly low bias and exceptionally small 

Dabs and Dmax values, indicating highly accurate parameter estimation. 

 

Based on Table 2: 

• For  𝑛 = 20 : MLE and LAD 2  demonstrate higher bias and RMSE values, suggesting less accurate and less 

precise estimation compared to other methods. OLSE, ADE, and RTADE exhibit more moderate bias and RMSE 

values, with varying degrees of accuracy and precision in parameter estimation. RTADE shows relatively 

improved performance with lower Dabs and Dmax values compared to other methods, indicating better agreement 

between estimated and true parameter values. 

• For  𝑛 = 50 : MLE exhibits moderate bias and RMSE values, suggesting reasonably accurate but not highly 

precise estimation. OLSE, ADE, RTADE, and LAD 2  demonstrate varying degrees of bias and RMSE values, 

with generally acceptable levels of accuracy and precision in parameter estimation. LAD 2  shows slightly higher 

bias compared to other methods, particularly for 𝛽, with comparable levels of RMSE and agreement (Dabs, Dmax) 

between estimated and true values. 

• For  𝑛 = 100 : MLE demonstrates excellent performance with low bias, low RMSE, and minimal discrepancies 

(Dabs, Dmax) between estimated and true parameter values. OLSE, ADE, RTADE, and LAD2  exhibit consistent 

and reliable performance with low bias and RMSE values, as well as good agreement (Dabs, Dmax) between 

estimated and true values. RTADE stands out with very low RMSE values, indicating high precision in parameter 

estimation. 

• MLE, OLSE, ADE, RTADE, and LAD 2  all demonstrate outstanding performance with very low bias, very low 

RMSE, and exceptionally minimal discrepancies (Dabs, Dmax) between estimated and true parameter values. These 

findings highlight the effectiveness of the evaluated estimation methods in accurately estimating parameters from 

data with a relatively large sample size of  𝑛 = 300 . The larger sample size significantly contributes to improved 

estimation accuracy and precision, emphasizing the importance of sufficient data for reliable statistical inference. 

 

Based on Table 3: 

1) For  𝑛 = 20 : MLE and LAD2  demonstrate higher bias and RMSE values, suggesting less accurate and less 

precise estimation compared to other methods. OLSE, ADE, and RTADE exhibit varying degrees of bias and 

RMSE values, with generally acceptable levels of accuracy and precision in parameter estimation. These findings 

highlight the challenges of parameter estimation with smaller sample sizes ( 𝑛 = 20 ) and underscore the 
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importance of selecting appropriate estimation methods based on bias, RMSE, Dabs, and Dmax metrics to ensure 

reliable and accurate parameter inference from data. Larger sample sizes typically lead to improved estimation 

performance, reducing biases and enhancing precision in parameter estimation. 

2) For  𝑛 = 50 : MLE and OLSE demonstrate moderate bias and RMSE values, suggesting reasonably accurate but 

less precise estimation compared to other methods. ADE, RTADE, and LAD 2  exhibit varying degrees of bias 

and RMSE values, with generally acceptable levels of accuracy and precision in parameter estimation. These 

findings highlight the performance characteristics of different estimation methods under sample size  𝑛 = 50 , 

providing insights into their relative accuracy, precision, and reliability in parameter estimation tasks. 

Adjustments in method selection may be considered based on specific requirements for bias, RMSE, and 

agreement metrics in practical applications. 

3) For  𝑛 = 100 : MLE demonstrates relatively low bias and RMSE values, suggesting accurate and precise 

estimation compared to other methods. OLSE, ADE, RTADE, and LAD 2  exhibit varying degrees of bias and 

RMSE values, with generally acceptable levels of accuracy and precision in parameter estimation. 

4) For  𝑛 = 300 : MLE, OLSE, ADE, RTADE, and LAD 2  demonstrate low bias and RMSE values, indicating 

accurate and precise estimation of parameters. These findings provide insights into the performance 

characteristics of different estimation methods under a larger sample size ( 𝑛 = 300 ), highlighting their relative 

accuracy, precision, and reliability in parameter estimation tasks. Overall, the estimation methods perform well 

with reduced biases and excellent precision, reflecting robustness in handling larger datasets for parameter 

inference. Adjustments in method selection may be considered based on specific requirements for bias, RMSE, 

and agreement metrics in practical applications. 

5)  

Based on the analysis of simulation results across Table 1, Table 2, and Table 3 for different sample sizes ( 𝑛 =
20, 𝑛 = 50, 𝑛 = 100  and  𝑛 = 300 ) and various estimation methods (MLE, OLSE, ADE, RTADE, LAD2 ), several 

observations can be made: 

• Sample size  𝑛 = 20 : MLE and OLSE exhibit moderate to high bias and RMSE values, indicating less accurate 

and less precise estimation, especially noticeable in smaller sample sizes. ADE, RTADE, and LAD2  generally 

show varying degrees of bias and RMSE, with relatively acceptable levels of accuracy and precision in parameter 

estimation. RTADE stands out as a promising method with lower bias, RMSE, and better agreement (Dabs, Dmax) 

between estimated and true parameter values compared to others. 

• Sample size  𝑛 = 50 : MLE demonstrates reasonable accuracy but less precision with moderate bias and RMSE. 

OLSE, ADE, RTADE, and LAD2  exhibit varying degrees of bias and RMSE, generally showing acceptable 

levels of accuracy and precision in parameter estimation. RTADE again shows relatively improved performance 

with lower Dabs and Dmax values compared to other methods. 

• Sample size  𝑛 = 100 : MLE consistently shows excellent performance with low bias, low RMSE, and minimal 

discrepancies (Dabs, Dmax) between estimated and true parameter values. OLSE, ADE, RTADE, and LAD 2  

demonstrate consistent and reliable performance with varying degrees of bias and RMSE, maintaining good 

accuracy and precision in parameter estimation across different sample sizes. 

• Sample size  𝑛 = 300 : MLE, OLSE, ADE, RTADE, and LAD2  consistently demonstrate low bias and RMSE 

values, indicating accurate and precise parameter estimation, especially with larger sample sizes. RTADE 

particularly stands out with very low bias and exceptionally small Dabs and Dmax values, suggesting highly accurate 

parameter estimation. 

• The performance of estimation methods varies across different sample sizes, with larger sample sizes generally 

resulting in improved accuracy and precision. RTADE consistently shows promising performance across sample 

sizes, indicating its robustness in accurate parameter estimation. MLE and OLSE tend to exhibit slightly higher 

bias and RMSE in smaller sample sizes, suggesting the need for caution and potential adjustments in method 

selection based on sample size and specific requirements for bias and precision. LAD 2  generally exhibits 

relatively poorer performance compared to other methods, particularly in smaller sample sizes. 

• Finally, the simulation results suggest that MLE and RTADE are among the more robust methods in terms of low 

bias, consistency, and efficiency across different sample sizes. As sample size increases, bias tends to decrease 

for most methods, reflecting improvement towards unbiased parameter estimation. The efficiency of estimation 

methods, reflected in lower RMSE values, highlights the importance of sample size in achieving accurate and 

precise parameter estimation. 
Table 1: Simulation results for parameters α=2,β=2,a=0.9 and b=0.5. 

 BIASα BIASβ BIASa BIASb RMSEα RMSEβ RMSEa RMSEb Dabs Dmax 

n=20           

MLE 0.31070 0.19573 0.02171 0.03271 1.70912 0.67737 0.15298 0.13755 0.0348 0.0514 
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OLSE 0.42116 0.15515 0.01011 0.02349 1.58471 0.93397 0.16365 0.15066 0.0375 0.0541 
ADE 0.39419 0.13042 0.00833 0.02210 1.52904 0.75764 0.15717 0.13962 0.0348 0.0502 

RTADE 0.30518 0.0882 0.03045 0.01261 1.4406 0.71878 0.18673 0.13619 0.0152 0.0227 

LAD₂ 0.43011 0.39332 0.00320 0.04499 1.57832 2.22151 0.15450 0.20613 0.0648 0.0950 
n=50           

MLE 0.06467 0.06343 0.01531 0.00944 0.71815 0.37626 0.09903 0.08042 0.0062 0.0111 

OLSE 0.13738 0.05582 0.00623 0.00823 0.76998 0.52998 0.10361 0.09058 0.0124 0.0181 
ADE 0.12329 0.04841 0.00578 0.00756 0.74861 0.44779 0.09902 0.08484 0.0111 0.0161 

RTADE 0.14748 0.04027 0.00912 0.00665 0.82840 0.41420 0.11497 0.08151 0.0099 0.0148 

LAD₂ 0.12709 0.12100 0.00384 0.01405 0.73442 0.65531 0.09628 0.10206 0.0198 0.0295 
n=100           

MLE 0.04503 0.03741 0.00429 0.00634 0.48470 0.25120 0.06700 0.05450 0.0062 0.0095 

OLSE 0.05126 0.01919 0.00493 0.00254 0.50259 0.35453 0.07168 0.06168 0.0033 0.0049 
ADE 0.04329 0.01548 0.00477 0.00204 0.48906 0.29714 0.06840 0.05735 0.0025 0.0038 

RTADE 0.05714 0.01241 0.00683 0.00174 0.57759 0.27588 0.07917 0.05585 0.0020 0.0032 

LAD₂ 0.04345 0.04811 0.00390 0.00467 0.47307 0.42471 0.06645 0.06797 0.0062 0.0098 
n=300           

MLE 0.02649 0.00416 0.00116 0.00105 0.28363 0.13648 0.03922 0.03010 0.0017 0.0026 

OLSE 0.02875 0.00998 0.00035 0.00179 0.29629 0.19964 0.04225 0.03600 0.0029 0.0043 

ADE 0.02084 0.00307 0.00125 0.00068 0.29048 0.16959 0.04057 0.03356 0.0012 0.0018 

RTADE 0.00184 -0.00362 0.00445 -0.00105 0.30907 0.15619 0.04435 0.03156 0.0024 0.0033 

LAD₂ 0.02864 0.02211 -0.00008 0.00314 0.28777 0.23720 0.04047 0.04069 0.0046 0.0067 

 
Table 2: Simulation results for parameters α=1.5,β=1.2,a=1.2 and b=0.9. 

 BIASα BIASβ BIASa BIASb RMSEα RMSEβ RMSEa RMSEb Dabs Dmax 

n=20           
MLE 0.26386 0.15189 0.04037 0.06484 1.63323 0.46571 0.26539 0.24308 0.0409 0.0603 

OLSE 0.32345 0.10246 0.03697 0.02833 1.21779 0.67180 0.30541 0.24693 0.0300 0.0436 

ADE 0.25012 0.06457 0.04088 0.02106 1.10613 0.49319 0.28654 0.23102 0.0192 0.0285 
RTADE 0.20744 0.05567 0.08858 0.01354 1.13441 0.46418 0.38683 0.22141 0.0053 0.0085 

LAD₂ 0.33199 0.27484 0.01959 0.05715 1.22925 1.16141 0.26632 0.29016 0.0587 0.0864 

n=50           
MLE 0.07257 0.04010 0.02386 0.01467 0.56363 0.23337 0.15814 0.12964 0.0079 0.0128 

OLSE 0.08384 0.02191 0.02110 0.00463 0.57740 0.33828 0.17853 0.14185 0.0045 0.0071 

ADE 0.08224 0.0177 0.01754 0.00541 0.58432 0.26105 0.16793 0.13177 0.0050 0.0077 
RTADE 0.08780 0.02663 0.02817 0.00751 0.64145 0.25746 0.20531 0.13073 0.0046 0.0074 

LAD₂ 0.08090 0.06495 0.01434 0.01296 0.55034 0.42233 0.15971 0.15609 0.0127 0.0195 

n=100           
MLE 0.03445 0.02831 0.00944 0.01207 0.35571 0.14864 0.10707 0.08419 0.0067 0.0104 

OLSE 0.04158 0.01044 0.01227 0.00201 0.41196 0.22952 0.12872 0.10217 0.0017 0.0028 

ADE 0.03201 0.01010 0.01228 0.00173 0.39443 0.19193 0.12197 0.09649 0.0011 0.0019 
RTADE 0.05285 0.01867 0.00915 0.00666 0.00666 0.17863 0.13697 0.09190 0.00544 0.0080 

LAD₂ 0.04195 0.03225 0.00823 0.00654 0.39661 0.28191 0.11524 0.11347 0.00632 0.0097 

n=300           
MLE 0.00653 0.00621 0.00433 0.00187 0.20548 0.08694 0.06143 0.05046 0.0007 0.0015 

OLSE 0.01015 0.00476 0.00439 0.00066 0.21755 0.12669 0.07019 0.05676 0.0004 0.0008 

ADE 0.00543 0.00330 0.00517 -0.00003 0.21569 0.10754 0.0675 0.05418 0.0005 0.0009 
RTADE 0.01359 0.00361 0.00484 0.00098 0.24433 0.09780 0.08004 0.05222 0.0005 0.0009 

LAD₂ 0.00525 0.00990 0.00473 0.00069 0.20504 0.14776 0.06302 0.06137 0.0008 0.0017 

 
Table 3: Simulation results for parameters α=2.5,β=2,a=2.5 and b=2. 

 BIASα BIASβ BIASa BIASb RMSEα RMSEβ RMSEa RMSEb Dabs Dmax 

n=20           

MLE 0.42587 0.14441 0.07765 0.02292 2.29964 0.66691 0.44144 0.28927 0.0189 0.0278 

OLSE 0.38565 0.10003 0.08056 0.00292 1.79808 0.97756 0.49433 0.31452 0.0103 0.0158 
ADE 0.46928 0.13621 0.06163 0.02038 2.04073 0.87150 0.48770 0.32849 0.0216 0.0316 

RTADE 0.40247 0.09285 0.09116 0.01168 1.96309 0.71049 0.53977 0.30077 0.0109 0.0167 

LAD₂ 0.42003 0.33504 0.05369 0.02672 2.10483 1.54605 0.44997 0.34726 0.0341 0.0507 
n=50           

MLE 0.14054 0.07544 0.02526 0.01775 1.00515 0.37419 0.27158 0.18803 0.0106 0.015 

OLSE 0.15006 0.04358 0.03411 0.00079 1.04691 0.58105 0.30245 0.20663 0.0042 0.0064 
ADE 0.12951 0.04835 0.03093 0.00461 0.99147 0.47837 0.29013 0.19743 0.0049 0.0074 

RTADE 0.21517 0.06175 0.01654 0.01584 1.08688 0.44362 0.31913 0.19445 0.0134 0.01951 

LAD₂ 0.14688 0.12443 0.02414 0.00982 1.00728 0.82034 0.27833 0.22268 0.0124 0.0189 
n=100           

MLE 0.02993 0.04212 0.02171 0.00660 0.60382 0.26390 0.19029 0.13132 0.0025 0.0049 

OLSE 0.12641 0.05077 -0.00383 0.01345 0.66911 0.37687 0.19884 0.13908 0.0117 0.0166 
ADE 0.12613 0.03379 -0.00691 0.01233 0.65514 0.31139 0.18658 0.13265 0.0108 0.0156 

RTADE 0.07613 0.02399 0.01639 0.00391 0.71721 0.28583 0.22498 0.13214 0.0032 0.0047 
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LAD₂ 0.12024 0.09178 -0.00772 0.01882 0.62893 0.45886 0.18322 0.14787 0.1478 0.0223 
n=300           

MLE 0.02898 0.00768 0.00321 0.00230 0.35389 0.13990 0.10785 0.07311 0.0017 0.0025 

OLSE 0.02579 0.00799 0.00451 0.00080 0.38112 0.21088 0.11827 0.08171 0.0011 0.0016 
ADE 0.02140 0.00829 0.00452 0.00095 0.37222 0.17826 0.11360 0.07846 0.0009 0.0015 

RTADE 0.01963 0.00363 0.00801 -0.00041 0.41769 0.16294 0.12970 0.07721 0.0001 0.0003 

LAD₂ 0.02522 0.01990 0.00285 0.00235 0.36015 0.25257 0.11045 0.08744 0.0024 0.0035 

 

6. The empirical risk analysis under different estimation methods 

The robust performance of key risk indicators (KRIs) across different sample sizes and estimation methods 

underscores the reliability and effectiveness of these methods in risk analysis. The scalability of these methods is 

evident as sample sizes increase ( 𝑛 = 20,50,100,300 ). Performance metrics like bias and RMSE often improve with 

larger datasets, reflecting the ability of these methods to leverage more data for more accurate risk assessments. In 

this Section, a comprehensive robust performance of KRIs across sizes and methods are presented. For this main aim, 

the simulation study examines three distinct sets of parameter combinations for the target distribution: (1):  𝛼0 = 2,   
𝛽0 = 2,   𝚊0 = 0.9  and  𝚋0 = 0.5  (see Table 4, Table 5, Table 6 and Table 7 ); (2):  𝛼0 = 1.5,   𝛽0 = 1.2,   𝚊0 = 1.2  

and  𝚋0 = 0.9  (see Table 8, Table 9, Table 10, Table 11); and (3):  𝛼0 = 2.5,   𝛽0 = 2,   𝚊0 = 2.5  and  𝚋0 = 2  (see 

Table 12, Table 13, Table 14, Table 15). Based on Table 4, Table 8 and Table 12: The estimation methods (MLE, 

OLSE, ADE, RTADE, LAD2 ) perform comparably in estimating key risk indicators under artificial data for a sample 

size of  𝑛 = 20  and various quantiles (70%, 80%, 90%). They exhibit consistent behavior in reflecting increasing risk 

exposure at higher quantile levels, providing reliable estimates that align with the specified confidence levels. The 

results suggest that these methods are effective in estimating risk measures based on the provided artificial data and 

are suitable for capturing risk exposure across different levels of confidence. Based on Table 5, Table 9 and Table 13: 

The estimation methods (MLE, OLSE, ADE, RTADE, LAD2 ) perform comparably in estimating key risk indicators 

under artificial data for a sample size of 𝑛 = 50 and various quantiles (70%, 80%, 90%). They exhibit consistent 

behavior in reflecting increasing risk exposure at higher quantile levels, providing reliable estimates that align with 

the specified confidence levels. The results suggest that these methods are effective in estimating risk measures based 

on the provided artificial data and are suitable for capturing risk exposure across different levels of confidence. Based 

on Table 6, Table 10 and Table 14, the estimation methods (MLE, OLSE, ADE, RTADE, LAD2 ) perform comparably 

in estimating key risk indicators under artificial data for a sample size of n=100n=100 and various quantiles (70%, 

80%, 90%). They exhibit consistent behavior in reflecting increasing risk exposure at higher quantile levels, providing 

reliable estimates that align with the specified confidence levels. The results suggest that these methods are effective 

in estimating risk measures based on the provided artificial data and are suitable for capturing risk exposure across 

different levels of confidence. Based on Table 7, Table 11 and Table 15: The estimation methods (MLE, OLSE, ADE, 

RTADE, LAD2 ) perform consistently and reliably in estimating key risk indicators under artificial data for a larger 

sample size of  𝑛 = 300  and various quantiles (70%, 80%, 90%). They exhibit stable behavior in reflecting increasing 

risk exposure at higher quantile levels, providing accurate and dependable estimates that align with the specified 

confidence levels. These results suggest that these methods are effective in estimating risk measures based on the 

provided artificial data and are suitable for capturing risk exposure across different levels of confidence, especially 

with the larger sample size. 

 

Based on the comprehensive analysis of the results presented in Tables 4-15, which showcase KRIs under artificial 

data for varying sample sizes (𝑛 = 20,50,100,300) and different quantiles (70%, 80%, 90%), several insightful 

observations can be made regarding the performance of different estimation methods (MLE, OLSE, ADE, RTADE, 

LAD2) in analyzing and evaluating risks. Also, we can highlight the following results: 

1) For the MLE: Consistently performs exceptionally well across all sample sizes and quantiles, with minimal bias 

and RMSE values, making it a strong choice for risk analysis. 

2) For the RTADE: Particularly effective at larger sample sizes (𝑛 = 300), showing low bias and excellent precision, 

making it suitable for accurate risk assessment. 

3) For the OLSE, ADE, LAD2 : Display reliable performance across different scenarios, providing good alternatives 

based on specific requirements and constraints. 

4) For the large sample sizes (𝑛 = 100,300): the MLE emerges as the optimal method, offering exceptional 

accuracy and precision in risk estimation. 

5) For the moderate sample sizes (𝑛 = 50): the MLE, OLSE, ADE, RTADE, and LAD 2  demonstrate competitive 

performance, providing robust options for risk analysis. 

6) For the smaller sample sizes (𝑛 = 20): Despite challenges, RTADE shows promise in minimizing bias and 

RMSE, making it suitable for scenarios with limited data. 
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7) It is recommended to choose MLE for large sample sizes (𝑛 = 100,300) to ensure precise and reliable risk 

assessments. 

8) We may consider RTADE for its consistent performance across different sample sizes, especially in scenarios 

with limited data. 

 
Table 4: KRIs under artificial data for n=20|α₀=2, β₀=2, a₀=0.9 and b₀=0.5. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.311 2.195 0.921 0.532      

70%     0.91995 1.75833 0.71529 2.11597 0.83838 

80%     1.25587 2.0994 0.71928 2.45904 0.84353 

90%     1.83782 2.68587 0.7231 3.04742 0.84804 

OLSE 2.421 2.155 0.910 0.523      

70%     0.92100 1.79318 0.77445 2.18041 0.87218 

80%     1.26972 2.14827 0.77839 2.53747 0.87855 

90%     1.87630 2.75897 0.78093 3.14944 0.88267 

ADE 2.394 2.130 0.908 0.522      

70%     0.93253 1.81703 0.79668 2.21536 0.88450 

80%     1.28610 2.17714 0.80080 2.57754 0.89104 

90%     1.90126 2.79655 0.80346 3.19829 0.89529 

RTADE 2.305 2.088 0.930 0.512      

70%     1.00433 1.92909 0.86612 2.36215 0.92475 

80%     1.37541 2.30519 0.86912 2.73975 0.92978 

90%     2.01822 2.95094 0.87064 3.38626 0.93272 

LAD₂ 2.430 2.393 0.90 0.545      

70%     0.80889 1.55059 0.56421 1.83269 0.74170 

80%     1.10502 1.85258 0.56908 2.13712 0.74756 

90%     1.61928 2.37313 0.57471 2.66048 0.75385 

 
Table 5: KRIs under artificial data for n=50|α₀=2, β₀=2, a₀=0.9 and b₀=0.5. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.064 2.063 0.915 0.509      

70%     1.03513 1.96301 0.87803 2.40202 0.92788 
80%     1.40694 2.34045 0.88396 2.78242 0.93351 

90%     2.05015 2.98983 0.89085 3.43526 0.93968 

OLSE 2.137 2.055 0.906 0.508      
70%     1.01703 1.95153 0.89170 2.39738 0.93450 

80%     1.39080 2.33188 0.89777 2.78077 0.94108 

90%     2.03930 2.98660 0.90402 3.43861 0.94730 
ADE 2.123 2.048 0.905 0.507      

70%     1.02267 1.96149 0.90006 2.41152 0.93881 

80%     1.39817 2.34359 0.90627 2.79672 0.94542 
90%     2.04961 3.00135 0.91271 3.45771 0.95174 

RTADE 2.147 2.040 0.909 0.506      

70%     1.02836 1.97526 0.91434 2.43243 0.94690 
80%     1.40724 2.36062 0.92007 2.82066 0.95338 

90%     2.06458 3.02371 0.92561 3.48652 0.95913 

LAD₂ 2.127 2.121 0.903 0.514      

70%     0.98071 1.87129 0.81162 2.27710 0.89057 

80%     1.33682 2.23375 0.81805 2.64278 0.89693 

90%     1.95419 2.85808 0.82553 3.27085 0.90389 

 
Table 6: KRIs under artificial data for n=100α₀=2, β₀=2, a₀=0.9 and b₀=0.5. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.045 2.037 0.904 0.506      

70%     1.03968 1.98250 0.90882 2.43690 0.94282 

80%     1.41685 2.36618 0.91571 2.82403 0.94933 

90%     2.07049 3.02687 0.92364 3.48869 0.95638 

OLSE 2.051 2.019 0.904 0.502      

70%     1.05446 2.01464 0.94199 2.48564 0.96019 
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80%     1.43859 2.40540 0.94882 2.87981 0.96681 

90%     2.10450 3.07815 0.95638 3.55634 0.97365 

ADE 2.043 2.015 0.904 0.502      

70%     1.05804 2.02075 0.94702 2.49426 0.96271 

80%     1.44319 2.41254 0.95391 2.88949 0.96935 

90%     2.11082 3.08706 0.96160 3.56786 0.97624 

RTADE 2.057 2.012 0.906 0.501      

70%     1.06042 2.02669 0.95327 2.50332 0.96626 

80%     1.44709 2.41990 0.95988 2.89984 0.97281 

90%     2.11733 3.09672 0.96705 3.58024 0.97939 

LAD₂ 2.043 2.048 0.903 0.504      

70%     1.03877 1.97892 0.90397 2.43090 0.94014 

80%     1.41486 2.36151 0.91098 2.81700 0.94665 

90%     2.06654 3.02038 0.91921 3.47998 0.95384 

 
Table 7: KRIs under artificial data for n=300α₀=2, β₀=2, a₀=0.9 and b₀=0.5. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.026 2.004 0.901 0.501      

70%     1.06246 2.03135 0.96005 2.51138 0.96889 
80%     1.4499 2.42570 0.96735 2.90937 0.97579 

90%     2.12177 3.10482 0.97556 3.59260 0.98305 

OLSE 2.028 2.009 0.900 0.501      
70%     1.05709 2.02121 0.95092 2.49667 0.96412 

80%     1.44257 2.41362 0.95827 2.89276 0.97106 

90%     2.11109 3.08950 0.96659 3.57279 0.97840 
ADE 2.020 2.003 0.901 0.500      

70%     1.06473 2.03468 0.96217 2.51576 0.96994 

80%     1.45261 2.42944 0.96951 2.91420 0.97683 
90%     2.12517 3.10930 0.97783 3.59821 0.98413 

RTADE 2.001 1.996 0.904 0.498      

70%     1.07880 2.05590 0.97570 2.54374 0.97710 
80%     1.46978 2.45350 0.98296 2.94498 0.98372 

90%     2.14718 3.13808 0.99130 3.63373 0.99090 

LAD₂ 2.028 2.022 0.899 0.503      
70%     1.04894 2.00377 0.93306 2.47030 0.95484 

80%     1.43069 2.39241 0.94045 2.86263 0.96172 

90%     2.09266 3.06185 0.94896 3.53633 0.96919 

 
Table 8: KRIs under artificial data for n=20|α₀=1.5, β₀=1.2, a₀=1.2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 1.763 1.351 1.240 0.964      

70%     1.02409 1.83889 0.63647 2.15712 0.81480 

80%     1.36096 2.16767 0.62571 2.48052 0.80671 

90%     1.92913 2.72185 0.61090 3.0273 0.79272 

OLSE 1.823 1.302 1.236 0.928      

70%     1.07854 1.96367 0.74783 2.33758 0.88513 

80%     1.44489 2.32079 0.73358 2.68758 0.87591 

90%     2.06324 2.92176 0.71367 3.27860 0.85852 

ADE 1.75012 1.26457 1.240 0.921      

70%     1.12187 2.03847 0.80323 2.44009 0.9166 

80%     1.50100 2.40834 0.78848 2.80259 0.90735 

90%     2.14111 3.03112 0.76786 3.41505 0.89001 

RTADE 1.707 1.255 1.288 0.913      

70%     1.17637 2.10864 0.82896 2.52312 0.93227 

80%     1.56275 2.48460 0.81324 2.89121 0.92184 

90%     2.21332 3.11712 0.79181 3.51303 0.90380 

LAD₂ 1.832 1.474 1.219 0.957      

70%     0.95424 1.70382 0.54028 1.97396 0.74958 

80%     1.26388 2.00632 0.53193 2.27229 0.74244 
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90%     1.78599 2.51677 0.52054 2.77704 0.73079 

 
Table 9: KRIs under artificial data for n=50|α₀=1.5, β₀=1.2, a₀=1.2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 1.572 1.240 1.223 0.914      

70%     1.16296 2.09151 0.83189 2.50745 0.92855 

80%     1.54568 2.46649 0.81995 2.87646 0.92081 

90%     2.19268 3.09992 0.80334 3.50158 0.90723 

OLSE 1.583 1.221 1.221 0.904      

70%     1.18286 2.13751 0.87847 2.57675 0.95466 

80%     1.57636 2.52305 0.86540 2.95575 0.94669 

90%     2.24195 3.17408 0.84701 3.59759 0.93213 

ADE 1.582 1.218 1.217 0.905      

70%     1.18216 2.13913 0.88295 2.58060 0.95697 

80%     1.57653 2.52563 0.86985 2.96055 0.94909 

90%     2.24380 3.17833 0.85138 3.60403 0.93454 

RTADE 1.588 1.227 1.228 0.907      

70%     1.18056 2.12911 0.86673 2.56248 0.94855 

80%     1.57172 2.51213 0.85365 2.93896 0.94042 

90%     2.23300 3.15878 0.83537 3.57647 0.92578 

LAD₂ 1.580 1.264 1.214 0.912      

70%     1.14207 2.05235 0.80052 2.45261 0.91028 

80%     1.51707 2.41999 0.78950 2.81474 0.90292 

90%     2.15113 3.04131 0.77418 3.42840 0.89018 

 
Table 10: KRIs under artificial data for n=100|α₀=1.5, β₀=1.2, a₀=1.2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 1.534 1.228 1.209 0.912      
70%     1.17039 2.10717 0.84894 2.53165 0.93679 

80%     1.55601 2.48560 0.83765 2.90442 0.92958 

90%     2.20853 3.12543 0.82186 3.53636 0.91689 
OLSE 1.541 1.210 1.212 0.902      

70%     1.19530 2.15854 0.89646 2.60676 0.96324 

80%     1.59193 2.54763 0.88400 2.98963 0.95570 
90%     2.26321 3.20522 0.86646 3.63845 0.94201 

ADE 1.532 1.210 1.212 0.901      

70%     1.19781 2.16089 0.89656 2.60917 0.96308 
80%     1.59433 2.54992 0.88429 2.99207 0.95560 

90%     2.26539 3.20752 0.86704 3.64104 0.94213 

RTADE 1.552 1.218 1.209 0.906      
70%     1.17950 2.13137 0.87547 2.56910 0.95187 

80%     1.57142 2.51588 0.86331 2.94753 0.94446 

90%     2.23481 3.16573 0.84615 3.58880 0.93092 
LAD₂ 1.542 1.232 1.208 0.906      

70%     1.17273 2.11241 0.85412 2.53947 0.93969 

80%     1.55955 2.49201 0.84272 2.91336 0.93246 
90%     2.21413 3.13380 0.82675 3.54717 0.91967 

 
Table 11: KRIs under artificial data for n=300|α₀=1.5, β₀=1.2, a₀=1.2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 1.507 1.206 1.204 0.902      

70%     1.19944 2.16304 0.89912 2.61260 0.96360 

80%     1.59587 2.55236 0.88747 2.99610 0.95649 

90%     2.26708 3.21083 0.87109 3.64638 0.94375 

OLSE 1.510 1.204 1.204 0.906      

70%     1.20128 2.16774 0.90425 2.61987 0.96646 

80%     1.59891 2.55821 0.89244 3.00443 0.95930 

90%     2.27217 3.21858 0.87579 3.65647 0.94640 

ADE 1.505 1.203 1.205 0.899      
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70%     1.20470 2.17286 0.90752 2.62661 0.96816 

80%     1.60302 2.56401 0.89571 3.01187 0.96099 

90%     2.27743 3.22556 0.87910 3.66511 0.94813 

RTADE 1.514 1.204 1.205 0.901      

70%     1.20121 2.16863 0.90583 2.62154 0.96742 

80%     1.59926 2.55948 0.89389 3.00643 0.96022 

90%     2.27325 3.22044 0.87705 3.65897 0.94719 

LAD₂ 1.505 1.209 1.205 0.901      

70%     1.19921 2.16081 0.89551 2.60857 0.96160 

80%     1.59482 2.54931 0.88400 2.99131 0.95449 

90%     2.26456 3.20644 0.86783 3.64035 0.94188 

 
Table 12: KRIs under artificial data for n=20|α₀=2.5, β₀=2, a₀=2.5 and b₀=2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.925 2.144 2.577 2.022      

70%     0.59789 0.88434 0.07029 0.91948 0.28645 

80%     0.72410 0.99778 0.06616 1.03087 0.27369 

90%     0.92348 1.18175 0.0614 1.21245 0.25827 

OLSE 2.885 2.100 2.580 2.002      

70%     0.61097 0.90545 0.07438 0.94264 0.29448 

80%     0.74063 1.02210 0.07005 1.05712 0.28147 

90%     0.94562 1.21133 0.06505 1.24386 0.26571 

ADE 2.969 2.136 2.561 2.020      

70%     0.59559 0.88389 0.07112 0.91945 0.28830 

80%     0.72266 0.99806 0.06690 1.03151 0.27540 

90%     0.92341 1.18311 0.06203 1.21413 0.25970 

RTADE 2.902 2.092 2.591 2.011      

70%     0.61031 0.90485 0.07434 0.94202 0.29455 

80%     0.74006 1.02152 0.06998 1.05650 0.28146 

90%     0.94512 1.21069 0.06494 1.24317 0.26557 

LAD₂ 2.920 2.335 2.553 2.026      

70%     0.57261 0.83622 0.0596 0.86602 0.26361 

80%     0.68876 0.9406 0.05616 0.96867 0.25183 

90%     0.87199 1.10999 0.05219 1.13608 0.23800 

 
Table 13: KRIs under artificial data for n=50|α₀=2.5, β₀=2, a₀=2.5 and b₀=2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.641 2.075 2.525 2.017      

70%     0.60942 0.90032 0.07338 0.93701 0.29090 

80%     0.73688 1.01570 0.06946 1.05043 0.27882 

90%     0.93908 1.20364 0.06495 1.23611 0.26455 

OLSE 2.650 2.043 2.534 2.001      

70%     0.61968 0.91766 0.07695 0.95613 0.29798 

80%     0.75027 1.03585 0.07281 1.07225 0.28558 

90%     0.95746 1.22830 0.06804 1.26232 0.27084 

ADE 2.629 2.048 2.530 2.004      

70%     0.61818 0.91454 0.07618 0.95263 0.29636 

80%     0.74801 1.03210 0.07212 1.06815 0.28408 

90%     0.95404 1.22358 0.06743 1.25730 0.26955 

RTADE 2.715 2.061 2.516 2.015      

70%     0.60741 0.90155 0.07484 0.93897 0.29414 

80%     0.73641 1.01820 0.07075 1.05357 0.28179 

90%     0.94100 1.20801 0.06603 1.24102 0.26700 

LAD₂ 2.646 2.124 2.524 2.009      
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70%     0.60545 0.89122 0.07080 0.92662 0.28576 

80%     0.73071 1.00455 0.06701 1.03805 0.27383 

90%     0.92927 1.18913 0.06267 1.22047 0.25986 

 
Table 14: KRIs under artificial data for n=100|α₀=2.5, β₀=2, a₀=2.5 and b₀=2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.529 2.042 2.521 2.006      

70%     0.62088 0.91596 0.07583 0.95387 0.29508 

80%     0.74994 1.03305 0.07192 1.06901 0.28312 

90%     0.95492 1.22408 0.06744 1.25780 0.26916 

OLSE 2.626 2.050 2.496 2.013      

70%     0.60953 0.90376 0.07518 0.94135 0.29423 

80%     0.73834 1.02050 0.07121 1.05610 0.28216 

90%     0.94289 1.21073 0.06663 1.24405 0.26785 

ADE 2.626 2.033 2.493 2.012      

70%     0.61151 0.90820 0.07645 0.94642 0.29669 

80%     0.74138 1.02592 0.07241 1.06212 0.28453 

90%     0.94766 1.21775 0.06775 1.25162 0.27009 

RTADE 2.576 2.023 2.516 2.004      

70%     0.62125 0.91998 0.07760 0.95879 0.29874 

80%     0.75197 1.03852 0.07354 1.07529 0.28656 

90%     0.95960 1.23178 0.06887 1.26622 0.27218 

LAD₂ 2.620 2.091 2.492 2.018      

70%     0.60245 0.89029 0.07198 0.92627 0.28784 

80%     0.72847 1.00448 0.06819 1.03857 0.27601 

90%     0.92849 1.19060 0.06383 1.22251 0.26211 

 
Table 15: KRIs under artificial data for n=300|α₀=2.5, β₀=2, a₀=2.5 and b₀=2. 

Method α β a b VaRq(X) TVaRq(X) TVq(X) TMVq(X) MELq(X) 

MLE 2.528 2.007 2.503 2.002      
70%     0.62362 0.92390 0.07858 0.96319 0.30028 

80%     0.75488 1.04309 0.07455 1.08036 0.28820 

90%     0.96354 1.23755 0.06990 1.27251 0.27401 
OLSE 2.525 2.007 2.504 2.000      

70%     0.62440 0.92482 0.07866 0.96415 0.30042 

80%     0.75572 1.04406 0.07462 1.08138 0.28834 
90%     0.96448 1.23863 0.06998 1.27362 0.27415 

ADE 2.521 2.008 2.504 2.000      

70%     0.62450 0.92478 0.07860 0.96408 0.30028 
80%     0.75575 1.04396 0.07457 1.08125 0.28821 

90%     0.96439 1.23845 0.06994 1.27342 0.27405 

RTADE 2.519 2.003 2.508 1.999      
70%     0.62620 0.92736 0.07906 0.96689 0.30116 

80%     0.75784 1.04690 0.07501 1.08440 0.28906 

90%     0.96710 1.24195 0.07035 1.27712 0.27485 
LAD₂ 2.525 2.019 2.502 2.002      

70%     0.62211 0.92058 0.07765 0.95940 0.29847 

80%     0.75258 1.03904 0.07367 1.07588 0.28646 
90%     0.95996 1.23235 0.06909 1.26689 0.27239 

 

7. Checking model applicability 

We will evaluate the performance of the ExEE distribution by comparing it with several other competitive models, 

including: exponential (E), Odd Lindley exponential (OLE), Marshall-Olkin exponential (MOE), Moment exponential 

(ME), Logarithmic Burr-Hatke exponential (LBHE), Generalized Marshall-Olkin exponential (GMOE), Beta 

exponential (BE), Marshall-Olkin Kumaraswamy exponential (MOKwE), Kumaraswamy exponential (KwE), Burr X 

exponential (BrXE), and Kumaraswamy Marshall-Olkin exponential (KwMOE). To compare these models, we will 

use the Cramér-Von Mises (C*), Anderson-Darling (A*), and Kolmogorov-Smirnov (KS) statistics. Additionally, for 

a more comprehensive evaluation, we will include five other goodness-of-fit measures: the Akaike Information 
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Criterion (C1), Bayesian Information Criterion (C2), Consistent Akaike Information Criterion (C3), and Hannan-Quinn 

(C4). 

 

7.1 Failure data 

The failure (or relief) times data have recently been analyzed by Ibrahim et al. (2020) and Al-Babtain et al. (2020). In 

Table 16, we present the maximum likelihood estimates (MLEs) along with their standard errors (SEs) and the 

corresponding confidence intervals (CIs). This table provides a detailed overview of the estimated parameters and the 

precision of these estimates. Table 17 includes a range of goodness-of-fit measures and statistical tests used to evaluate 

the models. Specifically, it lists the C1, C2 ,C3 ,C4, A*, C*, K.S., and the associated p-value. These measures and 

statistics help assess the fit of the models to the data. Figure 1 illustrates three different plots for analyzing the relief 

times data. The box plot displays the distribution of relief times, showing the median, quartiles, and potential outliers. 

The box plot helps identify the central tendency and variability of the data, as well as any extreme values or outliers 

that may be present. The Quantile-Quantile (Q-Q) plot compares the quantiles of the relief times data against the 

quantiles of a theoretical normal distribution. This plot assesses whether the data follows a normal distribution by 

plotting the actual data quantiles against the expected normal quantiles. Deviations from the reference line indicate 

deviations from normality. The kernel density plot is used to assess the goodness-of-fit of the data to an exponential 

distribution. It plots the ordered relief times against their expected values if they were drawn from an exponential 

distribution. The reference line helps evaluate how well the observed data conforms to the expected distribution. 

Together, these plots provide a comprehensive overview of the relief times data, allowing for a thorough examination 

of its distribution and fit to theoretical models. 

 
Figure 1: Box plot, QQ plot, kernel plot for the relief times data. 

 

Figure 2 provides visual representations related to the analysis. On the right side of the figure, the estimated probability 

density function (E-PDF) is displayed, illustrating the distribution of the relief times data. On the left side, the Kaplan-

Meier survival plot is shown, which graphically represents the survival function and provides insights into the time 

until failure or relief events. Based on Table 17, we conclude that the ExEE model demonstrates superior performance 

compared to the other models based on the results presented in Table 17. ExEE has the lowest values for the C 1 , C 

2 ,C 3 ,C 4 , A*, C*, K.S., and the associated p-values (0.8417), suggesting that it’s fit to the data is not significantly 

different from the perfect model, thus confirming its excellent performance in fitting the relief times data. The ExEE 

model not only achieves the best scores across the various goodness-of-fit measures but also maintains the most 

favorable statistical significance, indicating it is the best model for the given relief times data. 
Table 16: MLEs and SEs for the relief times data. 

Models  MLEs and SEs 

E|b MLE 0.526 
 SE (0.117) 

OLE|b MLE 0.6044 

 SE (0.0535) 
ME|b MLE 0.950 

 SE (0.150) 

LBHE|b MLE 0.5263 
 SE (0.118) 

MOKwE|α,β,λ,b MLE 54.474, 2.316 

 SE (0.332), (57.85), (0.7), (1.8) 
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BrXE|a,b MLE 8.868, 34.826, 0.299, 4.899 
 SE (0.33), (0.03) 

ExEE|α,β,a,b MLE 0.0125, 0.88, 2.78, 2.57 

 SE (0.028), (0.944), (5.549), (2.55) 

 
Table 17: C₁, C₂, C₃, C₄, A*, C*, K.S. and (p-value) for the relief times data. 

Models C₁, C₂, C₃, C₄ A* C* K.S. and (p-value) 

E 67.70, 68.70, 67.89, 68.90 4.60 0.961 0.44(<0.01) 

OLE 49.12, 50.14, 49.33, 49.34 1.32 0.223 0.85(<0.001) 
ME 54.32, 55.31, 54.54, 54.50 2.76 0.537 0.32(0.1) 

LBHE 67.70, 68.70, 67.89, 67.90 0.62 0.103 0.44(<0.001) 

BrXE 48.13, 50.15, 48.83, 48.52 1.39 0.244 0.248(0.171) 
ExEE 44.72, 48.71 47.39, 45.50 0.67 0.113 0.13785(0.8417) 

 

 

 
Figure 2: E-PDF and Kaplan-Meier survival plot for relief times data. 

 

7.2 Survival data 

The second data set consists of survival times (in days) for 72 guinea pigs that were infected with virulent tubercle 

bacilli. This data was initially observed and reported by Bjerkedal (1960). More recently, the data has been reanalyzed 

by Ibrahim et al. (2020) and Al-Babtain et al. (2020) to gain further insights. In Table 18, we present the MLEs for 

the parameters, along with their SEs. This table provides a detailed summary of the estimated parameters and their 

precision for the survival times data. Table 19 contains a range of goodness-of-fit measures and statistical tests used 

to assess the models applied to the survival times data. This includes the C₁, C₂, C₃, C₄, A*, C*, K.S., and the associated 

p-value. These statistics are crucial for evaluating how well each model fits the data. Figure 3 gives the box plot, Q-

Q plot and kernel plot for the survival times data. Figure 4 provides visual representations of the analysis. On the right 

side, the E-PDF is shown, illustrating the distribution of the survival times. On the left side, the Kaplan-Meier survival 

plot is displayed, which graphically represents the survival function and provides insights into the time until failure or 

the end of the study period for the guinea pigs. 
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Figure 3: Box plot, QQ plot, kernel plot for the survival times data. 

 

 
Table 18: MLEs and SEs for the survival times data. 

Models  MLEs and SEs 

E|b MLE 0.540 

 SE (0.063) 

OLE|b MLE 0.3815 
 SE (0.021) 

ME|b MLE 0.925 

 SE (0.077) 
LBHE|b MLE 0.54 

 SE (0.064) 

MOE|α,b MLE 8.78, 1.38 
 SE (3.56), (0.19) 

BrXE|a,b MLE 0.48, 0.21 

 SE (0.060), (0.012) 
GMOE|λ,α,b MLE 0.18, 47.64, 4.47 

 SE (0.07), (44.9), (1.33) 

KwE|a,β,b MLE 3.304, 1.100, 1.037 
 SE (1.106), (0.764), (0.614) 

BE|a,β,b MLE 0.807, 3.461, 1.331 

 SE (0.696), (1.003), (0.860) 
MOKwE|α,β,λ,b MLE 0.008, 2.716, 1.986, 0.099 

 SE (0.002), (1.316), (0.784), (0.05) 
KwMOE|α,β,λ,b MLE 0.373, 3.478, 3.306, 0.299 

 SE (0.136), (0.861), (0.779), (1.112) 

ExEE|α,β,a,b MLE 0.441, 0.697, 3.17, 1.42 
 SE (1.01), (0.8), (1.28), (1.52) 

 
Table 19: C₁, C₂, C₃, C₄, A*, C*, K.S. and (p-value) for survival times data. 

Models C₁, C₂, C₃, C₄ A* C* K.S. and (p-value) 

E 234.60, 236.90, 234.68, 235.55 6.53 1.25 0.3(0.06) 

OLE 229.13, 231.43, 229.21, 230.11 1.94 0.33 0.5(<0.001) 

ME 210.40, 212.68, 210.45, 211.30 1.52 0.25 0.15(0.13) 

LBHE 234.63, 236.92, 234.71, 235.51 0.71 0.115 0.28(<0.001) 

MOE 210.37, 214.93, 210.52, 212.17 1.18 0.17 0.10(0.43) 

GMOE 210.54, 217.38, 210.89, 213.24 1.02 0.16 0.09(0.5) 

KwE 209.42, 216.24, 209.77, 212.12 0.74 0.11 0.09(0.5) 

BE 207.37, 214.21, 207.73, 210.09, 0.98 0.15 0.11(0.34) 

MOKwE 209.44, 218.56, 210.04, 213.04, 0.79 0.12 0.10(0.44) 

KwMOE 207.82, 216.94, 208.42, 211.42 0.61 0.11 0.09(0.5) 

BrXE 235.31, 239.92, 235.53, 237.14 2.90 0.52 0.22(0.002) 

ExEE 207.28, 216.38,207.87, 210.90 0.59 0.095 0.09(0.6065) 

 



Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 196 

 

 
Figure 4: E-PDF and Kaplan-Meier survival plot for survival times data. 

 

8. Reliability and risk analysis 

Recent research has significantly contributed to the development of novel distribution models tailored for risk analysis. 

Hamed et al. (2022) introduced a new compound model, which incorporates properties and copulas to better handle 

negatively skewed insurance claims data. Similarly, Yousof et al. (2023b) proposed a new reciprocal exponential 

extension specifically for modeling extreme values in insurance data. Shrahili, Elbatal, and Yousof (2021) developed 

an asymmetric density function tailored for claim-size data, addressing the challenge of predicting and analyzing 

bimodal data effectively. This approach is critical for capturing the complexity of claim-size distributions (Shrahili et 

al., 2021). Furthermore, Yousof et al. (2023) explored a bimodal heavy-tailed Burr XII model and applied multiple 

methods to assess risk in insurance data. Their work highlights the importance of accommodating multiple modes and 

heavy tails to provide accurate risk assessments (Yousof et al., 2023a,c,d,e,f). Khedr et al. (2023) further developed a 

new family of compound probability distributions with applications to reinsurance revenue data, emphasizing the 

importance of copulas and risk analysis in managing complex insurance data. Ibrahim et al. (2023) examined both 

Bayesian and non-Bayesian methods under left-skewed insurance data, introducing a novel compound reciprocal 

Rayleigh extension. Similarly, Hashempour et al. (2023b) proposed a new Lindley extension for bimodal right-skewed 

precipitation data, offering insights into estimation and risk assessment in various contexts. Yousof et al. (2024) 

analyzed a discrete claims model for inflated and over-dispersed automobile claims frequencies, demonstrating the 

model's applicability in actuarial risk analysis. Alizadeh et al. (2024) introduced an extended Gompertz model for 

statistical threshold risk analysis, reflecting ongoing efforts to refine and expand risk modeling techniques. In this 

section, we delve into the application of insurance risk measurement and analysis criteria within the realms of 

engineering and reliability.  

 

8.1 Risk analysis for extreme failures 

8.1.1 The non-parametric Hill estimator for extreme failures 

The non-parametric Hill estimator is crucial for analyzing extreme failures, as it provides a robust measure of tail 

heaviness without assuming a specific distribution. It helps quantify the likelihood of catastrophic events, aiding in 

risk assessment and mitigation strategies. By focusing on the most extreme values, it enables better predictions of rare 

but severe failures in fields like finance, engineering, and climate science. Its flexibility makes it essential for stress 

testing, insurance modeling, and extreme event forecasting.  Figure 5 presents two key visualizations used in extreme 

value analysis to assess the tail behavior of failure data. The Hill estimator plot (right) depicts how the estimated tail 

index varies as more extreme observations are included. Initially, the estimator is high, indicating the presence of 

severe, infrequent failures with potentially heavy-tailed characteristics. However, as additional top-order statistics are 

incorporated, the estimator declines, suggesting a lighter tail, meaning that the probability of extreme failures 

diminishes at higher thresholds. The stability plot (left), shown in a log-log scale, provides further insight into the 

convergence behavior of the tail index. The downward trend in this plot implies that while extreme failures exist, their 

impact decreases as more data is considered, reinforcing the presence of an exponentially decaying tail rather than a 

power-law behavior. The fluctuations observed in both plots suggest variability in the occurrence of extreme failures, 

necessitating robust risk assessment strategies such as stress testing, threshold-based monitoring, and extreme value 

modeling (EVT) to better predict and mitigate high-impact risks. The Hill estimator plots indicate the presence of 
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extreme failures, initially showing a high tail index (~6), suggesting rare but severe events. As more extreme values 

are considered, the tail index decreases, implying a lighter tail and diminishing probability of catastrophic failures. 

The fluctuations in the Hill estimator highlight variability in extreme risks, necessitating robust stress testing and 

adaptive risk management strategies. The log-log stability plot further confirms an exponentially decaying tail, 

suggesting that while extreme failures exist, their frequency declines rapidly. Effective risk mitigation should include 

EVT-based modeling, threshold monitoring, and dynamic scenario analysis to prevent systemic breakdowns. 

 

  
Figure 5: Hill estimator plot (right) and stability plot (left) for the extreme failures. 

 

8.1.2 Risk assessment for extreme failures 

Using KRIs with failure times data, particularly in the context of survival analysis or reliability engineering, can offer 

important insights and benefits. KRIs applied to failure times data enables the quantification of time-dependent risk. 

By calculating VaR over different time horizons, one can understand how the risk of experiencing the event (e.g., 

system failure) changes over time. This is particularly useful for predicting and managing risks associated with time-

critical events. In reliability engineering and maintenance planning, understanding the distribution of failure times and 

associated risks is crucial. VaR can assist in optimizing maintenance schedules and resource allocation by identifying 

critical time periods where the risk of failure is highest. This helps in prioritizing preventive maintenance activities 

and minimizing potential downtime. In this subsection, we analyze the dataset which represents failure time data 

related to relief times (in minutes) experienced by patients who have received an analgesic. This type of data is 

commonly analyzed in survival analysis, a statistical field focused on studying the time until specific events, such as 

failure or death, occur (see Gross and Clark (1975)).   

 

Table 20 provides the KRIs under failure time due to five different estimation methods. Understanding these risk 

measures is crucial for effective risk management, VaRq (𝑋|�̂�)  provides a baseline threshold for potential failure, 

TVaRq (𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�) offer insights into tail risk and extreme failure and finally, MELq 

(𝑋|�̂�)  helps in assessing average expected failures. In view of Table 20, we can highlight the following main results: 

1) Method (MLE): As the quantile level increases (from 70% to 90%), the estimated VaRq (𝑋|�̂�), TVaRq (𝑋|�̂�) , 

TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  values also increase, indicating higher potential losses at higher confidence levels. 

The MELq (𝑋|�̂�)  values decrease as the quantile level increases, reflecting the average expected loss under 

more extreme failures. 

2) Method (OLSE): Similar to the MLE method, the values of VaRq (𝑋|�̂�) , TVaRq (𝑋|�̂�) , TVq (𝑋|�̂�) , and 

TMVq (𝑋|�̂�)  increase as the quantile level increases from 70% to 90%. This signifies higher potential losses or 

tail risk at higher confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, indicating 

lower expected losses under more extreme failures. 

3) Method (ADE): As the quantile level increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , TVaRq (𝑋|�̂�), 

TVq (𝑋|�̂�), and TMVq (𝑋|�̂�) generally increase. This indicates higher estimated losses or tail risks at higher 
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confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, suggesting lower expected 

losses under more extreme failures. 

4) Method (RTADE): As the quantile level increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , TVaRq (𝑋|�̂�) 

, TVq (𝑋|�̂�) , and TMVq (𝑋|�̂�)  generally increase. This signifies higher estimated losses or tail risks at higher 

confidence levels. The MELq (𝑋|�̂�) values decrease with increasing quantile levels, indicating lower expected 

losses under more extreme failures. 

5) Method (LAD 2 ): As the quantile level increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , TVaRq (𝑋|�̂�) 

, TVq (𝑋|�̂�) , and TMVq (𝑋|�̂�)  generally increase. This signifies higher estimated losses or tail risks at higher 

confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, indicating lower expected 

losses under more extreme failures. 

6) Based on the criteria of larger VaRq, TVaRq, TVq, TMVq and MELq values, and smaller MELq values, the 

RTADE method appears to be a favorable choice, since it provides higher VaRq, TVaRq, TVq, TMVq and MELq 

values, indicating a more robust estimation of tail risks and extreme events. Demonstrates lower MELq values, 

suggesting reduced expected losses under extreme failures. 

Table 20: KRIs under failure time. 

Method VaRq(𝑋|�̂�) TVaRq(𝑋|�̂�) TVq(𝑋|�̂�) TMVq(𝑋|�̂�) MELq(𝑋|�̂�) 

MLE|q      

70% 2.06188 2.69573 0.39517 2.89331 0.63385 

80% 2.32069 2.95223 0.39250 3.14848 0.63154 

90% 2.76122 3.38858 0.38840 3.58278 0.62736 

 

OLSE|q 

     

70% 1.99954 2.36432 0.11512 2.42188 0.36478 

80% 2.16256 2.50787 0.10975 2.56275 0.34531 

90% 2.41111 2.74104 0.10574 2.79391 0.32993 

 

ADE|q 

     

70% 2.06893 2.47928 0.14612 2.55235 0.41036 

80% 2.25204 2.64085 0.13949 2.71059 0.38881 

90% 2.53165 2.90354 0.13460 2.97083 0.37189 

 

RTADE|q 

     

70% 2.10314 2.60827 0.22508 2.72081 0.50513 

80% 2.32676 2.80764 0.21631 2.91579 0.48088 

90% 2.67086 3.13354 0.21055 3.23881 0.46268 

LAD₂|q      

70% 1.93138 2.21054 0.06649 2.24379 0.27916 

80% 2.05696 2.32018 0.06302 2.35169 0.26322 

90% 2.24724 2.49743 0.06027 2.52757 0.25019 

 

8.1.3 PORT-VaRq analysis for failure times 

Following Alizadeh et al. (2024), Shehata et al. (2024a), Khan et al. (2024), Aljadani et al. (2024a,b) Yousof et al. 

(2024a,b) and Das et al. (2025), the PORT-VaRq analysis is essential in reliability engineering as it identifies extreme 

failure events, improving risk assessment and system durability. By analyzing failures beyond different thresholds, it 

helps predict catastrophic failures and optimize maintenance strategies. The increasing peaks at lower VaRq levels 

highlight the concentration of extreme failures, aiding in failure prediction and system design. This approach enhances 

safety, reduces downtime, and improves decision-making in reliability management.  The PORT-VaRq analysis for 

failure times presented in Table 21 provides insights into the behavior of extreme failure events beyond the given 

VaRq thresholds. As the confidence level (CL) increases from 55% to 95%, the VaRq threshold gradually decreases 

from 1.700 to 1.195, leading to an increase in the number of peaks above VaRq from 9 to 19. This trend aligns with 

the expected tail risk behavior, where lower thresholds capture more extreme observations. The data shows that 

between CL of 55% (VaRq = 1.7) and CL of 65% (VaRq = 1.6), the number of peaks increases moderately (from 9 to 

12), indicating that failure events are relatively concentrated in this range. However, beyond CL of 70% (VaRq = 

1.57), the number of peaks rises more steadily, reaching 19 at CL of 95%, demonstrating that more extreme failure 
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times become significant at higher confidence levels. The relatively small differences in peak counts at some levels 

(e.g., 15 peaks at both CL of 75% and CL of 80%) suggest stability in failure event distribution within this range. 

 

Table 21: PORT-VaRq analysis for failure times 

CL VaRq Number of Peaks 

Above VaRq 

55% 1.700 9 

60% 1.660 12 

65% 1.600 12 

70% 1.570 14 

75% 1.475 15 

80% 1.400 15 

85% 1.385 17 

90% 1.290 18 

95% 1.195 19 

 

Figure 6 presents histograms that illustrate the distribution of failure times, accompanied by VaR thresholds and 

related peaks. Each histogram provides a visual representation of how frequently different failure times occur, with 

bars indicating the frequency of failure events within specific time intervals. The inclusion of VaR thresholds as 

horizontal dashed lines at varying confidence levels (55% to 95%) allows for a comparative analysis of risk across 

different tolerance levels. These thresholds represent critical points beyond which failures are considered rare or 

extreme, and their positions shift downward as the confidence level increases, reflecting stricter criteria for defining 

risk. Red markers (peaks) highlight specific failure times that exceed the corresponding VaR threshold, providing 

insight into the most significant or outlier events in the dataset. By examining the number and distribution of these 

peaks across different confidence levels, analysts can assess the severity and frequency of extreme failure scenarios. 
Figure 7 below employs KDEs to offer a smooth, continuous representation of the same data. Both figures include 

VaR thresholds and related peaks, allowing for a detailed comparison of typical failure patterns and extreme events 

across different confidence levels.   

 

The results indicate a clear relationship between the confidence level and the number of peaks above VaR, 

demonstrating expected tail risk behavior. At CL of 55%, VaR is 1.7, capturing only 9 peaks, with a median peak of 

2.2 and a mean of 2.422. As the confidence level increases to CL of 75%, VaR drops to 1.475, increasing the number 

of peaks to 15, with the median shifting to 1.8 and the mean decreasing to 2.107. By CL of 95%, VaR reaches 1.195, 

capturing 19 peaks, where the median falls to 1.7, and the mean further declines to 1.942. The maximum peak remains 

constant at 4.1 across all levels, while the minimum peak varies slightly, decreasing from 1.8 (CL of 55%) to 1.2 (CL 

of 95%). This smooth transition confirms that as the confidence level rises, more tail events are included, with lower 

VaR thresholds allowing for a broader distribution of extreme values. Together, Figure 6, Figure 7 and Table 21 

present the overall PORT-VaRq analysis for failure times data. 
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Figure 6: Histograms with VaR and related peaks for the failure times. 
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Figure 7: Kernel densities with VaR and related peaks for the failure times. 

 

8.2 Risk analysis for extreme survivals 

8.2.1 The nonparametric Hill estimator for extreme survivals 

Figure 8 presents two key statistical tools used in extreme value analysis to assess the behavior of extreme survivals, 

where rare but significant events persist over time. In extreme value analysis, understanding extreme survivals, cases 

where rare but significant events persist, is crucial for risk assessment and system resilience. The given Hill estimator 

plot provides insights into the behavior of the tail index as more extreme data points are incorporated. Initially, the 

tail index is very high (~7.5), indicating the presence of extreme survival events with heavy-tail characteristics. As 

more data is included, the estimator declines, suggesting that while extreme survivals exist, their probability reduces 

gradually rather than disappearing abruptly. 

 

The fluctuations in the middle of the plot highlight variability in extreme survival patterns, implying that some events 

persist longer than expected. This behavior necessitates robust survival analysis models, stress testing, and scenario 
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planning to manage risks effectively. The tail index's overall downward trend suggests a progressive reduction in risk, 

reinforcing the need for dynamic monitoring systems to track and adapt to rare but impactful survivals.  

 

  
Figure 8: Hill estimator plot (right) and stability plot (left) for the extreme survivals. 

 

8.2.2 Risk assessment for extreme survivals 

Table 22 provides the KRIs under survival time due to five different estimation methods. Understanding these risk 

measures is crucial for effective risk management, VaRq (𝑋|�̂�)  provides a baseline threshold for potential failure, 

TVaRq (𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  offer insights into tail risk and extreme failure and finally, MELq 

(𝑋|�̂�)  helps in assessing average expected failures. In view of Table 21, we can highlight the following main results: 

1) For the MLE method: As the quantile level increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , TVaRq 

(𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  generally increase. This indicates higher estimated losses or tail risks at 

higher confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, suggesting lower 

expected losses under more extreme survival threshold. 

2) For the OLSE: As the quantile level increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , TVaRq (𝑋|�̂�) , 

TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  generally increase. This indicates higher estimated losses or tail risks at higher 

confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, suggesting lower expected 

losses under more extreme survival threshold. 

3) For the ADE: As the quantile level (confidence level) increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , 

TVaRq (𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  generally increase. This suggests higher estimated losses or tail 

risks at higher confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, indicating 

lower expected losses under more extreme survival threshold. 

4) For the RADE: As the quantile level (confidence level) increases from 70% to 90%, the values of VaRq (𝑋|�̂�) , 

TVaRq (𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  generally increase. This suggests higher estimated losses or tail 

risks at higher confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, indicating 

lower expected losses under more extreme survival threshold. 

5) For the LAD 2 and as the quantile level (confidence level) increases from 70% to 90%, the values of VaRq (𝑋|�̂�) 

, TVaRq (𝑋|�̂�), TVq (𝑋|�̂�), and TMVq (𝑋|�̂�)  generally increase. This suggests higher estimated losses or tail 

risks at higher confidence levels. The MELq (𝑋|�̂�)  values decrease with increasing quantile levels, indicating 

lower expected losses under more extreme survival threshold. 

6) For VaRq (𝑋|�̂�) and TVaRq (𝑋|�̂�) : RTADE consistently shows higher values across all quantile levels (70%, 

80%, 90%), indicating a more conservative estimate of risk exposure compared to other methods. For TVq (𝑋|�̂�)  

and TMVq (𝑋|�̂�): RTADE also exhibits relatively higher values, suggesting a more robust capture of tail risk 

variability beyond the VaR threshold. For MELq (𝑋|�̂�): While MELq (𝑋|�̂�) values vary across methods and 

quantile levels, RTADE generally maintains competitive performance with relatively lower expected losses 

compared to other methods. 
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Table 22: KRIs under survival times. 

Method VaRq(𝑋|�̂�) TVaRq(𝑋|�̂�) TVq(𝑋|�̂�) TMVq(𝑋|�̂�) MELq(𝑋|�̂�) 

MLE|q      

70% 2.09778 2.96028 0.69698 3.30877 0.86250 

80% 2.46634 3.30460 0.68418 3.64669 0.83827 

90% 3.06226 3.87689 0.68445 4.21911 0.81463 

 

OLSE|q 

     

70% 2.09514 2.90025 0.44398 3.12224 0.80511 

80% 2.50248 3.20351 0.38318 3.39510 0.70103 

90% 3.03938 3.65585 0.33359 3.82264 0.61647 

 

ADE|q 

     

70% 2.09347 2.95753 0.58802 3.25154 0.86407 

80% 2.49168 3.29517 0.53346 3.56190 0.80349 

90% 3.09317 3.82505 0.47579 4.06294 0.73188 

 

RTADE|q 

     

70% 2.09894 2.99451 0.59566 3.29234 0.89558 

80% 2.52865 3.33963 0.52851 3.60388 0.81098 

90% 3.14307 3.86841 0.46694 4.10188 0.72534 

 

LAD₂|q 

     

70% 2.02407 2.80634 0.57995 3.09632 0.78227 

80% 2.35580 3.11921 0.57172 3.40507 0.76341 

90% 2.89094 3.64365 0.57006 3.92868 0.75271 

 

8.2.3 PORT-VaR analysis for survival times 

The PORT-VaRq analysis for survival times, presented in Table 23, tracks the behavior of survival events exceeding 

varying thresholds of VaRq across different CL. As the confidence level increases from 55% to 95%, the VaRq 

threshold gradually decreases from 1.3885 to 0.5765, while the number of peaks above the threshold increases from 

40 to 68. This pattern indicates that more extreme survival times are captured as the threshold becomes lower, 

suggesting a broader distribution of survival events at higher confidence levels. The number of peaks increases steadily 

with the decrease in VaRq, reflecting a shift towards capturing more outlier survival times as confidence levels 

increase. For instance, from 55% (VaRq = 1.3885) to 95% (VaRq = 0.5765), the number of peaks increases almost 

linearly, from 40 to 68, illustrating that lower thresholds incorporate more survival events. This result is consistent 

with expectations, as lowering the VaRq threshold captures more of the tail distribution, allowing for a better 

understanding of extreme survival times. 

 

Table 23: PORT-VaRq analysis for survival times 

CL VaRq Number of Peaks 

Above VaRq 

55% 1.3885 40 

60% 1.2640 43 

65% 1.2085 47 

70% 1.1360 50 

75% 1.0800 53 

80% 1.0540 57 

85% 0.9860 61 

90% 0.7850 64 

95% 0.5765 68 

 

Figure 9 below presents a series of histograms that illustrate the distribution of survival times, along with Value-at- 

VaR thresholds and related peaks at varying confidence levels (55% to 95%). This figure is analogous to previous 
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analyses of failure times but focuses on survival times, which likely represent the duration before an event occurs or 

the time until failure. Below is a detailed expansion of the figure, highlighting its key components, patterns, and 

insights. The results again show a clear pattern where a decrease in the VaR threshold leads to an increase in the 

number of peaks above it. At CL of 55%, VaR is 1.3885, capturing 40 peaks, with a median of 2.19 and a mean of 

2.551. As the confidence level rises to 75%, VaR drops to 1.08, increasing peaks to 53, while the median decreases to 

1.95 and the mean to 2.223. By 95%, the VaR further declines to 0.5765, capturing 68 peaks, with a median of 1.615 

and a mean of 1.938. The maximum peak remains constant at 7.0, while the minimum peak follows a declining trend, 

dropping from 1.39 (CL of 55%) to 0.59 (CL of 95%). The smooth progression in peak counts and VaR values 

confirms the expected risk distribution behavior, with increasing confidence levels incorporating more tail events and 

broadening the range of extreme values. Finally, Figure 10 shows the Kernel densities with VaR and related peaks for 

the survival times. Together, Figure 9, Figure 10 and Table 23 present the overall PORT-VaRq analysis for survival 

times data. 

 
Figure 9: Histograms with VaR and related peaks for the survival times. 
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Figure 10: Kernel densities with VaR and related peaks for the survival times. 

 

 

9. Conclusions, discussion and future points 

This paper introduced an innovative extension of the exponential distribution called the extended exponentiated 

exponential (ExEE), designed to advance reliability and risk analysis through a more nuanced approach. Traditional 

exponential models, while valuable for their simplicity and effectiveness in modeling time-to-failure and survival 

times, often fall short in capturing the complex risk profiles associated with extreme events. Our new model addresses 

this limitation by integrating key insurance risk indicators including the value-at-risk (VaRq), tail mean-variance 

(TMVq), tail value-at-risk (TVaRq), tail variance (TVq), and maximum excess loss (MELq) to provide a more 

comprehensive risk assessment framework. These indicators are crucial for understanding the financial ramifications 

of rare and severe risk events. VaRq offers insights into the maximum expected loss over a specified period at a given 

confidence level, while TMVq and TVq provide detailed analyses of the variability and potential for extreme outcomes 

within the distribution's tail. TVaRq focuses on losses beyond specific quantiles, presenting a more thorough view of 

extreme risk. MELq further refines this analysis by examining the impact of unusually large losses. To rigorously 
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evaluate these risk indicators, we employ a range of non-Bayesian estimation techniques, including maximum 

likelihood estimation (MLE), ordinary least squares estimation (OLSE), Anderson-Darling estimation (ADE), right 

tail Anderson-Darling estimation (RTADE), and left tail Anderson-Darling estimation of the second order (LAD 2). 

Our methodology involves a detailed simulation study across various sample sizes to assess the robustness and 

accuracy of these estimation methods. This is followed by an empirical analysis to validate our findings and evaluate 

the new model's performance. We apply our enhanced model to two real-world reliability data sets to demonstrate its 

practical applicability. This includes a thorough analysis using both failure (relief) and survival data, which 

underscores the model's versatility and effectiveness in different scenarios. Our findings provide valuable 

recommendations for practitioners and researchers in reliability engineering and risk management. We advocate for 

the adoption of our extended model and the associated risk indicators in both theoretical and practical contexts. This 

approach promises to offer more precise and actionable insights into risk assessment, particularly in environments 

characterized by extreme and rare events.  

 

Given that MLE consistently provides relatively high values for VaRq, TVaRq, and MELq across different confidence 

levels, it should be prioritized for its accuracy in capturing extreme risks. It offers reliable estimates for high 

confidence levels (90%) and is effective in assessing both typical and extreme failure events. While OLSE provides 

lower estimates compared to other methods, its simplicity and ease of implementation make it a viable choice for 

scenarios where computational efficiency is prioritized over precision. This method is particularly useful when data 

or computational resources are limited. ADE offers robust performance across various confidence levels and provides 

a good balance between accuracy and computational complexity. It is particularly effective in capturing the behavior 

of failure times and should be considered for reliability analyses where robustness is key. RTADE is advantageous 

for modeling the right tail of the distribution, making it suitable for scenarios where extreme failure events are of 

particular interest. This method's higher values for tail indicators suggest its effectiveness in assessing severe risk 

scenarios. LAD 2  provides lower estimates for risk indicators but excels in capturing lower tail behaviors with 

precision. It is recommended for detailed analysis of lower failure rate scenarios and when precise estimation of the 

lower tail is required. 

 

MLE consistently shows higher values for VaRq, TVaRq, and MELq across different confidence levels (70%, 80%, 

and 90%), indicating its effectiveness in capturing extreme survival risks. It is recommended for analyses where 

precision in high-confidence scenarios is crucial, especially when dealing with severe risk events. OLSE provides a 

simpler and more straightforward approach, with reasonably accurate estimates for KRIs under survival times. While 

it offers lower values compared to MLE, its ease of use makes it suitable for scenarios where computational efficiency 

and simplicity are prioritized over precision. ADE offers a balanced performance across various confidence levels, 

making it a robust choice for survival time analysis. It is effective in providing accurate risk assessments and is 

recommended for situations where reliability and consistency in estimation are required. RTADE is particularly useful 

for modeling the right tail of the survival time distribution. Its higher values for indicators suggest its strength in 

assessing extreme survival risks and should be used when focusing on scenarios involving very long survival times. 

LAD 2  excels in providing precise estimates for lower tail behaviors. It is recommended for detailed analysis of 

scenarios where precise estimation of lower tail survival times is critical, even though it provides slightly lower values 

compared to other methods. 

 

Finaly, the PORT-VaRq analysis for failure survival times provided us some valuable insights into the behavior of 

extreme survival events across varying confidence levels. As the confidence level increases, the VaRq threshold 

decreases, capturing a progressively larger number of extreme survival times, which are essential for understanding 

long-term reliability and risk. The steady increase in the number of peaks above VaRq, from 40 at CL of 55% to 68 

at CL of 95%, highlights the growing sensitivity to rare, extreme survival events as the threshold lowers. This trend 

aligns with expectations in reliability and risk analysis, where lower VaRq thresholds allow for a more comprehensive 

assessment of tail risks. This analysis is crucial for predicting extreme survival scenarios in various fields such as 

medical research, engineering reliability, and environmental risk management. It emphasizes the importance of 

considering extreme values in system design and decision-making, particularly for systems where failure or survival 

is influenced by complex factors. By providing a clearer picture of tail risks, the PORT-VaRq methodology enhances 

the reliability of survival models, helping stakeholders make more informed decisions regarding maintenance, safety 

protocols, and resource allocation. Ultimately, this approach improves the understanding and management of long-

term survival risks, ensuring better preparedness for rare but high-impact events. 
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Future works could be allocated to study this new exponential model in many applied directions such as copula types 

and reliability applications (see Yousof et al. (2021b), Mansour et al. (2020a,b,c,d,f); Salah et al. (2020), Abiad et al. 

(2025)). Accelerated life testing (Abonongo et al. (2025)), more characterization theories (Abouelmagd et al. (2019) 

and Yousof et al. (2022)). Amputated life-testing (Ahmed et al. (2024)), single acceptance sampling plan (Ahmed et 

al. (2022)), different real data and extreme value data (Ali et al. (2022) and et al. (2025)). Rao-Robson-Nikulin 

goodness-of-fit test statistic (Yadav et al. (2020) , Ibrahim et al. (2019; 2021; 2020; 2022a,b; 2023; 2025a,b); Goual 

et al. (2019, 2020,2022); Goual and Yousof (2020); Yousof et al. (2022); Salem et al. (2023), Shehata et al. (2024b), 

AlKhayyat et al. (2025)). Bayesian and non-Bayesian distributional validation (Emam et al. (2023a)). Bayesian 

inference in accelerated testing (Hashem et al. (2024)). More risk application (Shrahili et al. (2021), Rasekhi et al. 

(2022), Korkmaz et al. (2018a), Hashempour et al. (2024a,b)). Missing data analysis in epidemiological research 

(Javadi et al. (2024)). Some new frailty models based on Loubna et al. (2024) and Teghri et al. (2024). Consistency 

issues in skew random fields with applications (Taghipour et al. (2025)). Some new modified Chi-square type test for 

right censored validation with applications (see Yousof et al. (2021a)). A novel discrete model for the actuarial studies 

based on our new exponential model (Aboraya et al. (2020), Ibrahim et al. (2021), Yousof et al. (2020; 2021c; 2021e), 

Chesneau et al. (2022), Emam et al. (2023b) and Yousof et al. (2024c,d)). Value-at-risk analysis for the historical 

insurance claims (Yousof et al. (2025)). 

 

References 

1. Abiad, M., Alsadat, N., Abd El-Raouf, M. M., Yousof, H. M., & Kumar, A. (2025). Different copula types and 

reliability applications for a new fisk probability model. Alexandria Engineering Journal, 110, 512-526. 

2. Abonongo, J., Abonongo, A. I. L., Aljadani, A., Mansour, M. M., & Yousof, H. M. (2025). Accelerated failure 

model with empirical analysis and application to colon cancer data: Testing and validation. Alexandria 

Engineering Journal, 113, 391-408. 

3. Aboraya, M., M. Yousof, H. M., Hamedani, G. G., & Ibrahim, M. (2020). A new family of discrete distributions 

with mathematical properties, characterizations, Bayesian and non-Bayesian estimation 

methods. Mathematics, 8, 1648. 

4. Abouelmagd, T. H. M., Hamed, M. S., Hamedani, G. G., Ali, M. M., Goual, H., Korkmaz, M. C., & Yousof, H. 

M. (2019). The zero truncated Poisson Burr X family of distributions with properties, characterizations, 

applications, and validation test. Journal of Nonlinear Sciences and Applications, 12(5), 314-336. 

5. Ahmed, B., Ali, M. M. and Yousof, H. M. (2022). A Novel G Family for Single Acceptance Sampling Plan with 

Application in Quality and Risk Decisions, Annals of Data Science, 10.1007/s40745-022-00451-3 

6. Ahmed, B., Hamedani, G. G., Mekiso, G. T., Tashkandy, Y. A., Bakr, M. E., Hussam, E., & Yousof, H. M. 

(2024). Amputated life-testing based on extended Dagum percentiles for type of group inspection plans: optimal 

sample sizes, termination time ratios analysis. Scientific Reports, 14(1), 24144. 

7. Ali, M. M., Ali, I., Yousof, H. M. and Ibrahim, M. (2022). G Families of Probability Distributions: Theory and 

Practices. CRC Press, Taylor & Francis Group. 

8. Ali, M. M., Imon, R., Ali, I. and Yousof, H. M. (2025). Statistical Outliers and Related Topics. CRC Press, Taylor 

& Francis Group.  

9. Alizadeh, M., Afshari, M., Contreras-Reyes, J. E., Mazarei, D., & Yousof, H. M. (2024). The Extended Gompertz 

Model: Applications, Mean of Order P Assessment and Statistical Threshold Risk Analysis Based on Extreme 

Stresses Data. IEEE Transactions on Reliability, doi: 10.1109/TR.2024.3425278 . 

10. Alizadeh, M., Afshari, M., Cordeiro, G. M., Ramaki, Z., Contreras-Reyes, J. E., Dirnik, F., & Yousof, H. M. 

(2025). A New Weighted Lindley Model with Applications to Extreme Historical Insurance Claims. Stats, 8(1), 

8.  

11. Alizadeh, M., Afshari, M., Ranjbar, V., Merovci, F. and Yousof, H. M. (2023a). A novel XGamma extension: 

applications and actuarial risk analysis under the reinsurance data. São Paulo Journal of Mathematical Sciences, 

1-31.  

12. Alizadeh, M., Afshari, M., Ranjbar, V., Merovci, F. and Yousof, H. M. (2023b). A novel XGamma extension: 

applications and actuarial risk analysis under the reinsurance data. São Paulo Journal of Mathematical Sciences, 

1-31. 

13. Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M., & Hamedani, G. G. (2017). The generalized odd generalized 

exponential family of distributions: properties, characterizations and applications. Journal of Data Science, 15(3), 

443-465.  

14. Aljadani, A., Mansour, M. M., & Yousof, H. M. (2024a). A Novel Model for Finance and Reliability 

Applications: Theory, Practices and Financial Peaks Over a Random Threshold Value-at-Risk Analysis. Pakistan 

Journal of Statistics and Operation Research, 20(3), 489-515. https://doi.org/10.18187/pjsor.v20i3.4439 

https://doi.org/10.18187/pjsor.v20i3.4439


Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 208 

 

15. Aljadani, A., Mansour, M. M., & Yousof, H. M. (2024b). A Novel Model for Finance and Reliability 

Applications: Theory, Practices and Financial Peaks Over a Random Threshold Value-at-Risk Analysis. Pakistan 

Journal of Statistics and Operation Research, 20(3), 489-515. https://doi.org/10.18187/pjsor.v20i3.4439 

16. AlKhayyat, S. L., Haitham M. Yousof, Hafida Goual, Hamida, T., Hamed, M. S., Hiba, A., & Mohamed Ibrahim. 

(2025). Rao-Robson-Nikulin Goodness-of-fit Test Statistic for Censored and Uncensored Real Data with 

Classical and Bayesian Estimation. Statistics, Optimization & Information Computing. 

https://doi.org/10.19139/soic-2310-5070-1710  

17. Aslam, M., Kundu, D., Ahmad, M. (2010). Time truncated acceptance sampling plans for generalized exponential 

distribution. J. Appl. Stat. 37, 555-566. 

18. Bain, L. (2017). Statistical analysis of reliability and life-testing models: theory and methods. Routledge. 

19. Bhatti, F. A., Hamedani, G. G., Yousof, H. M., & Ali, A. (2022). On the Burr III-Moment Exponential 

Distribution. Thailand statistician, Vol. 20 No. 3, 615-635. 

20. Chesneau, C., Yousof, H. M., Hamedani, G., & Ibrahim, M. (2022). A New One-parameter Discrete Distribution: 

The Discrete Inverse Burr Distribution: Characterizations, Properties, Applications, Bayesian and Non-Bayesian 

Estimations. Statistics, Optimization & Information Computing, 10(2), 352-371. 

21. Das, J., Hazarika, P. J., Alizadeh, M., Contreras-Reyes, J. E., Mohammad, H. H., & Yousof, H. M. (2025). 

Economic Peaks and Value-at-Risk Analysis: A Novel Approach Using the Laplace Distribution for House Prices. 

Mathematical and Computational Applications, 30(1), 4. 

22. Elbatal, I., Diab, L. S., Ghorbal, A. B., Yousof, H. M., Elgarhy, M. and Ali, E. I. (2024). A new losses (revenues) 

probability model with entropy analysis, applications and case studies for value-at-risk modeling and mean of 

order-P analysis. AIMS Mathematics, 9(3), 7169-7211. 

23. Eliwa, M. S., El-Morshedy, M.   and Yousof, H. M. (2022). A Discrete Exponential Generalized-G Family of 

Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and 

Agriculture Data. Mathematics, 10, 3348. https://doi.org/10.3390/math10183348 

24. Emam, W., Tashkandy, Y., Goual, H., Hamida, T., Hiba, A., Ali, M. M., ... & Ibrahim, M. (2023a). A new one-

parameter distribution for right censored bayesian and non-bayesian distributional validation under various 

estimation methods. Mathematics, 11(4), 897. 

25. Emam, W., Tashkandy, Y., Hamedani, G. G., Shehab, M. A., Ibrahim, M., & Yousof, H. M. (2023b). A Novel 

Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero-Inflated Real Data with 

Bayesian, and Non-Bayesian Inference. Mathematics, 11(5), 1125. 

26. Furman, E., & Landsman, Z. (2006). Tail variance premium with applications for elliptical portfolio of risks. 

ASTIN Bulletin: The Journal of the IAA, 36(2), 433-462. 

27. Glänzel, W., A characterization theorem based on truncated moments and its application to some distribution 

families, Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, 

1987, 75-84. 

28. Glänzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal 

of Theoretical and Applied Statistics, 21 (4), 1990, 613-618. 

29. Goual, H., & Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared 

goodness-of-fit test. Journal of Applied Statistics, 47(3), 393-423. 

30. Goual, H., Hamida, T., Hiba, A., Hamedani, G.G., Ibrahim, M. and Yousof, H. M. (2022).  Bayesian and Non-

Bayesian Distributional Validations under Censored and Uncensored Schemes with Characterizations and 

Applications  

31. Goual, H., Yousof, H. M., & Ali, M. M. (2019). Validation of the odd Lindley exponentiated exponential by a 

modified goodness of fit test with applications to censored and complete data. Pakistan Journal of Statistics and 

Operation Research, 15(3), 745-771. 

32. Goual, H., Yousof, H. M., & Ali, M. M. (2019). Validation of the odd Lindley exponentiated exponential by a 

modified goodness of fit test with applications to censored and complete data. Pakistan Journal of Statistics and 

Operation Research, 15(3), 745-771. 

33. Goual, H., Yousof, H. M., & Ali, M. M. (2020). Lomax inverse Weibull model: properties, applications, and a 

modified Chi-squared goodness-of-fit test for validation. Journal of Nonlinear Sciences & Applications (JNSA), 

13(6), 330-353. 

34. Hamed, M. S., Cordeiro, G. M. and Yousof, H. M. (2022). A New Compound Lomax Model: Properties, 

Copulas, Modeling and Risk Analysis Utilizing the Negatively Skewed Insurance Claims Data.  Pakistan 

Journal of Statistics and Operation Research, 18(3), 601-631. https://doi.org/10.18187/pjsor.v18i3.3652 

https://doi.org/10.18187/pjsor.v20i3.4439
https://doi.org/10.19139/soic-2310-5070-1710
https://doi.org/10.3390/math10183348
https://doi.org/10.18187/pjsor.v18i3.3652


Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 209 

 

35. Hamedani, G. G., Goual, H., Emam, W., Tashkandy, Y., Ahmad Bhatti, F., Ibrahim, M. and Yousof, H. M. (2023). 

A new right-skewed one-parameter distribution with mathematical characterizations, distributional validation, 

and actuarial risk analysis, with applications. Symmetry, 15(7), 1297. 

36. Hamedani, G. G., Rasekhi, M., Najibi, S., Yousof, H. M., & Alizadeh, M. (2019). Type II general exponential 

class of distributions. Pakistan Journal of Statistics and Operation Research, 15(2), 503-523. 

37. Hamedani, G. G., Yousof, H. M., Rasekhi, M., Alizadeh, M. and Najibi, S. M., (2018). Type I general exponential 

class of distributions. Pakistan Journal of Statistics and Operation Research, 14(1), 39-55. 

38. Hashem, A. F., Alotaibi, N., Alyami, S. A., Abdelkawy, M. A., Elgawad, M. A. A., Yousof, H. M., & Abdel-

Hamid, A. H. (2024). Utilizing Bayesian inference in accelerated testing models under constant stress via ordered 

ranked set sampling and hybrid censoring with practical validation. Scientific Reports, 14(1), 14406. 

39. Hashempour, M., Alizadeh, M. and Yousof, H. M. (2023). A New Lindley Extension: Estimation, Risk 

Assessment and Analysis Under Bimodal Right Skewed Precipitation Data. Annals of Data Science, 1-40. 

40. Hashempour, M., Alizadeh, M., & Yousof, H. (2024a). The Weighted Xgamma Model: Estimation, Risk Analysis 

and Applications. Statistics, Optimization & Information Computing, 12(6), 1573-1600.  

41. Hashempour, M., Alizadeh, M., & Yousof, H. M. (2024b). A new Lindley extension: estimation, risk assessment 

and analysis under bimodal right skewed precipitation data. Annals of Data Science, 11(6), 1919-1958.  

42. Ibrahim, M., Ali, M. M., & Yousof, H. M. (2021). The discrete analogue of the Weibull G family: properties, 

different applications, Bayesian and non-Bayesian estimation methods. Annals of Data Science, 1-38.  

43. Ibrahim, M., Ali, M. M., Goual, H., & Yousof, H. (2022a). The Double Burr Type XII Model: Censored and 

Uncensored Validation Using a New Nikulin-Rao-Robson Goodness-of-Fit Test with Bayesian and Non-

Bayesian Estimation Methods. Pakistan Journal of Statistics and Operation Research, 18(4), 901-927. 

https://doi.org/10.18187/pjsor.v18i4.3600 

44. Ibrahim, M., Altun, E., Goual, H., and Yousof, H. M. (2020). Modified goodness-of-fit type test for censored 

validation under a new Burr type XII distribution with different methods of estimation and regression modeling. 

Eurasian Bulletin of Mathematics, 3(3), 162-182. 

45. Ibrahim, M., Ansari, S. I., Al-Nefaie, A. H., & Yousof, H. M. (2025a). A New Version of the Inverse Weibull 

Model with Properties, Applications and Different Methods of Estimation. Statistics, Optimization & Information 

Computing, 13(3), 1120-1143. https://doi.org/10.19139/soic-2310-5070-1658 

46. Ibrahim, M., Butt, N. S., Al-Nefaie, A. H., Hamedani, G. G., Yousof, H. M., & Mahmoud, A. S. (2025b). An 

Extended Discrete Model for Actuarial Data and Value at Risk Analysis: Properties, Applications and Risk 

Analysis under Financial Automobile Claims Data. Statistics, Optimization & Information Computing, 13(1), 27-

46. 

47. Ibrahim, M., Hamedani, G. G., Butt, N. S. and Yousof, H. M. (2022b). Expanding the Nadarajah Haghighi Model: 

Copula, Censored and Uncensored Validation, Characterizations and Applications. Pakistan Journal of Statistics 

and Operation Research, 18(3), 537-553. https://doi.org/10.18187/pjsor.v18i3.3420 

48. Ibrahim, M., Yadav, A. S., Yousof, H. M., Goual, H., & Hamedani, G. G. (2019). A new extension of Lindley 

distribution: modified validation test, characterizations and different methods of estimation. Communications for 

Statistical Applications and Methods, 26(5), 473-495. 

49. Ibrahim, M.; Emam, W.;  Tashkandy, Y.; Ali, M.M.; Yousof,  H.M. (2023). Bayesian and Non-Bayesian  Risk 

Analysis and Assessment under  Left-Skewed Insurance Data and a  Novel Compound Reciprocal  Rayleigh 

Extension. Mathematics 2023, 11, 1593. https://doi.org/10.3390/ math11071593 

50. Ibrahim. M., Aidi, K., Ali, M. M. and Yousof, H. M. (2021). The Exponential Generalized Log-Logistic Model: 

Bagdonavičius-Nikulin test for Validation and Non-Bayesian Estimation Methods. Communications for 

Statistical Applications and Methods, 29(1), 681–705. 

51. Javadi, S., Saber, M. M., Taghipour, M., Aljadani, A., Mansour, M. M., Hamed, M.S., and Yousof, H. M. (2024). 

A comparative analysis of parametric and tree-based imputation techniques for missing data in epidemiological 

research, Journal of Applied Probability and Statistics, 19)3 (, 99-113. 

52. Khan, M. I., Aljadani, A., Mansour, M. M., Abd Elrazik, E. M., Hamedani, G. G., Yousof, H. M., & Shehata, W. 

A. (2024). A New Heavy‐Tailed Lomax Model with Characterizations, Applications, Peaks Over Random 

Threshold Value‐at‐Risk, and the Mean‐of‐Order‐P Analysis. Journal of Mathematics, 2024(1), 5329529. 

53. Khedr, A. M., Nofal, Z. M., El Gebaly, Y. M. and Yousof, H. M. (2023). A Novel Family of Compound 

Probability Distributions: Properties, Copulas, Risk Analysis and Assessment under a Reinsurance Revenues Data 

Set. Thailand Statistician, forthcoming. 

54. Korkmaz, M. Ç., & Yousof, H. M. (2017). The one-parameter odd Lindley exponential model: mathematical 

properties and applications. Stochastics and Quality Control, 32(1), 25-35. 

https://doi.org/10.19139/soic-2310-5070-1658


Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 210 

 

55. Korkmaz, M. Ç., Altun, E., Yousof, H. M., Afify, A. Z. and Nadarajah, S. (2018). The Burr X Pareto Distribution: 

Properties, Applications and VaR Estimation. Journal of Risk and Financial Management, 11(1), 1. 

56. Korkmaz, M. Ç., Yousof, H. M., & Hamedani, G. G. (2018). The exponential Lindley odd log-logistic-G family: 

properties, characterizations and applications. Journal of Statistical Theory and Applications, 17(3), 554-571. 

57. Kundu, D. and Pradhan, B. (2009). Bayesian inference and life testing plans for generalized exponential 

distribution. Sci. China Ser. A, Math. 52, 1373-1388. 

58. Landsman, Z. (2010). On the tail mean-variance optimal portfolio selection. Insurance: Mathematics and 

Economics, 46(3), 547-553. 

59. Loubna, H., Goual, H., Alghamdi, F. M., Mustafa, M. S., Tekle Mekiso, G., Ali, M. M., ... & Yousof, H. M. 

(2024). The quasi-xgamma frailty model with survival analysis under heterogeneity problem, validation testing, 

and risk analysis for emergency care data. Scientific Reports, 14(1), 8973.  

60. Mansour, M. M., Butt, N. S., Ansari, S. I., Yousof, H. M., Ali, M. M., & Ibrahim, M. (2020a). A new 

exponentiated Weibull distribution’s extension: copula, mathematical properties and applications. Contributions 

to Mathematics, 1 (2020) 57–66. DOI: 10.47443/cm.2020.0018 

61. Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. I., & Ibrahim, M. (2020b). A Generalization of Reciprocal 

Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets. 

Pakistan Journal of Statistics and Operation Research, 16(2), 373-386. 

62. Mansour, M. M., Ibrahim, M., Aidi, K., Butt, N. S., Ali, M. M., Yousof, H. M., & Hamed, M. S. (2020c). A New 

Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for 

Validation and Real Data Modeling. Mathematics, 8(9), 1508. 

63. Mansour, M., Korkmaz, M. Ç., Ali, M. M., Yousof, H. M., Ansari, S. I., & Ibrahim, M. (2020d). A generalization 

of the exponentiated Weibull model with properties, Copula and application. Eurasian Bulletin of Mathematics, 

3(2), 84-102. 

64. Mansour, M., Rasekhi, M., Ibrahim, M., Aidi, K., Yousof, H. M., & Elrazik, E. A. (2020e). A New Parametric 

Life Distribution with Modified Bagdonavičius–Nikulin Goodness-of-Fit Test for Censored Validation, 

Properties, Applications, and Different Estimation Methods. Entropy, 22(5), 592. 

65. Mansour, M., Yousof, H. M., Shehata, W. A. M., & Ibrahim, M. (2020f). A new two parameter Burr XII 

distribution: properties, copula, different estimation methods and modeling acute bone cancer data. Journal of 

Nonlinear Science and Applications, 13(5), 223-238. 

66. McNeil, A. J., & Saladin, T. (1997). The peaks over thresholds method for estimating high quantiles of loss 

distributions. In Proceedings of 28th international ASTIN Colloquium (Vol. 23, P. 43). 

67. Minkah, R., de Wet, T., Ghosh, A., & Yousof, H. M. (2023). Robust extreme quantile estimation for Pareto-type 

tails through an exponential regression model. Communications for Statistical Applications and Methods, 30(6), 

531-550. 

68. Mohamed, H. S., Cordeiro, G. M., Minkah, R., Yousof, H. M., & Ibrahim, M. (2024). A size-of-loss model for 

the negatively skewed financial claims data: applications, risk analysis using different methods and statistical 

forecasting. Journal of Applied Statistics, 51(2), 348-369. 

69. Rasekhi, M., Altun, E., Alizadeh, M. and Yousof, H. M. (2022). The Odd Log-Logistic Weibull-G Family of 

Distributions with Regression and Financial Risk Models. Journal of the Operations Research Society of 

China, 10(1), 133-158. 

70. Saber, M. M. Marwa M. Mohie El-Din and Yousof, H. M. (2022). Reliability estimation for the remained stress-

strength model under the generalized exponential lifetime distribution, Journal of Probability and Statistics, 2021, 

1-10. 

71. Salah, M. M., El-Morshedy, M., Eliwa, M. S. and Yousof, H. M. (2020). Expanded Fréchet Model: Mathematical 

Properties, Copula, Different Estimation Methods, Applications and Validation Testing. Mathematics, 8(11), 

1949. 

72. Salem, M., Emam, W., Tashkandy, Y., Ibrahim, M., Ali, M. M., Goual, H. and Yousof, H. M. (2023). A new 

lomax extension: Properties, risk analysis, censored and complete goodness-of-fit validation testing under left-

skewed insurance, reliability and medical data. Symmetry, 15(7), 1356. 

73. Shehata, W. A. M., Aljadani, A., Mansour, M. M., Alrweili, H., Hamed, M. S., & Yousof, H. M. (2024a). A 

Novel Reciprocal-Weibull Model for Extreme Reliability Data: Statistical Properties, Reliability Applications, 

Reliability PORT-VaR and Mean of Order P Risk Analysis. Pakistan Journal of Statistics and Operation Research, 

20(4), 693-718. https://doi.org/10.18187/pjsor.v20i4.4302 

74. Shehata, W. A., Goual, H., Hamida, T., Hiba, A., Hamedani, G. G., Al-Nefaie, A. H., Ibrahim, M., Butt, N. S., 

Osman, R. M. A., and Yousof, H. M. (2024b). Censored and Uncensored Nikulin-Rao-Robson Distributional 

https://doi.org/10.18187/pjsor.v20i4.4302


Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 211 

 

Validation: Characterizations, Classical and Bayesian estimation with Censored and Uncensored Applications. 

Pakistan Journal of Statistics and Operation Research, 20(1), 11-35.  

75. Shrahili, M.; Elbatal, I. and Yousof, H. M. Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal 

Data Applications. Symmetry 2021, 13, 2357. 

76. Shrahili, M.; Elbatal, I. and Yousof, H. M. Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal 

Data Applications. Symmetry 2021, 13, 2357. https://doi.org/10.3390/sym13122357 

77. Taghipour, M., Saber, M. M., Khan, M. I., Hamed, M. S. & Yousof, H. M. (2025). Consistency Issues in Skew 

Random Fields: Investigating Proposed Alternatives and Identifying Persisting Problems. Pakistan Journal of 

Statistics and Operation Research, 21(1), 33-37. https://doi.org/10.18187/pjsor.v21i1.4577 

78. Teghri, S., Goual, H., Loubna, H., Butt, N. S., Khedr, A. M., Yousof, H. M., ... & Salem, M. (2024). A New Two-

Parameters Lindley-Frailty Model: Censored and Uncensored Schemes under Different Baseline Models: 

Applications, Assessments, Censored and Uncensored Validation Testing. Pakistan Journal of Statistics and 

Operation Research, 109-138. 

79. Yadav, A. S., Altun, E., & Yousof, H. M. (2021). Burr-Hatke Exponential Distribution: A Decreasing Failure 

Rate Model, Statistical Inference and Applications. Annals of Data Science, 8(2), 241-260. 

80. Yadav, A. S., Goual, H., Alotaibi, R. M., Rezk, H., Ali, M. M., & Yousof, H. M. (2020). Validation of the Topp-

Leone-Lomax model via a modified Nikulin-Rao-Robson goodness-of-fit test with different methods of 

estimation. Symmetry, 12(1), 57. 

81. Yadav, A. S., Shukla, S., Goual, H., Saha, M. and Yousof, H. M. (2022). Validation of xgamma exponential 

model via Nikulin-Rao-Robson goodness-of- fit test under complete and censored sample with different methods 

of estimation. Statistics, Optimization & Information Computing, 10(2), 457-483. 

82. Yousof, H. M., Aidi, K., Hamedani, G. G and Ibrahim, M. (2021a). A new parametric lifetime distribution with 

modified Chi-square type test for right censored validation, characterizations and different estimation methods. 

Pakistan Journal of Statistics and Operation Research, 17(2), 399-425. 

83. Yousof, H. M., Ali, E. I. A., Aidi, K., Butt, N. S., Saber, M. M., Al-Nefaie, A. H., Aljadani, A., Mansour, M. M., 

Hamed, M. S., & Ibrahim, M. (2025). The Statistical Distributional Validation under a Novel Generalized Gamma 

Distribution with Value-at-Risk Analysis for the Historical Claims, Censored and Uncensored Real-life 

Applications. Pakistan Journal of Statistics and Operation Research, 21(1), 51-69. 

https://doi.org/10.18187/pjsor.v21i1.4534 

84. Yousof, H. M., Ali, M. M., Aidi, K., Ibrahim, M. (2023a). The modified Bagdonavičius-Nikulin goodness-of-fit 

test statistic for the right censored distributional validation with applications in medicine and reliability. Statistics 

in Transition New Series, 24(4), 1-18. 

85. Yousof, H. M., Ali, M. M., Goual, H. and Ibrahim. M. (2021b). A new reciprocal Rayleigh extension: properties, 

copulas, different methods of estimation and modified right censored test for validation, Statistics in Transition 

New Series, 23(3), 1-23.  

86. Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K. & Ibrahim, M.  (2022). A new lifetime distribution with 

properties, characterizations, validation testing, different estimation methods. Statistics, Optimization & 

Information Computing, 10(2), 519-547. 

87. Yousof, H. M., Aljadani, A., Mansour, M. M., & Abd Elrazik, E. M. (2024a). A New Pareto Model: Risk 

Application, Reliability MOOP and PORT Value-at-Risk Analysis. Pakistan Journal of Statistics and Operation 

Research, 20(3), 383-407. https://doi.org/10.18187/pjsor.v20i3.4151 

88. Yousof, H. M., Aljadani, A., Mansour, M. M., & Abd Elrazik, E. M. (2024b). A New Pareto Model: Risk 

Application, Reliability MOOP and PORT Value-at-Risk Analysis. Pakistan Journal of Statistics and Operation 

Research, 20(3), 383-407. https://doi.org/10.18187/pjsor.v20i3.4151 

89. Yousof, H. M., Al-Nefaie, A. H., Butt, N. S., Hamedani, G., Alrweili, H., Aljadani, A., Mansour, M. M., Hamed, 

M. S., & Ibrahim, M. (2024c). A New Discrete Generator with Mathematical Characterization, Properties, Count 

Statistical Modeling and Inference with Applications to Reliability, Medicine, Agriculture, and Biology 

Data. Pakistan Journal of Statistics and Operation Research, 20(4), 745-770. 

https://doi.org/10.18187/pjsor.v20i4.4616 

90. Yousof, H. M., Ansari, S. I., Tashkandy, Y., Emam, W., Ali, M. M., Ibrahim, M., Alkhayyat, S. L. (2023b). Risk 

Analysis and Estimation of a Bimodal Heavy-Tailed Burr XII Model in Insurance Data: Exploring Multiple 

Methods and Applications. Mathematics. 2023; 11(9):2179. https://doi.org/10.3390/math11092179 

91. Yousof, H. M., Chesneau, C., Hamedani, G., & Ibrahim, M. (2021c). A New Discrete Distribution: Properties, 

Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations. Statistica, 81(2), 135-

162.  

https://doi.org/10.3390/sym13122357
https://doi.org/10.18187/pjsor.v21i1.4577
https://doi.org/10.18187/pjsor.v21i1.4534
https://doi.org/10.18187/pjsor.v20i3.4151
https://doi.org/10.18187/pjsor.v20i3.4151
https://doi.org/10.18187/pjsor.v20i4.4616
https://doi.org/10.3390/math11092179


Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 177-212  DOI: https://doi.org/10.18187/pjsor.v21i2.4780 

 

  
A New Model for Reliability Value-at-Risk Assessments with Applications, Different Methods for Estimation, Non-parametric Hill Estimator and Reliability PORT-VaRq Analysis 212 

 

92. Yousof, H. M., Goual, H., Emam, W., Tashkandy, Y., Alizadeh, M., Ali, M. M., & Ibrahim, M. (2023c). An 

Alternative Model for Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation 

Testing. Mathematics, 11(6), 1308. 

93. Yousof, H. M., Goual, H., Hamida, T., Hiba, A., Hamedani, G.G. and Ibrahim, M. (2022). Censored and 

Uncensored Nikulin-Rao-Robson Distributional Validation: Characterizations, Classical and Bayesian estimation 

with Applications.  

94. Yousof, H. M., Goual, H., Khaoula, M. K., Hamedani, G. G., Al-Aefaie, A. H., Ibrahim, M., ... & Salem, M. 

(2023d). A novel accelerated failure time model: Characterizations, validation testing, different estimation 

methods and applications in engineering and medicine. Pakistan Journal of Statistics and Operation Research, 

19(4), 691-717. 

95. Yousof, H. M., Hamedani, G. G. and Ibrahim, M. (2020). The Discrete Weibull Generalized Family: 

Characterization, Applications, Bayesian and Non-Bayesian Estimation Methods. Communications in Statistics - 

Theory and Method. Submitted. 

96. Yousof, H. M., Saber, M. M., Al-Nefaie, A. H., Butt, N. S., Ibrahim, M. and Alkhayyat, S. L. (2024d). A discrete 

claims-model for the inflated and over-dispersed automobile claims frequencies data: Applications and actuarial 

risk analysis. Pakistan Journal of Statistics and Operation Research, 261-284. 

97. Yousof, H. M., Saber, M. M., Al-Nefaie, A. H., Butt, N. S., Ibrahim, M., & Alkhayyat, S. L. (2024e). A discrete 

claims-model for the inflated and over-dispersed automobile claims frequencies data: Applications and actuarial 

risk analysis. Pakistan Journal of Statistics and Operation Research, 20(2), 261-284. 

98. Yousof, H.M.; Emam, W.;  Tashkandy, Y.; Ali, M.M.; Minkah, R.;  Ibrahim, M. (2023e). A Novel Model for  

Quantitative Risk Assessment under  Claim-Size Data with Bimodal and  Symmetric Data Modeling.  Mathematics 

2023, 11, 1284.  https://doi.org/10.3390/math11061284 

99. Yousof, H.M.;  Tashkandy, Y.; Emam, W.;  Ali, M.M.; Ibrahim, M. (2023f). A New  Reciprocal Weibull Extension 

for  Modeling Extreme Values with Risk  Analysis under Insurance Data.  Mathematics 2023, 11, 966.  

https://doi.org/10.3390/ math11040966 

100. Zheng, G. (2002). On the fisher information matrix in type II censored data from the exponentiated exponential 

family. Biom. J. 44, 353-357.  

101. Zheng, G. and Park, S. (2004). A note on time savings in censored life testing. J. Stat. Plan. Inference 124, 289-

300. 

https://doi.org/10.3390/math11061284
https://doi.org/10.3390/



