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Abstract 

In this article, we attempt the problem of estimation of the population ratio of mean in mail surveys. This 
problem is conducted for current occasion in the context of sampling on two occasions when there is non-
response (i) on both occasions, (ii) only on the first occasion and (iii) only on the second occasion. We 
obtain the gain in efficiency of all the estimators over the direct estimate using no information gathered on 
the first occasion. We derive the sample sizes and the saving in cost for all the estimators, which have the 
same precision than the direct estimate using no information gathered on the first occasion. An empirical 
study that allows us to investigate the performance of the proposed strategy is carried out. 
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1.   Introduction 

Jessen (1942), Tikkiwal (1951), Yates (1949), Patterson (1950), Eckler, (1955) and Raj 
(1968) contributed towards the development of the theory of unbiased estimation of mean 
of characteristics in successive sampling. In many practical situations the estimate of the 
population ratio and product of two characters for the most recent occasion may be of 
considerable interest. The theory of estimation of the population ratio of two characters 
over two occasions has been considered by Rao (1957), Rao and Pereira (1968), Okafor 
(1992), Artés and García (2001), García and Artés (2002) among others. Further, García 
(2008) presented some sampling strategies for estimating, by a linear estimate, the 
population product of two characters over two occasions. 
 
Hansen and Hurwitz (1946) suggested a technique for handling the non-response in mail 
surveys. These surveys have the advantage that the data can be collected in a relatively 
inexpensive way. Okafor (2001) extended these surveys to the estimation of the 
population total in element sampling on two successive occasions. Later, Choudhary et 
al. (2004) used the Hansen and Hurwitz (HH) technique to estimate the population mean 
for current occasion in the context of sampling on two occasions when there is non-
response on both occasions. More recently, Singh and Kumar (2010) used the HH 
technique to estimate the population product for current occasion in the context of 
sampling on two occasions when there is non-response on both occasions and García and 
Oña (2011) used the HH technique to estimate the change of mean and the sum of mean 
for current occasion in the context of sampling on two occasions when there is non-
response on both occasions. However, non-response is a common problem with mail 
surveys. Cochran (1977) and Okafor and Lee (2000) extended the HH technique to the 
case when the information on the characteristic under study is also available on auxiliary 
characteristic. 
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In this article, we develop the HH technique to estimate the population ratio of mean for 
current occasion in the context of sampling on two occasions when there is non-response 
(i) on both occasions, (ii) only on the first occasion and (iii) only on the second occasion. 
An empirical study that allows us to investigate the performance of the proposed strategy 
is carried out. 

2.   The technique 

Consider a finite population of N  identifiable units. Let ( , )i ix y  be, for =1,2, ,i NK , the 

values of the characteristic on the first and second occasions, respectively. We assume 
that the population can be divided into two classes, those who respond at the first attempt 

and those who not. Let the sizes of these two classes be 1N  and 2N , respectively. Let on 

the first occasion, schedules through mail are sent to n  units selected by simple random 
sampling. On the second occasion, a simple random sample of =m np  units, for 

0 < <1p , is retained while an independent sample of = =u nq n m−  units, for =1q p− , 

is selected (unmatched with the first occasion). We assume that in the unmatched portion 

of the sample on two occasions, 1u  units respond and 2u  units do not. Similarly, in the 

matched portion 1m  units respond and 2m  units do not. 

 

Let 
2hm  denotes the size of the subsample drawn from the non-response class from the 

matched portion of the sample on the two occasions for collecting information through 

personal interview. Similarly, denote by 
2hu  the size of the subsample drawn from the 

non-response class in the unmatched portion of the sample on the two occasions. Also, let 
2
x j

σ , 2
y j

σ ; =1,2j  and 2
(2)x j

σ , 2
(2)y j

σ ; =1,2j  denote the population variance and 

population variance pertaining to the non-response class, respectively. In addition, let  
*

1mx , *
1my , *

1ux  and *
1uy  denote the estimator for matched and unmatched portions of the 

sample on the first occasion, respectively. Let the corresponding estimator for the second 

occasion be denoted by *
2mx , *

2my , *
2ux  and *

2uy . Thus, have the following setup: 
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), the estimator of the population ratio on the first (second) 

occasion based on the unmatched sample of u  units. 
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1ρ  ( 2ρ ), the correlation coefficients between the variables 1y  and 1x  ( 2y  and 2x ), 

3ρ  ( 4ρ ), the correlation coefficients between the variables 2y  and 1x  ( 1y  and 2x ), 

5ρ  ( 6ρ ), the correlation coefficients between the variables 1x  and 2x  ( 1y  and 2y ), 

1(2)ρ  ( 2(2)ρ ), the correlation coefficients between the variables 1(2)y  and 1(2)x  ( 2(2)y  and 

2(2)x ), 

3(2)ρ  ( 4(2)ρ ), the correlation coefficients between the variables 2(2)y  and 1(2)x  ( 1(2)y  and 

2(2)x ), 

5(2)ρ  ( 6(2)ρ ), the correlation coefficients between the variables 1(2)x  and 2(2)x  ( 1(2)y  and 

2(2)y ). 

 1st  occasion →   µ*

1uR  µ*

1mR  
 

 2nd  occasion →   µ*

2mR  µ*

2uR  

where 
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It can be easily seen that (see Singh and Kumar 2010, p. 979)  

  
µ µ µ µ µ µ µ µ µ µ* * * * * * * * * *

1 1 1 2 1 2 1 2 2 2( , ) = ( , ) = ( , ) = ( , ) = ( , ) = 0.u m u m u u m u m uCov R R Cov R R Cov R R Cov R R Cov R R  
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3.   Estimation of the population ratio of mean 

3.1 Estimation of the population ratio of mean for current occasion in the presence 
of non-response on both occasions 

We wish to estimate, 2R , the population ratio for the second period by a linear estimate 

(HH technique) of the form  

 µ µ µ µ µ* * * * *

2 1 1 2 2= u m m uR aR bR cR d R+ + +  

We have  

 µ µ µ µ* * * *

1 1 2 21 2( ) = ( ) = ( ) = ( ) =u m u mE R E R R and E R E R R  

we find that  

 µ*

2 1 2( ) = ( ) ( )E R a b R c d R+ + +  

 

If we now require that µ*

2R  be an unbiased estimate of 2R , we must have  

 = 0 =1a b and c d+ +  

so that  

 µ µ µ( ) µ µ* * * * *

2 1 1 2 2= (1 )u m m uR a R R cR c R− + + −  

The variance of µ*

2R  is given by  

µ*
2 * 2 * 2 * *

2 2 2 2
1 2 2 1 2

1 1 1 1 1 1
( ) = (1 ) 2V R a D c E c E ac C

q p nX pnX qnX pnX X

 
+ + + − − 

 
 

where  

* *
2 (2) 2 (2)= { ( 1) }; = { ( 1) }D A W k A E B W k B+ − + −  

2 2 2 22 2
= / ; = / = /h hW N N k m m u u  

2 2
1 1 1 1 (2) 1 1 1 1 (2)1 1 1 1

2 2 2 2= 2 ( , ); = 2 ( , )
(2) (2)y x y x

A S R S R Cov y x A S R S R Cov y x+ − + −  

2 2
2 2 2 2 (2) 2 2 2 2 (2)2 2 2 2

2 2 2 2= 2 ( , ); = 2 ( , )
(2) (2)y x y x

B S R S R Cov y x B S R S R Cov y x+ − + −  

*
1 2 1 2 1 2 1 2 1 2 1 2= [ ( , ) ( , ) ( , ) ( , )]C Cov y y R Cov y x R Cov y x R R Cov x x− − +  

   2 1 2 (2) 1 2 1 (2) 2 1 2 (2) 1 2 1 2 (2)( 1)[ ( , ) ( , ) ( , ) ( , ) ]W k Cov y y R Cov y x R Cov y x R R Cov x x+ − − − +  

 

We wish to choose values of a  and c  that minimize µ*

2( )V R . Equating to zero the 

derivatives of µ*

2( )V R  with respect to a  and c , it follows that the optimum values are  

 
* * * *

1
* * 2 *2 * * 2 *2

2

= =
( )

opt opt

pqX E C pD E
a and c

X D E q C D E q C− −
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Thus, the estimate with optimum values for a  and c  may be written  

µ µ µ µ µ
* * * * * *** * * * *

1
2 1 1 2 2* * 2 *2 * * 2 *2 * * 2 *2

2

= ( ) 1
( )

u m m u
pqX E C pD E pD E

R R R R R
X D E q C D E q C D E q C

 
− + + − 

− − − 
 (1) 

and its variance is  

µ
* * * *2**

2 2 * * 2 *2
2

( ) =
E D E qC

V R
X n D E q C

−

−
       (2) 

 
Note that if = 0q , = 1p , complete matching or = 0p , =1q , no matching this variance 

Eq. (2) has the same value,  

 µ
***

2 2
2

( ) =
E

V R
X n

 

 

Thus, for current estimates, equal precision is obtained either by keeping the same sample 

or by changing it on every occasion. If 1 2=X X , the estimate give by Eq. (1) is somewhat 

simplified  

µ µ µ µ µ
* * * * * *** * * * *

2 1 1 2 2* * 2 *2 * * 2 *2 * * 2 *2
= ( ) 1

( )
u m m u

pqE C pD E pD E
R R R R R

D E q C D E q C D E q C

 
− + + − 

− − − 
 

but its variance is unchanged, that is,  

 µ
* * * *2**

2 2 * * 2 *2
2

( ) =
E D E qC

V R
X n D E q C

−

−
 

 
Note, also, that an estimate for the first occasion is given by Eq. (1) simply by 

interchanging 1R 's and 2R 's if the estimate for the first occasion can await a time until 

data for both occasions are available.  

µ µ µ µ µ
* * * * * *** * * * *

2
1 2 2 1 1* * 2 *2 * * 2 *2 * * 2 *2
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Its variance is  

 µ
* * * *2**

1 2 * * 2 *2
1
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D D E qC

V R
X n D E q C
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Equating to zero the derivative of µ**

2( )V R  with respect to q , we find that the variance of 

µ**

2( )V R  will have its minimum value if we choose  

 
* * *2 *2 *2 * *
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However, if only the estimate using information gathered on the second occasion is 
considered, the estimator of the population ratio is  

 µ µ µ* * *

2 2= m uR pR qR+  

and its variance is  

 µ
**

2
2

( ) =
E

V R
X n

 

and we find  

 
* * * *2 *2 *2 * * *

2 * * 2
2 22

E D E D E C D E E

X n D E X n

+ −
≤  

3.2 Estimation of the population ratio of mean for the current occasion in the 
presence of non-response on the first occasion 

When there is non-response only on the first occasion, the minimum variance linear 
unbiased estimator for the population ratio on current occasion can be obtained as 
follows:  

µ µ µ( ) µ µ µ µ* * *
2 2

21 1 1 2 2 2 2

2 2

= (1 ) = =m u
u m m u m u

m u

y y
R a R R cR c R where R and R

x x
− + + −  

The variance of µ*

21R  is given by  

µ*
2 * 2 2

21 12 2 2
1 2 2 1 2

1 1 1 1 1 1
( ) = (1 ) 2V R a D c B c B ac k

q p nX pnX qnX pnX X

 
+ + + − − 

 
 

which is minimum when  

*
1 1

* 2 2 * 2 2
2 1 1

= =
( )
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pqX Bk pD B
a and c

X D B q k D B q k− −
 

where  

1 1 2 1 2 1 2 1 2 1 2 1 2= [ ( , ) ( , ) ( , ) ( , )]k Cov y y R Cov y x R Cov y x R R Cov x x− − +  

µ µ
2 2

2 2
2 2

1 1
( ) = ; ( ) =m uV R B V R B

pnX qnX
 

 

Thus the estimator µ*

21R  turns out to be  

µ µ µ( ) µ µ
* *** * *
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21 1 1 2 2* 2 *2 * 2 *2 * 2 *2
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with the variance  

µ
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1
21 2 * 2 2
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D B qkB

V R
X n D B q k
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The optimum fraction to be unmatched is given by  

* *2 2 2 *
1(1)

2
1

=opt

D B D B k D B
q

k

− −
      (4) 

and thus the minimum variance of µ**

21R  is  

µ
* *2 2 2 *

**
1

21 2 *
2
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2

min

D B D B k D BB
V R

X n D B

+ −
 

3.3 Estimation of the population ratio of mean for the current occasion in the 
presence of non-response on the second occasion 

When there is non-response only on the second occasion, the minimum variance linear 
unbiased estimator for the population ratio on current occasion can be obtained as 
follows:  

µ µ µ( ) µ µ µ µ* * *
1 1

22 1 1 2 2 1 1

1 1

= (1 ) = =m u
u m m u m u

m u

y y
R a R R cR c R where R and R

x x
− + + −  

The variance of µ*
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µ*
2 2 * 2 *

22 12 2 2
1 2 2 1 2
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( ) = (1 ) 2V R a A c E c E ac k

q p nX pnX qnX pnX X
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 
 

which is minimum when  
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1 1 2 1 2 1 2 1 2 1 2 1 2= [ ( , ) ( , ) ( , ) ( , )]k Cov y y R Cov y x R Cov y x R R Cov x x− − +  

µ µ
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( ) = ; ( ) =m uV R A V R A
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Thus the estimator µ*

22R  turns out to be  

µ µ µ( ) µ µ
* * *** * *
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22 1 1 2 2* 2 2 * 2 2 * 2 2
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with the variance  

µ
* 2***

1
22 2 * 2 2

2 1

( ) =
E A qkE
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X n E A q k

−

−
 

 
The optimum fraction to be unmatched is given by  

* *2 2 2 *
1(2)

2
1

=opt

AE E A k E A
q

k

− −
      (5) 
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and thus the minimum variance of µ**

22R  is  

µ
* *2 2 2 ****

1
22 2 *

2

( ) =
2

min

E A E A k E AE
V R

X n E A

+ −
 

3.4   Comparison between variances of the estimators, µ *

R , µ**

2R , µ**

21R  and µ**

22R  

In this subsection, we carry out an analysis based on the gain in precision of µ**

2R , µ**

21R  and 

µ**

22R  with respect to µ *

R . 

µ

µ

*
* * 2 *2

(1) ** * * *2

2

( )
= =

( )

V R D E q C
G

D E qCV R

−

−
      (6) 

or  

µ

µ

*
* *

(1) ** * * *2 *2 *2 * *
2

( ) 2
= =

( )
opt

min

V R D E
G

D E D E C D EV R + −
    (7) 

µ

µ

*
* 2 2*

1
(2) ** * 2

121

( )
= =

( )

D B q kV R E
G

B D B qkV R

−

−
      (8) 

or  

µ

µ

*
* *

(2) ** * *2 2 2 *
21 1

( ) 2
= =

( )
opt

min

V R D E
G

D B D B k D BV R + −
     (9) 

µ

µ

*
* 2 2

1
(3) ** * 2

122

( )
= =

( )

E A q kV R
G

E A qkV R

−

−
       (10) 

or  

µ

µ

*
*

(3) ** * *2 2 2 *
22 1

( ) 2
= =

( )
opt

min

V R E A
G

E A E A k E AV R + −
     (11) 

 
Now, we assume that  

0 0(2)1 2 1 2 1 2 1 2

= = = = , = = = =
(2) (2) (2) (2)y y x x y y x x

C C C C C C C C C C  

1 2 3 4 1(2) 2(2) 3(2) 4(2) (2)= = = = , = = = =ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ  

5 6 0 5(2) 6(2) 0(2)= = , = =ρ ρ ρ ρ ρ ρ  

The expressions of *D , *E  and *C  becomes  

* 2 * 2 *
1 2 1 2= 2 , = 2 , = 2D Y d E Y d and C Y Y t  

where  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
0 2 (2) 0(2) 0 0 2 0(2) (2) 0(2)= 1 1 1 , = 1d C W k C t C W k Cρ ρ ρ ρ ρ ρ− + − − − + − −

 
and 

the expressions (6), (7), (8), (9), (10) and (11) are given by  
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2 2 2

(1) (1)2 2 2 2

2
= =opt

d q t d
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d qt d d t

−
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( )
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2 2 2
0 0

(2) 2 2 2
0 0 0
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=

(1 ) (1 ) ( )

d d q C
G

d qC C

ρ ρ ρ

ρ ρ ρ ρ

− − −

− − − −
 

2

(2) 2 2 2 2
0 0

2
=

(1 ) (1 ) (1 )( )
opt

d
G

d d dCρ ρ ρ ρ ρ− + − − − −
 

2 2 2
0 0

(3) 2 2
0 0

(1 ) ( )
=

(1 ) ( )

d q C
G

d qC

ρ ρ ρ

ρ ρ ρ

− − −

− − −
 

(3) 2 2 2 2
0 0

2(1 )
=

(1 ) (1 ) (1 )( )
opt

d
G

d d dC

ρ

ρ ρ ρ ρ ρ

−

− + − − − −
 

 
Also, the expressions (3), (4) and (5) becomes 

2 2 2 22 4 2 2
0 0(0) (1) (2)

2 2 2
0 0

(1 ) (1 ) (1 )( )2
= , = =

( )
opt opt opt

d d dCd d d t
q q q

t C

ρ ρ ρ ρ ρ

ρ ρ

− − − − − −− −

−
 

 

The gain in precision of µ**

2R , µ**

21R  and µ**

22R  with respect to µ *

R  for different values of 0C , 

0(2)C , ρ , 0ρ , (2)ρ  and 0(2)ρ , are presented in tables 1-2 and in Figure 1. It is assumed that 

= 300N  and = 50n . From these tables, we obtain the following conclusions: 

(i) For the case 0 0(2)<C C , the gain in precision of µ**

2R  and µ**

22R  with respect to µ*

R  

decreases as the values of 0(2)C  increases, whereas the gain in precision of µ **

21R  

with respect to µ*

R  increases as the values of 0(2)C  increase; see Figure 1 (a).  

(ii) For the case 0 0(2)>C C , the gain in precision of µ**

2R  and µ**

22R  with respect to µ*

R  

increases as the values of 0C  increases, whereas the gain in precision of µ **

21R  with 

respect to µ *

R  decreases as the values of 0C  increase; see Figure  1 (b).  

(iii) For the case 0 0(2)=C C , the gain in precision of all the estimators with respect to 

µ *

R  remain constant as the values of 0C  and 0(2)C  increase; see Figure  1 (c).  

(iv) For the case 0>ρ ρ , the gain in precision of all the estimators with respect to µ*

R  

decreases as the values of 0ρ  increase; see Figure 1 (d).  

(v) For the case 0<ρ ρ , the gain in precision of all the estimators with respect to µ*

R  

decreases as the values of ρ  increase; see Figure 1 (e).  
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(vi) For the case 0=ρ ρ , the gain in precision of µ**

22R  with respect to µ *

R  remains 

constant as the values of ρ  and 0ρ  increase, whereas the gain in precision of µ**

2R  

and µ**

21R  with respect to µ *

R  increases as the values of ρ  and 0ρ  increase; see 

Figure 1(f).  

(vii) For the case (2) 0(2)>ρ ρ , the gain in precision of µ**

2R  with respect to µ *

R  decreases 

as the values of 0(2)ρ  increase, whereas the gain in precision of µ**

21R  and µ **

22R  with 

respect to µ *

R  remains constant as the values of 0(2)ρ  increase; see Figure 1 (g).  
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Table 1:   Gain in precision, (1)G , (2)G  and (3)G  of the estimate proposed over the 

direct estimate for different values of 0C , 0(2)C , ρ , 0ρ , (2)ρ  and 0(2)ρ .1 

ρ  
0ρ  (2)ρ  0(2)ρ  ( 1)k −  2W  0C  0(2)C  q  

(1)G  (2)G  (3)G   

    0 0(2)<C C         

0.7 0.2 0.5 0.3 1.5 0.8 0.4 1 0.7 1.06 14.18 1.05 
0.7 0.2 0.5 0.3 1.5 0.8 0.4 1.5 0.7 1.05 29.75 1.02 
0.7 0.2 0.5 0.3 1.5 0.8 0.4 2 0.7 1.04 51.61 1.01 

    0 0(2)>C C         

0.6 0.4 0.4 0.2 0.5 0.6 0.3 0.2 0.5 1.062 1.27 1.058 
0.6 0.4 0.4 0.2 0.5 0.6 0.5 0.2 0.5 1.068 1.14 1.066 
0.6 0.4 0.4 0.2 0.5 0.6 0.7 0.2 0.5 1.069 1.11 1.068 

    0 0(2)=C C         

0.6 0.3 0.5 0.3 1 0.7 0.1 0.1 0.3 1.08 2.00 1.07 
0.6 0.3 0.5 0.3 1 0.7 0.3 0.3 0.3 1.08 2.00 1.07 
0.6 0.3 0.5 0.3 1 0.7 0.8 0.8 0.3 1.08 2.00 1.07 

    0>ρ ρ         

0.7 0.3 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.06 2.63 1.34 
0.7 0.4 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.02 2.26 1.15 
0.7 0.5 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.00 2.08 1.06 

    0<ρ ρ         

0.2 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.09 1.11 1.09 
0.4 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.05 1.08 1.06 
0.6 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.01 1.05 1.01 

    0=ρ ρ         

0.2 0.2 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.04 2.05 1.00 
0.5 0.5 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.07 2.69 1.00 
0.8 0.8 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.13 5.22 1.00 

    (2) 0(2)>ρ ρ         

0.7 0.6 0.5 0.2 1.5 0.8 0.5 0.6 0.4 1.08 3.91 1.01 
0.7 0.6 0.5 0.3 1.5 0.8 0.5 0.6 0.4 1.04 3.91 1.01 
0.7 0.6 0.5 0.4 1.5 0.8 0.5 0.6 0.4 1.01 3.91 1.01 

    (2) 0(2)<ρ ρ         

0.5 0.6 0.1 0.4 2.5 0.6 0.5 0.6 0.8 1.02 4.89 1.00 
0.5 0.6 0.2 0.4 2.5 0.6 0.5 0.6 0.8 1.01 4.46 1.00 
0.5 0.6 0.3 0.4 2.5 0.6 0.5 0.6 0.8 1.00 4.03 1.00 

    (2) 0(2)=ρ ρ         

0.7 0.2 0.5 0.5 1.5 0.6 0.2 0.6 0.5 1.00 15.27 1.05 
0.7 0.2 0.7 0.7 1.5 0.6 0.2 0.6 0.5 1.01 9.92 1.09 
0.7 0.2 0.8 0.8 1.5 0.6 0.2 0.6 0.5 1.02 7.29 1.14 
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Table 2: Gain in precision, (1)G , (2)G  and (3)G  of the estimate proposed over the 

direct estimate for different values of 2W , ( 1)k −  and q . 2   

ρ  
0ρ  (2)ρ  0(2)ρ  ( 1)k −  2W  0C  0(2)C  q  

(1)G  (2)G  (3)G  

    2W         

0.7 0.2 0.5 0.5 1.5 0.2 0.2 0.6 0.8 1.015 6.25 1.14 

0.7 0.2 0.5 0.5 1.5 0.4 0.2 0.6 0.8 1.004 10.57 1.06 

0.7 0.2 0.5 0.5 1.5 0.8 0.2 0.6 0.8 1.001 19.50 1.03 

    ( 1)k −         

0.8 0.3 0.4 0.6 0.5 0.8 0.2 0.6 0.4 1.00 13.70 1.16 

0.8 0.3 0.4 0.6 1.0 0.8 0.2 0.6 0.4 1.01 24.29 1.07 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 1.02 35.02 1.05 

    q         

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.2 1.010 34.44 1.03 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 1.015 35.02 1.05 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.6 1.015 35.09 1.05 

 

(viii) For the case (2) 0(2)<ρ ρ , the gain in precision of µ**

2R  and µ**

21R  with respect to µ*

R  

decreases as the values of (2)ρ  increase, whereas the gain in precision of µ **

22R  with 

respect to µ *

R  remains constant as the values of (2)ρ  increase; see Figure 1 (h).  

(ix) For the case (2) 0(2)=ρ ρ , the gain in precision of µ**

2R  and µ**

22R  with respect to µ*

R  

increases as the values of (2)ρ  and 0(2)ρ  increase, whereas the gain in precision of 

µ**

21R  with respect to µ *

R  decreases as the values of (2)ρ  and 0(2)ρ  increase; see 

Figure 1 (i).  

(x) The gain in precision of µ**

2R  and µ**

22R  with respect to µ*

R  decreases as the values of 

2W  increases, whereas the gain in precision of µ**

21R  with respect to µ *

R  increases as 

the values of 2W  increase; see Figure 1(j).  

(xi) The gain in precision of µ**

22R  with respect to µ *

R  decreases as the values of 1k −  

increase, whereas the gain in precision of µ**

2R  and µ**

21R  with respect to µ*

R  
increases as the values of 1k −  increase; see Figure 1 (k).  

(xii) The gain in precision of µ**

2R , µ**

21R , µ**

22R  with respect to µ *

R  increases as the values 
of q  increase; see Figure 1 (l).  
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Figure 1:   Gain in precision, (1)G , (2)G  and (3)G  of the estimate proposed over the direct 

estimate for (a)-(b) different values of 0(2)C  and 0C , (c) the case 0C = 0(2)C , (d)-(e) 

different values of 0ρ  and ρ , (f) the case ρ = 0ρ , (g)-(h) different values of 0(2)ρ  and  

2ρ , (i) the case 2ρ = 0(2)ρ , (j)-(k) different values of 2W  and 1k − , and (l) different values 

of q . 
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The optimum gain of µ**

2R , µ**

21R  and µ**

22R  with respect to µ *

R  and the optimum fraction to 

be unmatched for different values of 0C , 0(2)C , ρ , 0ρ , (2)ρ  and 0(2)ρ  are presented in 

tables 3-4 and in Figure 2. From these tables, we obtain the following conclusions: 

(i) For the case 0 0(2)<C C , the optimum gain of µ**

2R  and µ**

22R  with respect to µ*

R  

decreases as the values of 0(2)C  increases, whereas the optimum gain of µ **

21R  with 

respect to µ *

R  increases as the values of 0(2)C  increase.  

(ii) For the case 0 0(2)>C C , the optimum gain of µ**

2R , µ**

21R  and µ**

22R  with respect to µ*

R  

increases as the values of 0C  increases.  

(iii) For the case 0 0(2)=C C , the optimum gain of µ**

2R  and µ**

22R  with respect to µ*

R  

remain constant as the values of 0C  and 0(2)C  increase, whereas the optimum gain 

of µ**

21R  with respect to µ*

R  increases as the values of 0C  and 0(2)C  increase.  

(iv) For the case 0>ρ ρ , the optimum gain of all the estimators with respect to µ*

R  

decreases as the values of 0ρ  increase.  

(v) For the case 0<ρ ρ , the optimum gain of all the estimators with respect to µ*

R  

decreases as the values of ρ  increase.  

(vi) For the case 0=ρ ρ , the optimum gain of µ**

2R , µ**

21R  and µ**

22R  with respect to µ*

R  

increases as the values of ρ  and 0ρ  increase.  

(vii) For the case (2) 0(2)>ρ ρ , the optimum gain of µ**

2R  with respect to µ*

R  decreases as 

the values of 0(2)ρ  increase, whereas the optimum gain of µ**

21R  and µ**

22R  with 

respect to µ *

R  remains constant as the values of 0(2)ρ  increase.  

(viii) For the case (2) 0(2)<ρ ρ , the optimum gain of µ**

2R  and µ**

21R  with respect to µ*

R  

decreases as the values of (2)ρ  increase, whereas the optimum gain of µ**

22R  with 

respect to µ *

R  remains constant as the values of (2)ρ  increase.  

(ix) For the case (2) 0(2)=ρ ρ , the optimum gain of µ**

2R  and µ**

22R  with respect to µ*

R  

increases as the values of (2)ρ  and 0(2)ρ  increase, whereas the optimum gain of 

µ**

21R  with respect to µ *

R  decreases as the values of (2)ρ  and 0(2)ρ  increase.  

(x) The optimum gain of µ**

2R  and µ**

22R  with respect to µ *

R  decreases as the values of 

2W  increases, whereas the optimum gain of µ**

21R  with respect to µ *

R  increases as 

the values of 2W  increase.  
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(xi) The optimum gain of µ**

2R  and µ**

21R  with respect to µ *

R  increases as the values of 

1k −  increase, whereas the optimum gain of µ**

22R  with respect to µ*

R  decreases as 
the values of 1k −  increase.  

(xii) The optimum gain of µ**

2R , µ**

21R  and µ**

22R  with respect to µ *

R  remains constant as the 
values of q  increase.  

Table 3: Optimum gain, (1)optG , (2)optG , (3)optG  and the optimum fraction to be 

unmatched, (0)
optq , (1)

optq  and (2)
optq  of the estimate proposed over the direct 

estimate for different values of 0C , 0(2)C , ρ , 0ρ , (2)ρ  and 0(2)ρ .    

ρ  
0ρ  (2)ρ  

0(2)ρ  ( 1)k −  2W  
0C  0(2)C  q  (0)

optq  (1,2)
optq  

(1)optG  
(2)optG  

(3)optG  

    0 0(2)<C C         

0.7 0.2 0.5 0.3 1.5 0.8 0.4 1.0 0.7 1.2 0.5 1.07 2.28 1.06 
0.7 0.2 0.5 0.3 1.5 0.8 0.4 1.5 0.7 1.1 0.5 1.05 4.78 1.03 
0.7 0.2 0.5 0.3 1.5 0.8 0.4 2.0 0.7 1.1 0.5 1.04 8.27 1.01 

    0 0(2)>C C         

0.6 0.4 0.4 0.2 0.5 0.6 0.3 0.2 0.5 1.1 0.5 1.06 0.11 1.06 
0.6 0.4 0.4 0.2 0.5 0.6 0.5 0.2 0.5 1.2 0.5 1.07 0.29 1.07 
0.6 0.4 0.4 0.2 0.5 0.6 0.7 0.2 0.5 1.2 0.5 1.07 0.54 1.07 

    0 0(2)=C C         

0.6 0.3 0.5 0.3 1.0 0.7 0.1 0.1 0.3 1.3 0.5 1.11 0.02 1.09 
0.6 0.3 0.5 0.3 1.0 0.7 0.3 0.3 0.3 1.3 0.5 1.11 0.18 1.09 
0.6 0.3 0.5 0.3 1.0 0.7 0.8 0.8 0.3 1.3 0.5 1.11 1.31 1.09 

    0>ρ ρ         

0.7 0.3 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.2 0.8 1.07 0.75 1.53 
0.7 0.4 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.1 0.6 1.02 0.58 1.18 
0.7 0.5 0.6 0.7 0.5 0.8 0.5 0.6 0.4 1.0 0.5 1.00 0.52 1.06 

    0<ρ ρ         

0.2 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.3 0.6 1.12 0.56 1.12 
0.4 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.2 0.5 1.07 0.54 1.07 
0.6 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 1.0 0.5 1.02 0.51 1.02 

    0=ρ ρ         

0.2 0.2 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.1 - 1.05 0.33 1.00 
0.5 0.5 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.2 - 1.07 0.43 1.00 
0.8 0.8 0.5 0.1 1.5 0.5 0.4 0.6 0.6 1.4 - 1.13 0.83 1.00 

    (2) 0(2)>ρ ρ         

0.7 0.6 0.5 0.2 1.5 0.8 0.5 0.6 0.4 1.2 0.5 1.08 0.98 1.01 
0.7 0.6 0.5 0.3 1.5 0.8 0.5 0.6 0.4 1.1 0.5 1.04 0.98 1.01 
0.7 0.6 0.5 0.4 1.5 0.8 0.5 0.6 0.4 1.0 0.5 1.01 0.98 1.01 

    (2) 0(2)<ρ ρ         

0.5 0.6 0.1 0.4 2.5 0.6 0.5 0.6 0.8 1.1 0.5 1.02 1.22 1.00 
0.5 0.6 0.2 0.4 2.5 0.6 0.5 0.6 0.8 1.0 0.5 1.01 1.12 1.00 
0.5 0.6 0.3 0.4 2.5 0.6 0.5 0.6 0.8 1.2 0.5 1.01 1.01 1.00 

    (2) 0(2)=ρ ρ         

0.7 0.2 0.5 0.5 1.5 0.6 0.2 0.6 0.5 1.0 0.5 1.00 0.61 1.05 
0.7 0.2 0.7 0.7 1.5 0.6 0.2 0.6 0.5 1.0 0.5 1.01 0.40 1.09 
0.7 0.2 0.8 0.8 1.5 0.6 0.2 0.6 0.5 1.0 0.6 1.02 0.29 1.14 
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Table 4:  Optimum gain in precision, (1)optG , (2)optG , (3)optG  and the optimum 

fraction to be unmatched, (0)
optq , (1)

optq  and (2)
optq  of the estimate proposed 

over the direct estimate for different values of 2W , ( 1)k −  and q . 

ρ  
0ρ  (2)ρ  0(2)ρ  ( 1)k −  2W  0C  0(2)C  q  (0)

optq  (1,2)
optq  (1)optG  (2)optG  (3)optG  

    2W         

0.7 0.2 0.5 0.5 1.5 0.2 0.2 0.6 0.8 1.1 0.6 1.02 0.26 1.17 

0.7 0.2 0.5 0.5 1.5 0.4 0.2 0.6 0.8 1.0 0.5 1.01 0.43 1.08 

0.7 0.2 0.5 0.5 1.5 0.8 0.2 0.6 0.8 1.0 0.5 1.00 0.79 1.04 

    ( 1)k −         

0.8 0.3 0.4 0.6 0.5 0.8 0.2 0.6 0.4 1.0 0.6 1.00 0.56 1.19 

0.8 0.3 0.4 0.6 1.0 0.8 0.2 0.6 0.4 1.0 0.5 1.01 0.98 1.08 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 1.0 0.5 1.02 1.41 1.05 

    q         

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.2 1.0 0.5 1.02 1.41 1.05 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 1.0 0.5 1.02 1.41 1.05 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.6 1.0 0.5 1.02 1.41 1.05 
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Figure 2:   Optimum gain, (1)optG , (2)optG , (3)optG  of the estimate proposed over the direct 

estimate for (a)-(b) different values of 0(2)C  and 0C , (c) the case 0C = 0(2)C , (d)-(e) 

different values of 0ρ  and ρ , (f) the case ρ = 0ρ , (g)-(h) different values of 0(2)ρ  and  

2ρ , (i) the case 2ρ = 0(2)ρ , (j)-(k) different values of 2W  and 1k − , and (l) different values 

of q .   
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4.   Comparing estimators in terms of survey cost 

We give some ideas about how saving in cost through mail surveys in the context of 

successive sampling on two occasions for different assumed values of 0C , 0(2)C , ρ , 0ρ , 

(2)ρ , 0(2)ρ , 2W , ( 1)k −  and q . Let = 300N , = 50n , 0 = 1c , 1 = 4c , and 2 = 45c , where 

0c , 1c , and 2c  denote the cost per unit for mailing a questionnaire, processing the results 

from the first attempt respondents, and collecting data through personal interview, 

respectively. In addition, 00C  is the total cost incurred for collecting the data by personal 

interview from the whole sample, i.e., when there is no non-response. The cost function 
in this case is given by (assuming the cost incurred on data collection for the matched and 
unmatched portion of the sample are same and cost incurred on the data collection on 
both occasions is same)  

*
00 2= 2 .C nc          (12) 

Substituting the values of n  and 2c  in Eq. (12), the total cost work out to be 4500. 

Let 1n  denotes the number of units which respond at the first attempt and 2n  denotes the 

number of units which do not respond. Thus,   

(i) The cost function for the case when there is non-response on both occasions is  

* 2 2
0 0 1 1= 2 .

1

c n
C c n c n

k

 
+ + − 

 

 
The expected cost is given by  

* * 2 2
0 0 0 1 1E( ) = 2 ,

1

c W
C n c c W

k

 
+ + − 

 

where 1 1= /W N N  and 2 2= /W N N , such that 1 2 = 1W W+  and  

2 2
*
0 2 2 2

( )
=

( )

n d qt
n

d q t

−

−
 

(ii)  The cost function for the case when there is only non-response on the second 
occasion is  

* 2 2
1 0 1 1 1= 2

1

c n
C c n c n c n

k

 
+ + + − 

 

and the expected cost is given by  

* * 2 2
1 1 0 1 1E( ) = 2 ( 1) .

1

c W
C n c c W

k

 
+ + + − 

 

where  

( )
( )

2 2 2
0 0 0*

1 2 2 2
0 0

(1 ) (1 ) ( )
=

(1 ) ( )

n d qC C
n

d d q C

ρ ρ ρ ρ

ρ ρ ρ

− − − −

− − −
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(iii) The cost function for the case when there is non-response on first occasion only is  

* 2 2
2 1 1 0 1= 2 ,

1

c n
C c n c n c n

k

 
+ + + − 

 

which expected cost is expressed as  

* * 2 2
2 2 0 1 1E( ) = 2 ( 1) .

1

c W
C n c c W

k

 
+ + + − 

 

where  

2 2
* 0 0
2 2 2 2

0 0

((1 ) ( ) )
=

(1 ) ( )

n d qC
n

d q C

ρ ρ ρ

ρ ρ ρ

− − −

− − −
 

 

By equating the variances µ**

2R , µ**

21R , and µ**

22R , respectively, to µ*

( )V R  and using the 

assumed values of different parameters, the values of the sample size for the three cases 

and the corresponding expected cost of survey were determined with respect of µ**

2R , µ**

21R , 

and µ**

22R . The sample sizes associated with the three estimators which provide equal 

precision to the estimator µ*

R  are denoted by *
0n , *

1n  and *
2n . The results of this exercise 

are presented in tables 5-6 and in Figures 3-4. From these tables, we obtain the following 
conclusions: 

(i) For the case 0 0(2)<C C , the saving in cost for µ**

2R  and µ**

22R  increases as the values 

of 0(2)C  increase, whereas for µ**

21R  the saving in cost decreases as the values of 

0(2)C  increase; see Figure 3(a). 

The sample sizes for µ**

2R  and µ**

22R , which have the same precision than µ *

R , 

increases as the values of 0(2)C  increase, whereas the sample size for µ**

21R , which 

have the same precision than µ *

R  decreases as the values of 0(2)C  increase; see 

Figure 3(b). 

(ii) For the case 0 0(2)>C C , the saving in cost for µ**

2R  and µ**

22R  decreases as the values 

of 0C  increase, whereas for µ**

21R  the saving in cost increases as the values of 0C  

increase; see Figure 3(c). 

The sample sizes for µ**

2R  and µ**

22R  remains constant as the values of 0C  increase, 

whereas for µ**

21R  the saving in cost increases as the values of 0C  increase; see 

Figure 3 (d). 
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(iii) For the case 0 0(2)=C C  the saving in cost for all the estimators remains constant as 

the values of 0C  and 0(2)C  increase; see Figure 3(e). 

The sample sizes for all the estimators, which have the same precision than µ *

R , 

remain constant as the values of 0C  and 0(2)C  increase; see Figure 3(f). 

(iv) For the case 0>ρ ρ , the saving in cost for all the estimators increases as the 

values of 0ρ  increase; see Figure 3(g). 

The sample sizes for the three estimators, which have the same precision than µ *

R , 

increases as the values of 0ρ  increase; see Figure 3(h). 

(v) For the case 0<ρ ρ , the saving in cost for all the estimators increases as the 

values of ρ  increase; see Figure 3(i). 

The sample sizes for the three estimators, which have the same precision than µ *

R , 
increases as the values of ρ  increase; see Figure 3(j). 

(vi) For the case 0=ρ ρ , the saving in cost for µ**

22R  remains constant as the values of 

ρ  and 0ρ  increase, whereas for µ**

2R  and µ**

21R  the saving in cost decreases as the 

values of ρ  and 0ρ  increase; see Figure 3 (k). 

The sample sizes for µ**

2R  and µ**

21R , which give equal precision to µ *

R  decrease as 

the values of ρ  and 0ρ  increase, whereas the sample size for µ**

22R , which has the 

same precision than µ *

R , remains constant as the values of ρ  and 0ρ  increase; see 

Figure 3 (l). 

(vii) For the case (2) 0(2)>ρ ρ , the saving in cost for µ**

2R  increases as the values of 0(2)ρ  

increase, whereas for µ**

21R  and µ**

22R  the saving in cost remains constant as the 
values of 0(2)ρ  increase; see Figure 4(a). 

The sample size for µ**

2R , which have the same precision than µ*

R , increases as the 

values of 0(2)ρ  increase, whereas for µ**

21R  and µ**

22R  which give equal precision to 

µ*

R  remains constant as the values of 0(2)ρ  increase; see Figure 4(b). 

(viii) For the case (2) 0(2)<ρ ρ , the saving in cost for µ**

2R  and µ**

21R  increases as the values 

of (2)ρ  increase whereas for µ**

22R  the saving in cost decreases as the values of (2)ρ  

increase; see Figure 4(c). 
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The sample size for µ**

22R , which have the same precision than µ *

R  remains constant 

as the values of (2)ρ  increase, whereas the sample size for µ**

2R  and µ **

21R , which 

have the same precision than µ *

R , increases as the values of (2)ρ  increase; see 

Figure 4(d). 

(ix) For the case (2) 0(2)=ρ ρ , the saving in cost for µ**

2R  and µ**

22R  decreases as the values 

of (2)ρ  and 0(2)ρ  increase, whereas for µ**

21R  the saving in cost increases as the 

values of (2)ρ  and 0(2)ρ  increase; see Figure 4(e). 

The sample sizes for µ**

2R  and µ**

22R , which have the same precision than µ *

R , 

decreases as the values of (2)ρ  and 0(2)ρ  increase, whereas the sample size for  

µ**

21R , which have the same precision than µ *

R  increases as the values of (2)ρ  and 

0(2)ρ  increase; see Figure 4(f). 

(x) The saving in cost for µ**

2R  and µ**

22R  increases as the values of 2W  increase, 

whereas for µ**

21R  the saving in cost decreases as the values of 2W  increase; see 

Figure 4(g). 

The sample sizes for µ**

2R  and µ**

22R , which have the same precision than µ *

R , 

increases as the values of 2W  increase, whereas the sample size for µ **

21R , which 

have the same precision than µ *

R  decreases as the values of 2W  increase; see 

Figure 4(h). 

(xi) The saving in cost for all the estimators decreases as the values of 1k −  increase; 

see Figure 4(i). 

The sample sizes for µ**

2R  and µ**

21R , which give equal precision to µ *

R  decrease as 

the values of 1k −  increase, whereas the sample size for µ**

22R , which has the same 

precision than µ *

R , increases as the values of 1k −  increase; see Figure 4(j). 

(xii) The saving in cost for all the estimators decreases as the values of q  increase; see 

Figure 4(k). 

The samples sizes for µ**

2R  and µ**

21R , which give equal precision to µ *

R  remain 

constant as the values of q  increase, whereas the sample size for µ **

22R , which has 

the same precision than µ *

R , decreases as the values of q  increase; see Figure 4 

(l).  
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Table 5: Sample sizes and corresponding expected cost of survey, which have the 

same precision than µ**

2R , µ**

21R  and µ**

22R , with respect to µ *

R  for different 

values of 0C , 0(2)C , ρ , 0ρ , (2)ρ  and 0(2)ρ  

ρ  
0ρ  (2)ρ  0(2)ρ  ( 1)k −  2W  0C  0(2)C  q  *

0n  
*
1n  

*
2n  

*
0E( )C  *

1E( )C  *
2E( )C  

    0 0(2)<C C         

0.7 0.2 0.5 0.3 1.5 0.8 0.4 1.0 0.7 47 3 47 2429.94 108.59 1465.99 

0.7 0.2 0.5 0.3 1.5 0.8 0.4 1.5 0.7 48 2 49 2462.07 51.76 1507.64 

0.7 0.2 0.5 0.3 1.5 0.8 0.4 2.0 0.7 48 1 49 2472.72 29.84 1521.90 

    0 0(2)>C C         

0.6 0.4 0.4 0.2 0.5 0.6 0.3 0.2 0.5 47 39 47 5325.83 2425.64 2910.77 

0.6 0.4 0.4 0.2 0.5 0.6 0.5 0.2 0.5 47 44 47 5300.43 2695.25 2889.31 

0.6 0.4 0.4 0.2 0.5 0.6 0.7 0.2 0.5 47 45 47 5292.10 2780.28 2882.41 

    0 0(2)=C C         

0.6 0.3 0.5 0.3 1 0.7 0.1 0.1 0.3 46 25 47 3118.63 965.18 1809.71 

0.6 0.3 0.5 0.3 1 0.7 0.3 0.3 0.3 46 25 47 3118.63 965.18 1809.71 

0.6 0.3 0.5 0.3 1 0.7 0.8 0.8 0.3 46 25 47 3118.63 965.18 1809.71 

    0>ρ ρ         

0.7 0.3 0.6 0.7 0.5 0.8 0.5 0.6 0.4 47 19 37 6948.27 1498.32 2936.71 

0.7 0.4 0.6 0.7 0.5 0.8 0.5 0.6 0.4 49 22 43 7202.24 1742.18 3414.67 

0.7 0.5 0.6 0.7 0.5 0.8 0.5 0.6 0.4 50 24 47 7343.04 1896.69 3717.50 

    0<ρ ρ         

0.2 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 46 45 46 3612.49 1998.08 2034.78 

0.4 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 47 46 47 3733.53 2053.39 2103.68 

0.6 0.7 0.6 0.7 0.5 0.4 0.7 0.3 0.3 49 48 49 3887.99 2114.08 2191.74 

    0=ρ ρ         

0.2 0.2 0.5 0.1 1.5 0.5 0.4 0.6 0.6 48 24 50 1722.44 559.69 1150 

0.5 0.5 0.5 0.1 1.5 0.5 0.4 0.6 0.6 47 19 50 1680.10 427.91 1150 

0.8 0.8 0.5 0.1 1.5 0.5 0.4 0.6 0.6 44 9 50 1587.30 220.36 1150 

    (2) 0(2)>ρ ρ         

0.7 0.6 0.5 0.2 1.5 0.8 0.5 0.6 0.4 46 13 50 2396.96 394.17 1529.37 

0.7 0.6 0.5 0.3 1.5 0.8 0.5 0.6 0.4 48 13 50 2487.08 394.17 1529.37 

0.7 0.6 0.5 0.4 1.5 0.8 0.5 0.6 0.4 49 13 50 2545.69 394.17 1529.37 

    (2) 0(2)<ρ ρ         

0.5 0.6 0.1 0.4 2.5 0.6 0.5 0.6 0.8 49 10 50 1318.64 187.97 918.79 

0.5 0.6 0.2 0.4 2.5 0.6 0.5 0.6 0.8 50 11 50 1327.31 206.16 918.67 

0.5 0.6 0.3 0.4 2.5 0.6 0.5 0.6 0.8 50 12 50 1334.63 228.26 918.53 

    (2) 0(2)=ρ ρ         

0.7 0.2 0.5 0.5 1.5 0.6 0.2 0.6 0.5 50 3 47 2053.17 83.83 1215.61 

0.7 0.2 0.7 0.7 1.5 0.6 0.2 0.6 0.5 49 5 46 2042.58 129.04 1174.25 

0.7 0.2 0.8 0.8 1.5 0.6 0.2 0.6 0.5 49 7 44 2024.47 175.66 1124.21 
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Table 6: Sample sizes and corresponding expected cost of survey, which have the 

same precision than µ**

2R , µ**

21R  and µ**

22R , with respect to µ *

R  for different 

values of 2W , ( 1)k −  and q  

ρ  
0ρ  (2)ρ  0(2)ρ  ( 1)k −  

2W  
0C  0(2)C  q  *

0n  
*
1n  

*
2n  

*
0E( )C  *

1E( )C  *
2E( )C  

    2W         

0.7 0.2 0.5 0.5 1.5 0.2 0.2 0.6 0.8 49 8 44 1004.08 121.68 669.25 

0.7 0.2 0.5 0.5 1.5 0.4 0.2 0.6 0.8 50 5 47 1533.03 96.49 964.86 

0.7 0.2 0.5 0.5 1.5 0.8 0.2 0.6 0.8 50 2 49 2576.81 78.96 1500.26 

    ( 1)k −         

0.8 0.3 0.4 0.6 0.5 0.8 0.2 0.6 0.4 50 4 43 7364.59 287.52 3392.78 

0.8 0.3 0.4 0.6 1.0 0.8 0.2 0.6 0.4 49 2 46 3740.49 88.11 1991.39 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 49 1 48 2541.38 43.97 1468.70 

    q         

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.2 49 1 48 2554.44 44.72 1493.54 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.4 49 1 48 2541.38 43.97 1468.70 

0.8 0.3 0.4 0.6 1.5 0.8 0.2 0.6 0.6 49 1 47 2540.89 43.89 1465.84 
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Figure 3:   Corresponding expected cost of survey and sample sizes, which have the same 

precision than µ**

2R , µ**

21R  and µ**

22R , with respect to µ*

R  for (a)-(b) different values of 0(2)C , 

(c)-(d) different values of 0C , (e)-(f) the case 0(2)C  and 0C , (g)-(h) different values of 0ρ , 

(i)-(j) different values of ρ , (k)-(l) the case ρ = 0ρ .  
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Figure 4:   Corresponding expected cost of survey and sample sizes, which have the same 

precision than µ**

2R , µ**

21R  and µ**

22R , with respect to µ*

R  for (a)-(b) different values of 0(2)ρ , 

(c)-(d) different values of 2ρ , (e)-(f) the case 0(2)ρ = 2ρ , (g)-(h) different values of 2W , 

(i)-(j) different values of 1k − , and (k)-(l) different values of q .  



Amelia Victoria Garca Luengo 

Pak.j.stat.oper.res.  Vol.IX  No.1 2013  pp25-51 50

5.   Conclusions 

In this paper, we have used the HH technique for estimating the population ratio of mean 
in mail surveys. This problem is conducted for current occasion in the context of 
sampling on two occasions when there is non-response (i) on both occasions, (ii) only on 
the first occasion and (iii) only on the second occasion. The results obtained reveals that 
the gain in precision is maximum for the estimation of the ratio of mean when there is 
non-response only on the first occasion, whereas it is least for the estimation of the ratio 
of mean when there is non-response only on the second occasion and when there is non-
response on both occasions. Also, we have derived the sample sizes and the saving in 
cost for all the estimators that have the same precision than the direct estimate using no 
information gathered on the first occasion. In the majority of the cases the sample sizes 
and the saving in cost is maximum for the estimation of the ratio of mean when there is 
non-response on both occasions, whereas it is least for the estimation of the ratio of mean 
when there is non-response only on the first occasion and when there is non-response 
only on the second occasion. 
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