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Abstract
In this paper, we propose two classes of shrinkage estimators for the shape parameter of the
Weibull distribution in censored samples. The proposed estimators are studied theoretically and
have been compared numerically with existing estimators. Computer intensive calculations for
bias and relative efficiency show that for, different values of levels of significance and for varying
constants involved in the proposed estimators, the proposed testimators fare better than classical
and existing estimators.
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1. Introduction
The Weibull model (Weibull 1939, 1951, 1952) is often used in the field of life
data analysis due to its flexibility. In addition, it can simulate the behavior of other
statistical distributions such as the normal and the exponential. Indeed, the wide
application and occurrence of the Weibull distribution in reliability engineering
and in failure analysis are a wonder. Specific applications of the Weibull model
are employed to represent manufacturing and delivery times in industrial
engineering, to forecast weather data, to model fading channels in wireless
communications, to exhibit good fit to experimental fading channel
measurements, as well as in radar systems to model the dispersion of the
received signals level produced by some types of clutters, etc. Other applications
are studied by many other authors (see Lieblein and Zelen 1956, Kao 1959,
Berrettoni 1964, Al-Mmeida 1999, Fok et. al. 2001, Erto and Pallotta 2007, and
Rinne 2009).

1.1 The Model and Classical Estimator
Let nit i ,...,2,1,  be a random sample of size ,n from the two-parameter Weibull
distribution with probability cumulative distribution function,

)1(0,0,,0 t,)]/exp[-(t-1),|F(t   

where , being the characteristic life, acts as a scale parameter and  is the
shape parameter.
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Let ;log ty e then y follows an extreme value distribution (refer to Bain 1972)
with the probability distribution function,

)2(,0,-,y-,)]u)/-yexp[-exp((-1),|F(y  bubbu

where /1b and eu log are respectively the scale and the shape
parameters.

The estimations of the unknown parameters of the above model are quite
complicated. Bain and Engelhardt (1992) have proposed a simple estimation
procedure of the reciprocal of the shape parameter as follows.  Let

),m()2()1( t...tt  and )m()2()1( y...yy  be the m smallest ordered
observations in a sample of size n from (1) and (2) respectively. Define an
unbiased estimator for b as,
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where ,,...,2,1,/)( mibuyW ii  are ordered variables from the extreme value
distribution with 1b and ,0u )n,m(knm  and ),n,m(k being unbiased
constants, represent the ratio of m to n; some values of )n,m(k are given in White
(1967), and Engelhardt and Bain (1973). The statistic bTbbbT /2/ˆ2)ˆ(  (Bain
1972), has been shown to follow chi-square distribution with 2m degrees of
freedom. The p.d.f. of T is given by,

)4(
otherwise.0,

0,,0T,)]T/(m))exp[-(/T
{)|f(T
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Therefore, we have   )ˆ(,/)1(ˆ ETm and ).2/()|ˆ( 2  mMSE 

1.2 Incorporating a prior value, and Shrinkage
When a life testing experimenter becomes familiar with failure data, knowledge is
developed concerning the parameters of the model. The discipline of quality
control deals with setting the process to a suitable average on the basis of
control charts. Since the mean of the Weibull failure time depends on the shape
parameter, a similar control method can be used to bring the shape parameter to
some prefixed value ),( 0 leading to improvement in the performance of an item
or component, i.e., reducing the MSE of the new estimators or it may give a
saving in sample size. Indeed, the prior information costs time and money; and
incorporating such prior information in the estimation of the unknown parameters
is also utilizes the past cost of sampling units.

According to Thompson (1968), 0 is a ‘natural origin’ and such natural origins
may arise for any one of a number of reasons, e.g., we are estimating  and:
(i) we believe 0 is close to true value of , or
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(ii) we fear that 0 may be near the true value of , i.e., something bad

happens if 0  and we do not know about it.

In both cases, the value 0 is available, and in such a situation, it is natural to

start with an estimator ̂ of  and modify it by moving it closer to 0 , so that the
resulting estimator, though perhaps biased, has a smaller mean squared error
than that of ̂ in some interval around 0 . This method of constructing an
estimator of  that incorporates the prior information 0 leads to what is known
as a shrunken estimator. It may be recalled that Thompson (1968) the first who
proposed the shrinkage estimator, which suggests the use of a prior point guess
of the parameter for improving the performance of the existing estimator .̂ Al-
Hemyari and Al-Hemyari and Ali (2010, 2012)have proposed  some shrinkage
testimators for the scale parameter and reliability function of the Weibull model.

The purpose of this paper is not simply to extend to extend our previous
testimators (2010, 2012) to the shape parameter of the Weibull model. Rather,
we assume a censored sample where the aim is to find some testimators of the
shape parameter which offer some improvement over the classical and similar
estimators. Assuming the scale parameter is known, two appropriate choices of
exponential type shrinkage weighting functions are used and the expressions for
the bias, mean squared error, and relative efficiency of the proposed testimators
are derived, studied and compared numerically.

2. Shrinkage estimators
Define the class of Huntsberger (1955) type shrinkage estimator for the shape
parameter  by,

)5(},))ˆ(1(ˆ)ˆ({
~

0 

where ),1)ˆ(0()ˆ(   represents a weighting function specifying the degree of
belief in .0

The shrinkage estimator of the shape parameter  has been considered by
several authors (Singh and Bhatkulikar 1977, Pandey 1983, Pandey, et. al. 1989,
Pandey and Singh 1993, and Singh and Shukla 2000). Estimator (5) is also
studied for the shape parameter  but in different contexts (Singh et. al. 2002). It
may be noted here that other authors (e.g., Kambo et. al. 1990, 1992, Parkash
et. al. 2008, and Al-Hemyari et. al. 2009, 2011) have tried to develop new
shrinkage estimators of the form (5) for special populations by choosing different
weight functions.

It is also noted that the performance of these estimators strongly depends on the
choice of ).ˆ( If )ˆ( is not set in accordance with reality (i.e., large )ˆ( when

o is close to , and small )ˆ( when o is away from  ), it may happen that
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either there is no significant gain in the performance of ~ or there is actually a
significant loss.

2.1 Bias and MSE of ~

The bias of ~ by definition is,

)6()],ˆ))(ˆ(1[()
~

()|
~

( 0  EEB

where ,0)|ˆ( B is the bias of .̂ The mean squared error (MSE) expression of
~ is given by,
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where ),|ˆ( MSE is the mean squared error expression of .̂ When 0  we
have

)8(.0])ˆ)()ˆ(1[()|ˆ()|
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Remark1:

i) Non-negativity: Clearly, the proposed class of estimators }1)ˆ(0:
~

{   is
a convex combination of ̂ and ,0 hence ~ is always positive.

ii) Unbiasedness: Based on equation (6), if 1)ˆ(  ,  or 0
ˆ   with probability

one, the proposed estimator turns into the unbiased estimator, otherwise it
is biased. Thus, we conclude the following: There does not exist any
unbiased estimator of  in the class of estimators }1)ˆ(0:

~
{   except

the above undesirable cases.

iii) Minimum mean squared error estimator: It is not easy with the type of the
proposed testimator to establish the minimum mean squared error biased
estimator, i.e., ),|ˆ()|

~
(  MSEMSE  for every )ˆ( and every  with strict

inequality for at least one . But when 0  the inequality holds (see
equation (8)), this means that by a proper choice of ),ˆ( the proposed
shrinkage estimator performs better (in the sense of smaller MSE) than ̂ in
the neighborhood of .0

In this section, two shrinkage estimators of the class }1)ˆ(0:
~

{   for the
shape parameter  of the Weibull distribution, when a prior guess value of the
shape parameter is available from the past with known shape parameter , will
be discussed.
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2.2 The Shrinkage estimator 1

~

The first proposed testimator for  of the class }1)ˆ(0:
~

{   is denoted by 1

~
and uses the unbiased estimator Tm /)1(1̂  and the following modified
shrinkage weight function,

)9(0,10,1)ˆ( 0
1   caea cmT

Using (6) and (7), the bias ratio (bias/ ) and mean squared error expression of
1

~ are given respectively by,
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where )./( 0   The relative efficiency of 1

~ is denoted by )|ˆ;
~

( 11 Eff and
given by,
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2.3 The Shrinkage estimator 2

~
Since the shrinkage estimator 1

~ is biased, in this section, in place of unbiased
estimator ,1̂ we will use the biased estimator ,ˆ))1/()2((ˆ

12   mm in (5)
denoting the resulting estimator by 2

~ with the weight function
)13(.0,10,1)ˆ( 0)1(

2   caea Tmc 

Again using (6) and (7), the bias ratio (bias/ ) and mean squared error
expression of 2

~ are given respectively by
)14()),1/(1(]]))1(1)(1/[()2())1(1/([)/)|

~
(( 1
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The efficiency of 2

~ relative to 2̂ is given by,
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~ relative to 1̂ is given by,
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Remark 2: Consistent estimator. Since ,0)|
~

(lim 


 i
n

B and ,0)|
~

(lim 


 i
n

MSE

21ii ,,
~

 are asymptotically unbiased and consistent estimators.

3. Preliminary Shrinkage estimators
In section 2, a class of Huntsberger type shrinkage estimator was studied, and
two cases for the shape parameter with known scale parameter were discussed
by using two different shrinkage weight functions and two different classical
estimators. This section also deals with the estimation of the shape parameter of
the Weibull distribution with known scale parameter, where we developed a
preliminary test shrinkage estimator when its initial estimate 0 is given.

Shrinkage estimators 21ii ,,
~

 have the disadvantage of necessarily using the
prior value in the construction of final estimators. However, it is not necessary
that the prior value be close to the true value. To employ this idea in the
estimation of the shape parameter  of the Weibull distribution, a preliminary test
is first conducted to check the closeness of 0 to  before using it in a
shrinkage estimator. If the preliminary test is accepted, 00 )ˆ)(ˆ(   is used

as an estimator of  ;  otherwise ̂ itself is taken as an estimator of . Thus, the
proposed testimator is taken as one of two alternatives depending on this test. To
satisfy this idea, set
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where ).1)ˆ(0)(ˆ(   The class of preliminary shrinkage estimators (PSE) with
this weight function  is denoted by p

~ and given by,

)19(},]ˆ[])ˆ)(ˆ({[
~

00 RRp II  

where RI and
R

I are respectively the indicator functions of the acceptance region

R and the rejection region R . The relevance of such types of shrinkage
estimators lies in the fact that, though they may be biased, they have smaller
MSE than ̂ in some interval around .o It may be denoted here that the class of
estimators (19) is a special case of the class (5).

It may be noted here that the class of preliminary test shrinkage estimators p
~ is

completely specified if the shrinkage weight factor )ˆ( and the region R are
specified. Consequently, the success of 

~ now depends upon the proper choice
of )ˆ( and R . In general, the true value of  is unknown, i.e., )ˆ( should not
be a function of unknown  and hence, a proper choice of )ˆ( cannot be
guaranteed. Similarly for the choice of region R there is no unified approach.

3.1 Bias and MSE of p
~

The bias and mean squared error expressions of p
~ are derived for any )ˆ(,ˆ 

and R and given respectively by:
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When 0  we have:
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Remark 3: From equations (22)  and (23) above, it may be noted that remark 1
derived in section 2,  is also valid for the shrinkage estimator p

~ , i.e., the
unbiasedness and minimum mean squared error estimator properties are valid
when using PSE. This means that there does not exist, any unbiased estimator
of  in the class of estimators ),1)ˆ(0(

~
  p except the same undesirable

cases; and for any region R with proper choice of ),ˆ( the preliminary
shrinkage estimator PSE performs better (in the sense of smaller MSE) than the
classical estimator ̂ when 0 is sufficiently close to .
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3.2 Choices for region R

As was noted earlier, the performance of the class of estimators (19) depends on
a proper choice of the region R and the shrinkage function ).ˆ( Having chosen

),ˆ( in this section, we now discuss the criterion for choice of the region .R It
seems reasonable to construct a region ,R denoted by ,1R by the criterion,

)24()},|ˆ()(:{ 0
2

01  MSEaR 

where 0a is constant to be chosen such that )|
~

( 0 pMSE is minimum. Then

1R simplifies to:
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where 1̂ and 2̂ are defined in sections 2.2 and 2.3 respectively. The second
choice of ,R we consider the commonly used acceptance region of the
hypothesis 00 :  H against the alternative .: 01  H If  is the level of
significance of the test, then the preliminary test region 1R is given by,
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where 2/1 L and 2/U are the lower and upper 100( /2) percentile points of the
statistic )ˆ(T used for testing the above hypothesis. If the chi-square statistic

 /ˆ)1(2)ˆ( 11  mT (or  /ˆ)2(2)ˆ( 22  mT ) is used, the region 2R is given by,
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where 2
2,2/1 r  is the lower 100( /2) percentile point of the chi-square distribution

with m2 degrees of  freedom. In this section, two testimators for the shape
parameter  of the Weibull distribution, when a prior guess value of the shape
parameter is available from the past with known scale parameter , will be
discussed.

3.3 The PSE
1

~
p

The first proposed testimator for  of the class }1)ˆ(0:
~

{   p is denoted by

1

~
p and uses the unbiased estimator 1̂ (given in section 2.2) and with the

shrinkage weight function ,,,)ˆ( )( 0c1a0ea1 0Tmc
1    if i1 Rˆ  . Let

,ba],b,a[R ijijijijj  .2,1i,2,1j  By equations (20) and (21) the
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expressions for the bias ratio and mean squared error of
1

~
p are obtained as

follows:
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3.4 The SPE
2

~
p

In section 3.3, the SPE is studied based on .1̂ In this section, in place of the
unbiased estimator ,1̂ we will study the SPE based on the biased estimator
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2p Let ].,[ ijijj baR  Again using
equations (20) and(21), the bias ratio (bias/ ) and mean squared error
expression of
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4. Simulation and Numerical Results

The bias ratio and relative efficiency of 2,1,
~

ii and 2,1,
~

i
ip were

computed for different values of the constants involved in these estimators. The
following numerical results and comparisons are based on these computations.

4.1 Numerical Results of :
~

i

For the testimators 2,1,
~

ii numerical computations computed for
,20n ,5)1(2)1.0(1.0 ,12)2(4m ,5.0,1.0,05.0,01.0,005.0c ,12)2(4m and
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.1,5.0,1.0,05.0,01.0,001.0a In tables1-4, some sample values of the relative
efficiency, and in tables 5 and 6, some values of bias ratio are given for some
selected values of amn ,, and c.

i) It was observed from the computations that generally
,2,1),|ˆ;

~
( iEff ii  increases as c decreases.

ii) For fixed c, the relative efficiency increases slightly as a decreases (from 1)
when ... 6150  

iii) The relative efficiency is a concave function of , with the maximum at
,1 ;004.0,1  ca where for other values of a and c the relative

efficiency is not a concave function of .

iv) The relative efficiency is an increasing function with ,m i.e., the relative
efficiency is higher for the heavy censoring ( 3,20  mn ) than for other
censoring ).8,5,20(  mn

v) The testimators 2,1,
~

ii are biased (see tables 5 and 6). The bias ratio is
reasonably small, in the neighborhood of .1 In addition, the bias ratio of

1

~ is generally smaller than that of ,
~

2 and hence the computations of bias
ratio of 2

~ are not reported here for space consideration.

vi) From the computations of relative efficiency given in tables 1-4, as expected
the shrinkage estimators give higher relative efficiency in some region
around o . It is observed that the estimators 2,1,

~
ii have a smaller

mean squared error than the classical single stage estimator ̂ for the
effective interval (broader range of  | | for which efficiency is greater than
unity) ,51.0   when ,1a and .5.0c For the choice ,005.0,1  ca the
mean squared error is much smaller than the classical estimator (as much
as 494 times for 3m ), but the effective interval decreases to .7.15.0  

Thus, 2,1,
~

ii may be used to improve the efficiency if the ratio  /0 is
expected to belong to the above effective intervals.

vii) It is seen that the relative efficiency 2

~ is much higher than that of 2

~
when 005.0,1  ca and o is sufficiently close to . In fact for

,5.0,1  ca and 31.0   both estimators will give almost the same
order of efficiency (tables 1-6).

4.2  Numerical Results of
ip

~

For the estimators ,2,1,
~

i
ip the computation was done for

,.,.,.,. 15010050010 ,.,.,..,.,.,,,,, 501005000100050c853m2030nR j 
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1,5.0,1.0,05.0,01.0,001.0a and .5)1(2)1.0(1.0 some sample values of the relative
efficiency are given in Tables 7-14, and some values of the bias ratio are given
for some selected values of amn ,, and c.

i) It is observed from our computations given in tables 9-16, that the relative
efficiency of 2,1,

~
i

ip decreases with size  of the pretest region, i.e.,
01.0 gives higher relative efficiency than for other values of .

ii) Both regions 2,1, jR j give a smaller mean squared error for 2,1,
~

i
ip

than the classical estimator for the intervals 210110   .,.

respectively when 004.0,5.0  ca and decreases otherwise.

iii) It is observed from our computations given in tables 7-12 for fixed  and c
that the relative efficiency of 2,1,

~
i

ip is a concave function with .5.0a

iv) It is also seen that from Tables 7-12, for fixed ca, and , the relative
efficiency of 2,1,

~
i

ip is a decreasing function of m.

v) The region 2R yields higher relative efficiency than ,1R for both 2,1,
~

i
ip

and hence the computations of bias ratio and relative efficiency of

ip
~ when 1R is used, are not reported here for space consideration.

vi) It is seen that the relative efficiency of
2

~
p is much higher than that of

1

~
p

when .1

vii) It is observed that the testimators 2,1,
~

i
ip are biased. The bias ratio of

1

~
p is reasonably small for all values of m, ca, and  (tables13 and 14).

4.3 Comparisons

Comparing results of 2,1,
~

ii given in tables 1-4 with the tables given in (Singh
and Bhatkulikar 1977, Pandey 1983, Pandey, Malik, et. al. 1989, Pandey and
Singh 1993, and Singh and Shukla 2000), it is seen that our proposed
testimators are better both in terms of higher relative efficiency and for the wider
range of  for which efficiency is greater than unity. It may be noted here that
the numerical results of Singh and Shukla (2000) were calculated for the values
of ,0.45.0)/1()/( 0   which are equivalent to ,.)/( 22500   in our

computations. In addition, comparing results of testimators 2,1,
~

i
ip given in

tables 7-14 with the above existing results, it is seen that our testimators
compare favorably.

5. Conclusions
Modified shrinkage estimators in the class of Huntsberger (1955) type shrinkage
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estimator ~ have been suggested. The performance of the proposed shrinkage
estimators of the shape parameter when some prior guess value of  is available
have been analyzed by using the criteria of bias ratio, mean squared error and
relative efficiency. The class of estimators thus obtained seems to be an
improved version of the existing estimators given in subsection 4.3, subject to
certain conditions. The proposed estimators lead us to formulate many
interesting estimators of shrinkage type. It is identified that when the guessed
value 0 coincides exactly with the true value  and also when 0 is moderately
far away from , we get a larger gain in efficiency over the classical estimator in
the effective interval of  (broader range of  for which efficiency is greater than
unity). Thus, even if the experimenter has less confidence in the guessed value,
the efficiency of the proposed estimators can be increased considerably by
suitably choosing the scalars ca, and . The suggested estimators have
substantial gain in efficiency for a number of choices of ca, and , when the
sample size is small i.e., for the heavy censoring ( 3m20n  , ). Even for large
sample sizes, so far as the proper selection of scalars is concerned, all the
proposed estimators are found more efficient than the classical estimator but for
a smaller effective interval of . The superiority of the suggested estimators

p
~ over the existing estimators given in subsection 4.3 has also been recognized.
The suggested class of shrinkage estimators are therefore recommend for its use
in practice.
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Appendix

Table1: Showing )|ˆ;
~

( 11 Eff when a=1 and c=0.005

Table 2: Showing )|ˆ;
~

( 11 Eff when a=1 and c=0.5
λ
n

0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9 3

3 1.31 1.34 1.41 1.39 1.35 1.31 1.27 1.24 1.21 1.18 1.142 1.12 1.09 1.09 1.07

5 1.25 1.29 1.28 1.24 1.20 1.17 1.14 1.10 1.09 1.07 1.05 1.04 1.02 1.01 1.01

8 1.23 1.22 1.20 1.16 1.15 1.13 1.10 1.09 1.07 1.05 1.03 1.01 1.01 1.00 1.00

10 1.21 1.20 1.17 1.15 1.14 1.12 1.09 1.08 1.07 1.05 1.02 1.00 1.00 1.0 1

12 1.16 1.15 1.14 1.13 1.12 1.11 1.07 1.06 1.05 1.03 1.00 1.00 1 1 1

λ
n

0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9

3 0.52 0.95 1.18 1.11 1.73 2.99 6.03 17.46 65.68 31.95 3.92 1.96 1.09 0.87

5 0.39 0.44 0.59 0.99 1.41 2.57 4.96 11.99 24.18 15.26 3.65 1.51 0.89 0.80

8 0.20 0.35 0.49 0.87 1.25 2.26 4.06 7.86 13.81 9.38 3.18 1.40 0.80 0.74

10 0.18 0.29 0.43 0.78 1.17 1.79 3.71 5.21 5.63 4.39 2.31 1.35 0.76 0.68

12 0.11 0.19 0.33 0.56 1.01 1.41 1.81 2.01 1.43 1.30 1.11 1.00 0.70 0.51
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Table3: Showing )|ˆ;
~

( 22 Eff when a=1 and c=0.005

Table4: Showing )|ˆ;
~

( 22 Eff when a=1 and c=0.5

λ
n

0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9 3 5

3 2.37 3.99 3.81 3.21 2.69 2.32 2.06 1.86 1.73 1.61 1.46 1.36 1.29 1.24 1.11 1.04

5 2.16 2.21 1`.98 1.79 1.64 1.50 1.47 1.35 1.24 1.18 1.19 1.08 1.04 1.02 1.00 1.00

8 1.87 1.98 1.85 1.62 1.45 1.38 1.24 1.18 1.14 1.06 1.04 1.01 1.00 1.00 1.00 1

10 1.71 1.43 1.37 1.25 1.19 1.12 1.09 1.05 1.03 1.01 1 1 1 1 1 1

12 1.19 1.07 1.04 1.02 1.01 1.00 1 1 1 1 1 1 1 1 1 1

Table 5: Showing )/)|
~

(( 1 B when a=1 and c=0.5

λ
n

0.1 0.3 0.5 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9 3

3 -.60 -.26 -.13 -.07 -.05 -.04 -.03 -.03 -.02 -.01 -.01 -.00 -.00

5 -.30 -.05 -.01 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00

8 -.11 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00

10 -.03 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00

12 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00 -.00

Table 6: Showing )/)|
~

(( 2 B when a=1 and c=0.5

λ
n

0.1 0.3 0.5 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9 3

3 -.67 -.45 -.38 -.36 -.35 -.34 -.34 -.34 -.33 -.33 -.33 -.33 -.33

5 -.39 -.22 -.20 -.20 -.20 -.20 -.20 -.20 -.20 -.20 -.20 -.20 -.20

8 -.21 -.14 -.14 -.14 -.14 -.14 -.14 -.14 -.14 -.14 -.14 -.14 -.14

10 -.13 -.11 -.11 -.11 -.11 -.11 -.11 -.11 -.11 -.11 -.11 -.11 -.11

λ
n

0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.3 1.5 1.7 1.9

3 0.63 1.04 1.43 2.06 3.21 5.63 12.14 41.28 494.12 68.61 7.18 2.57 1.32 0.92

5 0.46 0.75 0.95 1.11 1.73 3.02 6.33 18.46 71.68 30.95 4.42 1.66 1.09 0.87

8 0.22 0.49 0.55 1.01 1.31 2.27 4.56 10.91 22.08 14.46 3.45 1.46 1.01 0.81

10 0.17 0.32 0.47 0.95 1.15 1.99 3.76 7.16 9.81 7.38 2.78 1.39 0.97 0.77

12 0.18 0.29 0.43 0.78 1.11 1.91 3.31 5.01 5.43 4.30 2.21 1.32 0.82 0.71
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12 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09 -.09

Table 7: Showing );|ˆ;
~

( 2111
REff p  when a=1, c=0.005, n=20, β0 = 1 and

α =0.01
λ
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 2.502 2.104 2.017 1.963 1.915 1.864 1.809 1.751 1.691 1.629 1.039 .657 .446

5 1.143 1.145 1.142 1.136 1.128 1.118 1.106 1.092 1.078 1.062 .877 .728 .643

8 1.018 1.019 1.019 1.019 1.018 1.017 1.016 1.014 1.012 1.009 .981 .959 .954

Table 8: Showing );|ˆ;
~

( 2111
REff p  when a=0.5, c=0.005, n=20, β0 = 1 and

α =0.01
λ
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 3.064 1.643 2.516 2.431 2.360 2.294 2.232 2.173 2.116 2.062 1.586 1.225 .967

5 1.518 1.405 1.299 1.278 1.264 1.250 1.237 1.223 1.210 1.197 1.075 .981 .919

8 1.119 1.046 1.044 1.041 1.039 1.036 1.034 1.031 1.029 1.026 1.007 .994 .989

Table 9: Showing );|ˆ;
~

( 2111
REff p  when a=0.1, c=0.005, n=20, β0 = 1 and

α= 0.01
λ
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 1.189 1.173 1.167 1.162 1.159 1.155 1.151 1.148 1.144 1.141 1.107 1.069 1.032

5 1.063 1.061 1.059 1.057 1.054 1.052 1.050 1.048 1.045 1.043 1.024 1.007 .999

8 1.012 1.011 1.011 1.010 1.009 1.008 1.008 1.008 1.007 1.006 1.003 1 .999

Table 10: Showing );|ˆ;
~

( 2212
REff p  when a=1, c=0.005, n=20, β0 = 1 and

α =0.01
λ
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 3.632 3.023 2.897 2.731 2.612 2.521 2.424 2.331 2.252 2.120 1.135 .552 .348

5 1.926 1.329 1.321 1.308 1.291 1.271 1.249 1.225 1.199 1.173 1 .712 .598

8 1.159 1.134 1.124 1.113 1.099 1.052 1.039 1.028 1.022 1.019 .996 .961 .941

Table 11: Showing );|ˆ;
~

( 2212
REff p  when a=0.5, c=0.005, n=20, β0 = 1 and

α =0.01
λ

n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 3.741 3.134 2.955 2.831 2.724 2.625 2.531 2.442 2.356 2.274 1.624 1.211 1.011
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5 2.068 1.721 1.396 1.360 1.385 1.320 1.305 1.280 1.255 1.211 1.082 1 .994

8 1.251 1.148 1.115 1.093 1.054 1.037 1.036 1.033 1.031 1.029 1.018 1 .992

Table 12: Showing );|ˆ;
~

( 2212
REff p  when a=0.1, c=0.005, n=20, β0 = 1 and

α =0.01
λ
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4

3 1.188 1.173 1.167 1.163 1.159 1.155 1.151 1.148 1.144 1.141 1.108 1.078 1.049

5 1.063 1.061 1.059 1.056 1.054 1.052 1.050 1.047 1.045 1.043 1.023 1.007 1

8 1.012 1.011 1.010 1.010 1.009 1.009 1.008 1.008 1.007 1.006 1.002 1 1

Table 13: Showing )/);|
~

(( 211
 RB p when a=0.5, c=0.005, n=20, β0 = 1 and

α =0.01
λ

n
0.1 0.2 0.4 0.5 0.7 0.8 0.9 1 2 3 4

3 -.112 -.101 -.090 -.090 -.080 -.070 -.067 -.061 -.001 .050 .090

5 -.031 -.030 -.021 -.021 -.021 -.011 -.011 -.010 -.000 .001 .011

8 -.001 -.001 -.000 -.000 -.000 -.000 -.000 -.000 -.000 .000 .001

Table 14: Showing )/);|
~

(( 222
 RB p when a=0.5, c=0.005, n=20, β0 = 1 and

α =0.01
λ

n
0.1 0.2 0.4 0.5 0.7 0.8 0.9 1 2 3 4

3 -.552 -.549 -.537 -.531 -.519 -.513 -.507 -.501 -.445 -.395 -.357

5 -.272 -.270 -.267 -.263 -.262 -.260 -.259 -.257 -.245 -.235 -.230

8 -.146 -.146 -.145 -.145 -.145 -.144 -.144 -.144 -.143 -.142 -.142


