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Abstract  

A novel flexible probability tool for modeling extreme and zero-inflated count data with various hazard rate shapes 

is introduced in this work. Numerous pertinent statistical and mathematical features are developed and examined. 

Some important mathematical features are obtained, including, ordinary moments, central moment, dispersion 

index, L-moments, cumulant generating function and moment generating function. A specific example is 

investigated numerically and visually examined. The new class of hazard rate function offers a broad range of 

flexibility, including "monotonically decreasing," "upside down," "monotonically increasing," "constant," 

"decreasing-constant," and "decreasing-constant-increasing (U-hazard rate function)". Furthermore, the new mass 

function accommodates many useful forms in the field of modeling, including the "right skewed with one peak", 

"right skewed with two peaks (right skewed and bimodal)", "symmetric mass function" "left skewed with one 

peak". The conditional expectation of a certain function of the random variable as well as the hazard function are 

used to provide relevant characterization results.  For the estimation process, evaluating and comparing inferential 

effectiveness, Bayesian and non-Bayesian estimation approaches are taken into consideration. We propose and 

explain the Bayesian estimation method for the squared error loss function. For comparing non-Bayesian versus 

Bayesian estimates, Markov chain Monte Carlo simulation experiments are carried out using the Metropolis 

Hastings algorithm and the Gibbs sampler. The Bayesian and non-Bayesian approaches are compared using four 

real-life applications of count data sets. By using four additional real count data applications, the significance and 

adaptability of the new discrete class are demonstrated. 

 

Keywords: Bayesian Estimation; Discretization; Metropolis-Hastings; Markov Chain Monte Carlo; Maximum 

Likelihood; Cramér-von-Mises; Squared Error Loss Function; Zero-inflated Count Data 
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1.Introduction and genesis 

In recent years, discretization of known continuous probability distributions has received a great deal of attention. The 

discrete Rayleigh G family of distributions, a novel discrete counterpart based on the continuous Rayleigh distribution, 

is presented, and studied in this work. Moments, the cumulant generating function, the moment generating function, 

the probability generating function, the central moment, and the dispersion index (DisIx) are among the pertinent 

mathematical features that are calculated and analyzed. It is described how a particular variation of the new family 

relates to the well-known Weibull model. There are a few traditional (non-Bayesian) estimation techniques that are 

discussed and taken into consideration, including the Cramér-von-Mises estimation (CVME), the ordinary least 

squared estimation (OLSE), the maximum likelihood estimation (MLE), and the weighted least squared estimation 
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(WLSE). Since there are no conventional ways to acquire the conditional posteriors of the parameters, it is advised to 

take samples from the joint posterior of the parameters using a hybrid Markov chain Monte Carlo method. 

 

Additionally, the squared error loss function Bayesian estimating method is described. To compare non-Bayesian 

versus Bayesian estimates, Markov chain Monte Carlo simulations are used. Both the Gibbs sampler and the 

Metropolis Hastings algorithms are used. Four genuine data sets serve as illustrations of the adaptability and 

significance of the new family. A better match is offered by the new family than by the sixteen rival families. Future 

research and consideration might be given to a variety of particular member distributions. One may take into account 

the bivariate and multivariate expansions of this new family in future study. The Rayleigh model is a continuous 

probability distribution for nonnegative-valued random variables (RVs) that is used in probability and statistics 

literature. It is consistent with the chi-square distribution with two degrees of freedom up to rescaling.  When the total 

size of a vector is correlated with its directional components, a Rayleigh distribution is commonly seen relevant. The 

Rayleigh distribution may naturally appear, for illustration, when the two-dimensional analysis of wind velocity is 

performed. The total wind speed (vector magnitude) will be characterized by a Rayleigh model if each component has 

zero mean, equal variance, and is normally distributed. The case of random complex numbers with real and imaginary 

components that are independently and identically distributed as Gaussian with equal variance and zero mean provides 

a second illustration of the distribution. In that case, the complex number's absolute value has a Rayleigh distribution.  

 

A RV 𝑋 is said to have Rayleigh model if its cumulative distribution function (CDF) is given by 

𝐹𝛼(𝓍) = 1 − 𝑒𝑥𝑝[−(𝛼𝓍)2] |(𝓍≥0 and 𝛼>0). 

The generated Rayleigh G (GRG) family's CDF may then be calculated as 

𝐹𝛼,𝜎,𝜳(𝓍) = 1 − 𝑒𝑥𝑝 {−[𝛼𝑯𝜎,𝜳(𝓍)]
2

} |(𝓍∈𝑅,𝜎>0). 

The function 𝑯𝜎,𝜳(⋅) refers to the generated odd ration function, where 

𝑯𝜎,𝜳(⋅) =
𝐺𝜳

𝜎 (⋅)

1 − 𝐺𝜳
𝜎(⋅)

, 

and 𝐺𝜳
𝜎 (⋅) refers to the CDF of the exponentiated base line model. Let  

𝛼2 = − log(𝜋), 

then, the CDF of the discrete generated Rayleigh G family (DGR-G) can be expressed as 

𝐹𝜋,𝜳(𝓍) = 1 − 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

   |(𝜋∈(0,1) and 𝓍∈𝓝•=𝓝∪{0}).  

(1) 

 It is possible to write the corresponding reliability function (RF) as 

𝑆𝜋,𝜎,𝜳(𝓍) = 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

   |(𝜋∈(0,1) and 𝓍∈𝓝•). (2) 

The probability mass function (PMF) of the discrete counterpart of the DGR-G family corresponding to (2) may be 

written, thanks to Kemp (2004), as 

𝑓𝜋,𝜎,𝜳(𝓍) = 𝑆𝛼,𝜎,𝜳(𝓍 − 1) − 𝑆𝜋,,𝜎,𝜳(𝓍). 

Therefore, the PMF can be expressed as  

𝑓𝜋,𝜎,𝜳(𝓍) = 𝜋𝑯𝜎,𝜳
2 (𝓍)

− 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

   |(𝜋∈(0,1) and 𝓍∈𝓝•), (3) 

where 𝐻𝜎,𝜳(𝓍) refers to function of the generated odd ratio of any discrete non-negative random variable (NNRV) 𝑋. 

The DGR-G family's hazard rate function (HRF) may be expressed as ℎ𝜋,𝜎,𝜳(𝓍) = 𝑓𝜋,𝜎,𝜳(𝓍)/𝑆𝜋,𝜎,𝜳(𝓍 − 1), then 

ℎ𝜋,𝜎,𝜳(𝓍) = 1 − 𝜋𝑯𝜎,𝜳
2 (𝓍+1)−𝑯𝜎,𝜳

2 (𝓍)
. (4) 

In the statistical literature, many discrete versions of the continuous distributions have been proposed and studied such 

as a generalization of the Poisson distribution by Consul et al. (1973), the discrete Weibull distribution (DW) by 

Nakagawa and Osaki (1975), the discrete Rayleigh distribution (DR) by Roy (2004), discrete half-normal distribution 

by Kemp (2008), discrete Pareto distribution (DPa) by Krishna and Pundir (2009), a novel discrete geometric 

distribution (DGc) by Gomez-Déniz (2010), the discrete inverse-Weibull distribution (DIW) by Jazi et al. (2010), the 

discrete Lindley distribution (DLi) by Gommez-Déniz and Calderin-Ojeda (2011), the discrete generalized 

exponentiated type II distribution (DGE-II) by Nekoukhou et al. (2013), the discrete inverse Rayleigh distribution 

(DR) by Hussain and Ahmad (2014), the exponentiated discrete Weibull distribution  (EDW) by Nekoukhou and 

Bidram (2015), the discrete Lomax distribution (DLx) by Para and Jan (2016),  discrete log-logistic model (DLL) by 

Para and Jan (2016), the discrete Lindley type II distribution (DLi-II) by Hussain et al. (2016), the discrete Burr type 

XII distribution (DBXII) by Para and Jan (2016), the exponentiated discrete Lindley distribution (EDLi) by El-

Morshedy et al. (2020), Discrete Burr-Hatke model with some properties, different estimation methods and regression 
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modeling by El-Morshedy et al. (2020), Discrete generalized Burr-Hatke model with properties, different estimation 

methods and characterizations by Yousof et al. (2021), The discrete inverse Burr model with characterizations, 

properties, applications to count data, Bayesian and non-Bayesian estimations by Chesneau et al. (2022), among 

others. Numerous current families can benefit from the use of a variety of practical discretization techniques (see 

Hamedani et al. (2018a,b, 2019), Cordeiro et al. (2018), Korkmaz et al. (2018a,b), and Nascimento et al. (2019)). 

 

Although there are many discrete distributions in statistical literature, the presence of discrete G families is still rare, 

the fact is there are not many discrete G families in the statistical literature. Therefore, we can limit these families to 

the following: discrete Gompertz G family of distributions by Eliwa et al. (2020), discrete Rayleigh G by Aboraya et 

al. (2020), discrete Weibull G family by Ibrahim et al. (2021), A discrete analogue of odd Weibull-G family of 

distributions with some properties, Bayesian and non-Bayesian estimation and count data modeling by El-Morshedy 

et al. (2022). and A discrete exponential generalized-G family of distributions with mathematical Properties, Bayesian 

and non-Bayesian estimators for modeling engineering, medical, and agriculture count data. by Eliwa et al. (2022). 

Therefore, we are excited to present this new family, study it theoretically and practically, and present a deep applied 

study of it based on different data in its form and nature.   The following motivations are behind our decision to 

introduce the DGR-G family: 

I. Creating new probability mass functions that can be, among other helpful forms, "symmetric," "asymmetric 

and bimodal,", "right skewed with a heavy tail," "asymmetric and left skewed," and "symmetric and right 

skewed." Since the probability of mass function for novel models is so flexible, we may use them to study 

variety of data environments. 

II. Introducing a few new, unique models that use various hazard rate functions, including "decreasing-

constant," "constant," "bathtub (U- hazard rate function)" "monotonically decreasing ", "monotonically 

increasing" and "decreasing-constant"." The distribution's flexibility increases with the number of different 

failure rate types. The job of many practitioners who may employ the new distribution in statistical modeling 

and mathematical analysis is made easier by these forms. We have paid a lot of attention to the issue of 

checking the failure rate function for this specific purpose. 

III. The new distribution's flexibility depends on several factors, including the magnitude of the skew coefficient, 

kurtosis coefficient, failure rate function, and variety in the PMF and failure rate functions. The probability 

distribution's applicability and efficacy in statistical modeling are also critical in this context. Upon closer 

inspection, we found that the innovative probability mass function was extremely versatile in these and other 

areas. This inspired us to conduct a detailed analysis of this probability distribution. 

IV. Putting out new discrete models to describe real data that is "over-dispersed," "equal-dispersed," and "under-

dispersed." As will be seen, the new discrete family has demonstrated a surprising advantage in modeling 

various forms of data, regardless of whether they are symmetric or asymmetric or whether they contain 

outliers or not. 

V. Introducing novel discrete models for the analysis of zero-inflated and extreme count data. 

VI. Compare the estimating techniques for simulated and real-world data in order to suggest the most appropriate 

technique in each situation. 

VII. The cornerstone of a statistical model known as a zero-inflated model in statistics is a zero-inflated 

probability distribution, or distribution that allows multiple zero-valued observations. For instance, the 

number of insurance claims within a community for a specific type of risk would be zero-inflated if people 

who are unable to file a claim because they have not acquired insurance against the risk. In this work, we are 

inspired to utilize the novel family instead of the zero-inflated Poisson regression model, which is frequently 

used to model and forecast zero-inflated count data. 

VIII. The new family under the Weibull baseline model produced appropriate results in statistical modeling of the 

bathtub hazard rate count data, and as a consequence, the new family under the Weibull baseline is advised 

for modeling the bathtub hazard rate count data. Additionally, the same baseline model may adequately 

explain the monotonically increasing failure rate count data. 

IX. The new family was a suitable alternative to handle zero-inflated medical data with a decreasing failure rate 

and certain outliers. 

X. The new class was a suitable choice for modeling zero-inflated agricultural data that has a decreasing-

increasing-decreasing failure rate and contains some outliers. 

XI. In fact, we experimentally show that the proposed G family of distributions matches more closely four real 

data sets than other sixteen extended competitive distributions with three and four parameters. 

XII. Regarding the estimation and statistical inference side, other traditional (non-Bayesian) estimating techniques 

are considered, such as the maximum likelihood estimation, ordinary least square estimation, and weighted-
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least square estimation. Also taken into consideration is the Bayesian estimate under the squared error loss 

function. The traditional Markov chain Monte Carlo simulations are used to contrast the Bayesian and 

conventional approaches. Four actual data sets are used to demonstrate and debate the applicability of the 

DGR-G family. Due to the consistent Akaike information criteria, Akaike information criterion, Chi-square, 

Kolmogorov-Smirnov, and its related P-value, the DGR -G family under the Weibull model case gave a 

better match than many rival models. 

 

The structure of this work is as follows. In Section 2, a few mathematical characteristics of the DGR-G family are 

deduced and examined. In Section 3, several characterization findings are presented. Section 4 presents estimation 

and inference techniques. In Section 5, Markov chain Monte Carlo simulations are used to contrast Bayesian and non-

Bayesian estimation techniques. Section 6 deals with four actual data examples for contrasting Bayesian and non-

Bayesian estimate techniques. In Section 7, four applications for contrasting the competing discrete models are taken 

into account. Section 8 gives some concluding remarks. 

 

2.Properties 

2.1 Ordinary moments 

Theorem 2.1: 

Let 𝑋 be an NNRV, where 𝑋 ∼DGR-G(𝜋, 𝜎, 𝜳) family, then the 𝓇th moment of 𝑋 can be expressed as 

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) = ∑[𝓍𝓇 − (𝓍 − 1)𝓇]

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...). 
 

(5) 

Proof: Since 

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) = ∑ 𝓍𝓇

∞

𝓍=0

𝑆𝜋,𝜎,𝜳(𝓍). 

Then, 

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) = ∑ 𝓍𝓇

∞

𝓍=0

[𝜋𝑯𝜎,𝜳
2 (𝓍)

− 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

] 

= ∑[𝓍𝓇 − (𝓍 − 1)𝓇]

∞

𝓍=1

𝑆𝜋,𝜎,𝜳(𝓍 − 1) 

= ∑[𝓍𝓇 − (𝓍 − 1)𝓇]

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...). 

Then, using (5), the mean (𝜇1,𝑋
′ ), and 𝜇2,𝑋

′  can be respectively written as  

𝜇1,𝑋
′ = 𝐸(𝑋) = ∑ 𝜋𝑯𝜎,𝜳

2 (𝓍)

∞

𝓍=1

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1), 

and 

𝜇2,𝑋
′ = 𝐸(𝑋2) = ∑(2𝓍 − 1)

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=2). 

2.2 Central moments 

The 𝓇th central moment of 𝑋, say 𝜇𝓇,𝑋, is  

𝜇𝓇,𝑋 = 𝐸(𝑋 − 𝜇1,𝑋
′ )𝓇 = ∑(−𝜇1

′ )𝓀

𝓇

𝓀=0

(
𝓇
𝓀

) 𝜇𝓇−𝓀
′ |

(|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...))
. 

So, the variance (𝑉(𝑋)) from  

𝐸(𝑋 − 𝜇1,𝑋
′ )

2
=  𝜇 ∑(−𝜇1

′ )𝓀

𝓇

𝓀=0

(
𝓇
𝓀

) 𝜇2−𝓀,𝑋
′ |

(|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=2))
, 

can be derived using the ordinary moments 

𝜇2,𝑋 = 𝑉(𝑋) = 𝜇2,𝑋
′ − (𝜇1,𝑋

′ )
2

= ∑(2𝓍 − 1)

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

− (𝜇1,𝑋
′ )

2
|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=2). 



Pak.j.stat.oper.res.  Vol.21  No. 3 2025 pp 403-427  DOI: https://doi.org/10.18187/pjsor.v21i3.4750 

  
A Flexible Discrete Rayleigh-G Family for Engineering and Reliability Modeling: Properties, Characterizations, Bayesian and Non-Bayesian Inference 407 

 

The DisIx or the variance to mean ratio (VMR) of the DGR-G family can be derived as  

DisIx(𝑋) =
∑ (2𝓍 − 1)∞

𝓍=1 𝜋𝑯𝜎,𝜳
2 (𝓍)

∑ 𝜋
𝑯𝜎,𝜳

2 (𝓍)∞
𝓍=1  

− ∑ 𝜋𝑯𝜎,𝜳
2 (𝓍)

∞

𝓍=1

|(𝓍∈𝓝• and π∈(0,1)). 

When describing the distribution of events or objects in time or space, the VMR is utilized. The VMR is approximately 

1 if the distribution is random, that is, if it can be represented by the Poisson process or one of its multidimensional 

counterparts. Greater results (VMR >1) indicate the presence of geographical or temporal clusters or "clumps." 

Smaller values (1> VMR) represent a distribution that is more equal or uniform than random, or mutual "avoidance" 

of occurrences or objects in time or space. The essential characteristic of the Poisson distribution—that the variance 

and mean are equal—gives rise to these characteristics of VMR. The Variance/Mean Ratio test makes use of the VMR. 

 

2.3 The moment and cumulant generating function (MGF & CGF) 

Theorem 2.2: 

Let 𝑋 be an NNRV, where 𝑋 ∼DGR-G(𝜋, 𝜎, 𝜳) family, then the MGF of 𝑋 can be obtained as 

𝑀𝑋(𝑡) = 1 + ∑{𝑒𝑥𝑝(𝑡𝑋) − 𝑒𝑥𝑝[𝑡(𝑋 − 1)]}

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...). 
 

(6) 

Proof:  

The MGF of our NNRV 𝑋 can be derived from 

𝑀𝑋(𝑡) = ∑ 𝑒𝑥𝑝(𝑡𝑋)

∞

𝓍=0

𝑆𝜋,𝜳(𝓍). 

Using (3) we have  

𝑀𝑋(𝑡) = ∑ 𝑒𝑥𝑝(𝑡𝑋)

∞

𝓍=0

[𝜋𝑯𝜎,𝜳
2 (𝓍)

− 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

], 

then 

𝑀𝑋(𝑡) = 1 + ∑{𝑒𝑥𝑝(𝑡𝑋) − 𝑒𝑥𝑝[𝑡(𝑋 − 1)]}

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...). 

 

The first 𝓇 derivatives of (6), with respect to 𝑡|𝑡 = 0, yield the first 𝓇 raw moments, i.e.,  

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) =

𝑑𝓇

𝑑𝑡𝓇
𝑀𝑋(𝑡)|(𝑡=0 and 𝓇=1,2,3,...), 

where 

𝜇1,𝑋
′ = 𝐸(𝑋) =

𝑑

𝑑𝑡
𝑀𝑋(𝑡)|𝑡=0 = ∑ 𝜋𝑯𝜎,𝜳

2 (𝓍)

∞

𝓍=1

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1), 

 

𝜇2,𝑋
′ = 𝐸(𝑋2) =

𝑑2

𝑑𝑡2
𝑀𝑋(𝑡)|(𝑡=0) = ∑(2𝓍 − 1)

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=2), 

 

𝜇3,𝑋
′ = 𝐸(𝑋3) =

𝑑3

𝑑𝑡3
𝑀𝑋(𝑡)|(𝑡=0) = ∑[3𝓍(𝓍 − 1) + 1]

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=3), 

and 

𝜇4,𝑋
′ = 𝐸(𝑋4) =

𝑑4

𝑑𝑡4
𝑀𝑋(𝑡)|(𝑡=0) = ∑[𝓍4 − (𝓍 − 1)4]

∞

𝓍=1

𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=4). 

The CGF is the logarithm of the MGF. Thus, 𝓇th cumulant, say 𝜅𝓇,𝑋, can be obtained from 

𝜅𝓇,𝑋 =
𝑑𝓇

𝑑𝑡𝓇
𝑙𝑜𝑔[𝑀𝑋(𝑡)] |(𝑡=0, and 𝓇=1,2,3,...). 

The 1st cumulant (𝜅1,𝑋) is the mean (𝜇1,𝑋
′ ), the 2nd cumulant (𝜅2,𝑋) is the variance (𝑉𝑎𝑟(𝑋)), and the 3rd cumulant 

(𝜅3,𝑋) is the same as the 3rd central moment 𝜅3,𝑋 = 𝜇3,𝑋, that being 𝜅1,𝑋 = 𝜇1,𝑋
′ = 𝐸(𝑋), 𝜅2,𝑋 = 𝜇2,𝑋 = 𝜇2,𝑋

′ − 𝜇1,𝑋
′2  and 

𝜅3,𝑋 = 𝜇3,𝑋 = 𝜇3,𝑋
′ − 3𝜇2,𝑋

′ 𝜇1,𝑋
′ + 2𝜇1,𝑋

′3 . However the 4th and higher order cumulants are not equal to the central 

moments. In certain circumstances, theoretical solutions to issues that use cumulants instead of moments are more 
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straightforward, especially when there are two or more statistically independent RVs, the 𝓇th order cumulant of their 

sum is equal to the sum of their 𝓇th order cumulants. Moreover, the cumulants can also be obtained from 

𝜅𝓇,𝑋|𝓇≥1 = 𝜇𝓇,𝑋
′ − ∑ (

𝓇 − 1
𝓀 − 1

)

𝓇−1

𝓀=0

𝜇𝓇−𝓀,𝑋
′ 𝜅𝓀,𝑋. 

It is possible to write the probability generating function as 

𝑃𝑋(𝑠) = 1 + ∑ (1 −
1

𝑠
)

∞

𝓍=1

𝑠𝓍𝜋𝑯𝜎,𝜳
2 (𝓍)

|(𝓍∈𝓝•,𝜋∈(0,1) and 𝓇=1,2,3,...). 

It has several applications in a variety of disciplines, including computer science, information theory, quantum 

information, survival analysis, and econometrics. It is possible to develop and research the measure of variation of the 

uncertainty of the random variable X in a separate article. It is possible to derive and use L-moments in a manner 

similar to how ordinary moments are. However, a linear combination of the order statistics may also be used to 

estimate the L-moments. The L-moments are there whenever the distribution's mean is present. It is possible to 

construct explicit formulas for the L-moments as infinitely many weighted linear combinations of the appropriate 

DGR-G order statistics' means. The predicted order statistics may be written as a linear function of the L-moments, 

which can be described as 

𝜉𝓇,𝑋 =
1

𝓇
∑ 𝐸(𝑋𝓇−𝜍:𝜍)𝒲(𝓇, 𝜍)

𝓇−1

𝜍=0

| 𝓇≥1, 

where 

𝒲(𝓇, 𝜍) = (
𝓇 − 1

𝜍
) (−1)𝜍. 

The first four L-moments are given by:  

𝜉1,𝑋 = 𝜉1(𝑋) = 𝐄(𝑋1:1), 

𝜉2,𝑋 = 𝜉2(𝑋) =
1

2
𝐄(𝑋2:2 − 𝑋1:2),  

𝜉3,𝑋 = 𝜉3(𝑋) =
1

3
𝐄(𝑋3:3 − 2𝑋2:3 + 𝑋1:3) 

and  

𝜉4,𝑋 = 𝜉4(𝑋) =
1

4
𝐄(𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4). 

 

For the Weibull base line model and based on (3), the PMF of the discrete generated Rayleigh Weibull (DGR-W) 

model can be expressed as 

𝑓𝜋,𝜎,𝜃(𝓍) = 𝜋𝑯𝜎, 𝜃
2 (𝓍) − 𝜋𝑯𝜎, 𝜃

2 (𝓍+1)
  |(𝓍∈𝓝•,𝜋∈(0,1) and 𝜎,𝜃>0), 

𝑯𝜎, 𝜃
2 (𝓍) =

[1 − exp (−𝓍𝜃)]
𝜎

1 − [1 − exp (−𝓍𝜃)]𝜎
 

and 

𝑯𝜎, 𝜃
2 (𝓍 + 1) =

{1−exp [−(𝓍+1)𝜃]}
𝜎

1−{1−exp [−(𝓍+1)𝜃]}
𝜎. 

Clearly, when 𝜃 = 1 , the DGR-W model reduced to the DGR-exponential model. The PMF of the DGR-W model is 

plotted in Figure 1 for a variety of parameter values. Figure 2 displays many charts of the DGR-W model's HRF for 

various parameter values. Based on Figure 1, we conclude that the PMF of the DGR-W can be "right skewed with one 

peak", "right skewed with two peaks (right skewed and bimodal)", "symmetric mass function" "left skewed with one 

peak". Based on Figure 2, we see that the HRF of the DGR-W can be "monotonically decreasing," "upside down," 

"monotonically increasing," "constant," "decreasing-constant," and "decreasing-constant-increasing (U- hazard rate 

function)".  
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Figure 1: The PMF of the DGR-W for different parameters values. 

 

The size of the skew coefficient, kurtosis coefficient, failure rate function, and variety of the PMF and failure rate 

functions are some of the aspects that affect how flexible the new distribution is. The usefulness and effectiveness of 

the probability distribution in statistical modeling are also crucial in this situation. When we looked more closely, we 

discovered that the novel probability mass function was quite flexible in these and other areas. This motivated us to 

analyze this probability distribution in great depth. 
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Figure 2: The HRF of the DGR-W for different parameters values. 
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3. Characterizations Results 

In this Section, we present our characterizations of the DGR-G distribution in two subsections: (𝑖)  in terms of the 

truncated moments of certain function of the random variable, (𝑖𝑖) based on the hazard function.   

 

3.1 Characterizations Based on Conditional Expectation 

Proposition 3.1.1.  Let 𝑋 : 𝛺 → 𝑁[0] be a random variable. The PMF of 𝑋 is (3) if and only if 

𝐸 {[𝜋𝑯𝜎,𝜳
2 (𝑋)

+ 𝜋𝑯𝜎,𝜳
2 (𝑋+1)

]  | 𝑋 > 𝑘} = 𝜋𝑯𝜎,𝜳
2 (𝑘+1)

.                                        (7) 

Proof.  If 𝑋 has PMF (3), then for 𝑘 ∈ 𝑁[0], the left-hand side of  (7),  using telescoping sum formula, will be 

(1 − 𝐹𝜋,𝜎,𝜳(𝑘))
−1

∑ {𝜋2𝑯𝜎,𝜳
2 (𝓍)

− 𝜋2𝑯𝜎,𝜳
2 (𝓍+1)

}

∞

𝑥=𝑘+1

= 𝜋
−{

𝐺(𝑘+1)𝜎

1−𝐺(𝑘+1)𝜎}
2

∑ {𝜋𝑯𝜎,𝜳
2 (𝓍)

− 𝜋𝑯𝜎,𝜳
2 (𝓍+1)

}

∞

𝑥=𝑘+1

 

= 𝜋−𝑯𝜎,𝜳
2 (𝑘+1)

{𝜋2𝑯𝜎,𝜳
2 (𝑘+1)

} = 𝜋𝑯𝜎,𝜳
2 (𝑘+1)

.                                      

Conversely, if (7) holds, then 

∑ {[ 𝜋𝑯𝜎,𝜳
2 (𝓍)

+𝜋𝑯𝜎,𝜳
2 (𝓍+1)

] 𝑓𝜋,𝜎,𝜳(𝑥)}

∞

𝑥=𝑘+1

= (1 − 𝐹𝜋,𝜎,𝜳(𝑘)) 𝜋𝑯𝜎,𝜳
2 (𝑘+1)

= (
1 − 𝐹𝜋,𝜎,𝜳(𝑘 + 1)

+𝑓𝜋,𝜎,𝜳(𝑘 + 1)
) 𝜋𝑯𝜎,𝜳

2 (𝑘+1)
. (8) 

From (8), we also have 

∑ { [𝜋𝑯𝜎,𝜳
2 (𝓍)

+ 𝜋𝑯𝜎,𝜳
2 (𝑘+1)

] 𝑓𝜋,𝜎,𝜳(𝑥)}

∞

𝑥=𝑘+2

= (1 − 𝐹𝜋,𝜎,𝜳(𝑘 + 1)) 𝜋𝑯𝜎,𝜳
2 (𝑘+2)

.                         (9) 

Now, subtracting (9) from (8), yields        

[𝜋𝑯𝜎,𝜳
2 (𝑘+1)

+ 𝜋𝑯𝜎,𝜳
2 (𝑘+2)

] 𝑓(𝑘 + 1) = (1 − 𝐹(𝑘 + 1)) {𝜋𝑯𝜎,𝜳
2 (𝑘+1)

− 𝜋𝑯𝜎,𝜳
2 (𝑘+2)

} + 𝑓𝜋,𝜎,𝜳(𝑘 + 1)𝜋𝑯𝜎,𝜳
2 (𝑘+1)

. 

From the above equality, we have 

𝑓𝜋,𝜎,𝜳(𝑘 + 1)

1 − 𝐹𝜋,𝜎,𝜳(𝑘 + 1)
=

𝜋𝑯𝜎,𝜳
2 (𝑘+1)

− 𝜋𝑯𝜎,𝜳
2 (𝑘+2)

𝜋
𝑯𝜎,𝜳

2 (𝑘+2)
=

𝜋𝑯𝜎,𝜳
2 (𝑘+1)

𝜋
𝑯𝜎,𝜳

2 (𝑘+2)
− 1, 

which is the hazard function, (4) corresponding to the PMF (3), so 𝑋 has PMF (3) . 

 

3.2.  Characterizations of distributions based on hazard function 

Proposition 3.2.1. Let 𝑋: 𝛺 → 𝑁[0] be a random variable. The PMF of 𝑋 is (3) if and only if its hazard function 

satisfies the difference equation 

ℎ𝜋,𝜎,𝜳(𝑘 + 1) − ℎ𝜋,𝜎,𝜳(𝑘) =
𝜋𝑯𝜎,𝜳

2 (𝑘+1)

𝜋
𝑯𝜎,𝜳

2 (𝑘+2)
−

𝜋𝑯𝜎,𝜳
2 (𝑘)

𝜋
𝑯𝜎,𝜳

2 (𝑘+1)
,   k ∈ 𝑁,                                    (10), 

with the initial condition  ℎ𝜋,𝜎,𝜳(0) =
𝜋

𝑯𝜎,𝜳
2 (0)

𝜋
𝑯𝜎,𝜳

2 (1)
− 1.  

Proof. If 𝑋 has PMF (3), then clearly (10) holds. Now, if (10) holds, then for every  𝑥 ∈ 𝑁, we have 

∑

𝑥−1

𝑘=0

{ℎ𝜋,𝜎,𝜳(𝑘 + 1) − ℎ𝜋,𝜎,𝜳(𝑘)} = ∑ {
𝜋𝑯𝜎,𝜳

2 (𝑘+1)

𝜋
𝑯𝜎,𝜳

2 (𝑘+2)
−

𝜋𝑯𝜎,𝜳
2 (𝑘)

𝜋
𝑯𝜎,𝜳

2 (𝑘+1)
}

𝑥−1

𝑘=0

=
𝜋𝑯𝜎,𝜳

2 (𝓍+1)

𝜋
{

𝐺(𝑥+2)𝜎

1−𝐺(𝑥+2)𝜎}
2 −

𝜋𝑯𝜎,𝜳
2 (0)

𝜋
𝑯𝜎,𝜳

2 (1)
, 

or 

ℎ𝜋,𝜎,𝜳(𝑥) − ℎ𝜋,𝜎,𝜳(1) =
𝜋𝑯𝜎,𝜳

2 (𝓍+1)

𝜋
{

𝐺(𝑥+2)𝜎

1−𝐺(𝑥+2)𝜎}
2 −

𝜋𝑯𝜎,𝜳
2 (0)

𝜋
𝑯𝜎,𝜳

2 (1)
, 

or, in view of the initial condition 

ℎ𝜋,𝜎,𝜳(𝑥) =
𝜋𝑯𝜎,𝜳

2 (𝓍+1)

𝜋
𝑯𝜎,𝜳

2 (𝓍+2)
− 1,   𝑥 ∈ 𝑁[0], 

which is the hazard function (4), corresponding to the PMF (3).  
 

4.Estimation and inference 

The various estimating techniques, including classical and Bayesian techniques, will be covered in this section. There 

are many different types of classical techniques, some of which are based on maximizing theory and others on 

minimization theory. In any event, as will be thoroughly demonstrated in theory and practice, the classical approaches 
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generally differ from the Bayes method in origin and methodology of estimation. This section's two subsections 

discuss Bayesian and non-Bayesian estimating methods. The first paragraph takes into account eight non-Bayesian 

estimating approaches, including the MLE, OLSE, and WLSE methods. The second portion then takes into account 

the Bayesian estimation technique using the well-known squared error loss function (SELF). 

 

4.1 Non-Bayesian estimation methods 

4.1.1 The MLE method 

A statistical method known as maximum likelihood estimation (MLE) is used to estimate the unknown parameters of 

a probability distribution that has been assumed in light of certain observed data. To do this, a likelihood function is 

maximized to increase the probability of the observed data under the presumptive statistical model. The parameter 

space position where the likelihood function is maximized is known as the maximum likelihood estimate. A common 

method for drawing statistical conclusions is maximum likelihood because of its adaptive and transparent justification.  

If the likelihood function is differentiable, then maxima can be determined using the derivative test. For instance, the 

ordinary least squares estimator increases the likelihood of the linear regression model, enabling in some cases to 

explicitly solve the first-order conditions of the likelihood function. However, it will frequently be necessary to utilize 

numerical methods to ascertain the maximum of the probability function. From the perspective of Bayesian inference, 

MLE is often equivalent to maximum of a posteriori (MAP) estimates under a uniform prior distribution on the 

parameters. When likelihood serves as the goal function in frequentist inference, MLE is a special illustration of an 

extremum estimator. Let  𝑋1, 𝑋2, … , 𝑋𝓃  be a random sample (RS) from the DGR-G distribution. The log-likelihood 

function is given by 

ℓ = ℓ(𝜋, 𝜎, 𝜳𝑗) = ∑ log [𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)
− 𝜋

𝑯𝜎,𝜳𝑗
2 (𝓍𝒾:𝓃+1)

]

𝓃

𝒾=1

|(𝜋∈(0,1), 𝑗=1,2,..,𝑝 and 𝓍𝒾:𝓃∈𝓝•), 

which can be maximized either using the statistical programs or by solving the nonlinear system obtained from 

ℓ(𝜋, 𝜎, 𝜳𝑗) via differentiation. The score vector components are given below where 

𝑈(𝜋, 𝜎, 𝜳𝑗) = (𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜋, 𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜎, 𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜳𝑗)
𝑇

, 

𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜋 = ∑
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)𝜋
[𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)]−1
− 𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃 + 1)𝜋
[𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)]−1

𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)
− 𝜋

𝑯𝜎,𝜳𝑗
2 (𝓍𝒾:𝓃+1)

𝓃

𝒾=1

, 

𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜎 = ∑

𝜕𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)

𝜕𝜎
𝜋

𝑯𝜳𝑗
2 (𝓍𝒾:𝓃)

ln(𝜋) −
𝜕𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃 + 1)

𝜕𝜎
𝜋

𝑯𝜳𝑗
2 (𝓍𝒾:𝓃+1)

ln(𝜋)

𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)
− 𝜋

𝑯𝜎,𝜳𝑗
2 (𝓍𝒾:𝓃+1)

𝓃

𝒾=1

 

and 

𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)/𝜕𝜳𝑗 = ∑

𝜕𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)

𝜕𝜳𝑗
𝜋

𝑯𝜳𝑗
2 (𝓍𝒾:𝓃)

ln(𝜋) −
𝜕𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃 + 1)

𝜕𝜳𝑗
𝜋

𝑯𝜳𝑗
2 (𝓍𝒾:𝓃+1)

ln(𝜋)

𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃)
− 𝜋

𝑯𝜎,𝜳𝑗
2 (𝓍𝒾:𝓃+1)

𝓃

𝒾=1

|(𝑗=1,2,..,𝑝), 

where 
𝜕

𝜕𝜎
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃) = 2𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃)

𝜕

𝜕𝜎
𝑯𝜎,𝜳𝑗

(𝓍𝒾:𝓃), 

𝜕

𝜕𝜎
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃 + 1) = 2𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃 + 1)

𝜕

𝜕𝜎
𝑯𝜎,𝜳𝑗

(𝓍𝒾:𝓃 + 1), 

𝜕

𝜕𝜳𝑗

𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃) = 2𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃)

𝜕

𝜕𝜳𝑗

𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃), 

and 
𝜕

𝜕𝜳𝑗

𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃 + 1) = 2𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃 + 1)

𝜕

𝜕𝜳𝑗

𝑯𝜎,𝜳𝑗
(𝓍𝒾:𝓃 + 1). 

Setting 

0 =
𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)

𝜕𝜋
=

𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)

𝜕𝜎
=

𝜕ℓ(𝜋, 𝜎, 𝜳𝑗)

𝜕𝜳𝑗

 

and solving them simultaneously yields the MLEs for the parameters of the DGR-G family. The Newton-Raphson 

algorithms is employed for obtaining the numerical solutions in such cases. 
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41.2 The CVME method 

The CVME of the parameters 𝜋, 𝜎, 𝜳𝑗 are obtained via minimizing the following expression with respect to 𝜋, 𝜎 

and 𝜳𝑗 respectively, where 

𝐶𝑉𝑀(𝜋,𝜎,𝜳𝑗) =
1

12
𝓃−1 + ∑ [𝐹𝜋,𝜎,𝜳𝑗

(𝓍𝒾:𝓃) − 𝒸(𝒾,𝓃)
[1]

]
2

𝓃

𝒾=1

|(𝜋∈(0,1) and 𝓍𝒾:𝓃∈𝓝•), 

and where 𝒸(𝒾,𝓃)
[1]

=
2𝒾−1

2𝓃
 and 

𝐶𝑉𝑀(𝜋,𝜎,𝜳𝑗) = ∑ [1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[1]
]

2
𝓃

𝒾=1

. 

The, CVMEs are obtained by solving the following two non-linear equations  

0 = ∑ (1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[1]
)

𝓃

𝒾=1

𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

0 = ∑ (1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[1]
)

𝓃

𝒾=1

𝜛(𝜎)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

 

and  

0 = ∑ (1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[1]
)

𝓃

𝒾=1

𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

where 

𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) = 𝜕𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃)/𝜕𝜋 , 

𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) = 𝜕𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃)/𝜕𝜎 

and 

𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) = 𝜕𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃)/𝜕𝜳𝑗 

are the first partial derivatives of the CDF of DGR-G distribution with respect to 𝜋, 𝜎 and 𝜳𝑗 respectively. 

 

4.1.3 OLSE method 

Geometrically, this is described as the sum of the squared distances, measured parallel to the axis of the dependent 

variable, between each data point in the set and its corresponding point on the regression surface. The better the model 

fits the data, the lesser the differences. The resulting estimator may be expressed by a simple formula, especially in 

the case of a basic linear regression when there is only one regressor on the right side of the regression equation. Let 

𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃) denote the CDF of DGR-G model and let 𝑋1 < 𝑋2 < ⋯ < 𝑋𝓃 be the 𝓃 ordered RS. The OLSEs are 

obtained upon minimizing  

𝑂𝐿𝑆𝐸(𝜋,𝜎,𝜳𝑗) = ∑ [𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃) − 𝒸(𝒾,𝓃)

[2]
]

2
𝓃

𝒾=1

, 

then, we have  

𝑂𝐿𝑆𝐸(𝜋,𝜎,𝜳𝑗) = ∑ [1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
]

2
𝓃

𝒾=1

, 

where  𝒸(𝒾,𝓃)
[2]

=
𝒾

𝓃+1
. The LSEs are obtained via solving the following non-linear equations 

0 = ∑ [1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
]

𝓃

𝒾=1

𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

0 = ∑ [1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
]

𝓃

𝒾=1

𝜛(𝜎)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

and  

0 = ∑ [1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
]

𝓃

𝒾=1

𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 
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where 𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 𝜛(𝜎)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) and 𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) defined above. 

 

 

 

4.1.4 WLSE method 

Weighted least squares (WLS), also known as weighted linear regression (WLR), which integrates information about 

the variance of the data into the regression, is a generalization of ordinary least squares and linear regression. WLS is 

yet another generalized least squares variant. The WLSE are obtained by minimizing the function 𝑊𝐿𝑆𝐸(𝜋,𝜎,𝜳𝑗) with 

respect to 𝜋, 𝜎 and  𝜳𝑗   

𝑊𝐿𝑆𝐸(𝜋,𝜎,𝜳𝑗) = ∑ 𝒸(𝒾,𝓃)
[3]

𝓃

𝒾=1

[𝐹𝜋,𝜎,𝜳𝑗
(𝓍𝒾:𝓃) − 𝒸(𝒾,𝓃)

[2]
]

2

, 

where 𝒸(𝒾,𝓃)
[3]

= [(1 + 𝓃)2(2 + 𝓃)]/[𝒾(1 + 𝓃 − 𝒾)]. The WLSEs are obtained by solving 

0 = ∑ 𝒸(𝒾,𝓃)
[3]

𝓃

𝒾=1

[1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
] 𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

0 = ∑ 𝒸(𝒾,𝓃)
[3]

𝓃

𝒾=1

[1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
] 𝜛(𝜎)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

and  

0 = ∑ 𝒸(𝒾,𝓃)
[3]

𝓃

𝒾=1

[1 − 𝜋
𝑯𝜎,𝜳𝑗

2 (𝓍𝒾:𝓃+1)
− 𝒸(𝒾,𝓃)

[2]
] 𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 

where 𝜛(𝜋)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗), 𝜛(𝜎)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) and 𝜛(𝜳𝑗)(𝓍𝒾:𝓃 + 1, 𝜋, 𝜎, 𝜳𝑗) defined above. 

 

4.2 Bayesian estimation 

Before discussing how a Bayesian could estimate a population parameter, it is crucial to understand one key difference 

between frequentist and Bayesian statisticians. The difference is whether a statistician considers a parameter to be an 

unknowable constant or a random variable. An estimator or decision rule used in estimating theory and decision theory 

that minimizes the posterior expected value of a loss function is referred to as a Bayes estimator, also known as a 

Bayes action (i.e., the posterior expected loss). In other words, it maximizes the posterior expectation of the utility 

function. In the context of Bayesian statistics, maximum of a posteriori estimate is a distinct method of creating an 

estimator. Therefore, the numerical approximation is necessary. A set of algorithms known as Markov chain Monte 

Carlo (MCMC) techniques is used in statistics to sample probability distributions. By creating a Markov chain with 

the desired distribution as its equilibrium distribution and recording states from the chain, one may obtain a sample of 

the desired distribution. As the number of steps rises, the sample distribution closely mimics the actual target 

distribution. Several techniques are available for chain creation, most notably the Metropolis-Hastings algorithm.  

 

Assume the beta, gamma and uniform priors for the parameters 𝜋, 𝜎 and 𝜳𝑗 respectively. Then, 

𝓅1,(𝜙1,𝜓1)(𝜋) ∼ beta(𝜙1, 𝜓1), 

 𝓅2,(𝜙2,𝜓2)(𝜎) ∼ Gamma(𝜙2, 𝜓2), 

and 

𝓅3,(𝜙3,𝜓3)(𝜳𝑗) ∼ Uniform(𝜙3, 𝜓3). 

Assume that the parameters are independently distributed. The joint prior distribution  𝑝(𝜙𝒾 ,𝜓𝒾)(𝜋, 𝜎, 𝜳𝑗) is given by  

 

𝓅(𝜙𝒾 ,𝜓𝒾)(𝜋, 𝜎, 𝜳𝑗) =
𝜓2

𝜙1

(𝜓3 − 𝜙3)𝐵(𝜙1, 𝜓1)Γ(𝜙2)
𝜎𝜙1−1𝑒𝑥𝑝(−𝜎𝜓2) 𝜋𝜙1(1 − 𝜋)𝜓1 , 

where B(⋅,⋅) is the beta function. The posterior distribution  𝑝(𝜋, 𝜎, 𝜳𝑗|𝑧)  of the parameters is defined as  

𝓅(𝜋, 𝜎, 𝜳𝑗|𝑧) ∝ likelihood function × 𝑝(𝜙𝒾 ,𝜓𝒾)(𝜋, 𝜎, 𝜳𝑗). 

Under SELF, the Bayesian estimators of 𝜋, 𝜎 and 𝜳𝑗 are the means of their marginal. It is not possible to obtain the 

Bayesian estimates through the above formulae. So, the numerical approximations are needed. We propose the use of 

MCMC techniques namely Gibbs sampler and M-H algorithm (see Cai (2010), Chib and Greenberg (1995) and 

Korkmaz et al. (2019) for more details). Since the conditional posteriors of the parameters 𝜋, 𝜎 and 𝜳𝑗 cannot be 
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obtained in any standard forms, using a hybrid MCMC for drawing sample from the marginal posterior of the 

parameters is suggested. Then, the full conditional posteriors of 𝜋, 𝜎 and 𝜳𝑗 can be easily derived. The simulation 

algorithm is given by: 

1. Provide the initial values, say 𝜋, 𝜎 and  𝜳𝑗 then at 𝒾th stage, 

2. Using M-H algorithm, generate 𝜋(𝒾) ∼ 𝓅1 (𝜋(𝒾)|𝜋(𝒾−1), 𝜎(𝒾−1), 𝜳𝑗(𝒾−1)
, 𝓍), 

3. Using M-H algorithm, generate 𝜎(𝒾) ∼ 𝓅2 (𝜎(𝒾)|𝜋(𝒾), 𝜎(𝒾−1), 𝜳𝑗(𝒾−1)
, 𝓍), 

4. Using M-H algorithm, generate 𝜳𝑗(𝒾)
∼ 𝓅3 (𝜳𝑗(𝒾)

|𝜋(𝒾)𝜎(𝒾), 𝜳𝑗(𝒾−1)
, 𝓍), 

4.Repeat steps 1 − 4, 𝑀 = 100000  times to obtain the sample of size 𝑀 from the corresponding posteriors of 

interest. Obtain the Bayesian estimates of 𝜋, 𝜎 and  𝜳𝑗  using the following formulae  

𝜋̂Bayesian =
1

𝑀 − 𝑀0

∑ 𝜋[ℎ]

𝑀

ℎ=1+𝑀0

, 

 𝜎̂Bayesian =
1

𝑀 − 𝑀0

∑ 𝜎[ℎ]

𝑀

ℎ=1+𝑀0

, 

and 

𝜳𝑗̂Bayesian
=

1

𝑀 − 𝑀0

∑ 𝜳𝑗
[ℎ]

𝑀

ℎ=1+𝑀0

, 

respectively, where 𝑀0(≈ 50000) is the burn-in period of the generated MCMC. 

 

5. Simulations for comparing non-Bayesian and Bayesian estimation methods 

A MCMC simulation study is conducted for the DGR-W scenario in order to evaluate and contrast the performance 

of non-Bayesian and Bayesian estimates. The mean squared errors are used to accomplish the numerical assessment 

(MSEs). First, using n=50, 150, 300, and 500, we produced 1000 samples of the DGR-W distribution. In Table 1, 

Table 2, and Table 3, the MSEs are derived and listed. On the basis of Tables 1, 2, and 3, we may conclude that all 

approaches work well. Although in some circumstances the Bayesian approach is preferable. When n increases, all 

estimate techniques perform better and gravitate toward 0. The MLE method is still the most effective and consistent 

of the remaining classic methods, despite their diversity and abundance. However, most of the other classic methods 

are not as efficient or consistent as the MLE method, which is why it is generally noted that the MLE and the Bayesian 

methods are recommended for statistical modeling and applications. This assessment is shown in Table 1, Table 2 and 

Table 3. This Section uses simulation studies to assess various estimating approaches rather than to contrast them, 

however this does not exclude the use of simulation to contrast various estimation approaches. However, actual data 

is frequently used to evaluate various estimating techniques, which is why we will describe four examples especially 

for this function. To compare the rival models, there are further four more applications to count data. 

 

Table 1: MSEs for π=0.55 , 𝜎 = 0.9 and θ=1.5      

n  MLE OLS WLS Bayesian 

 π 0.00540 0.00126 0.00183 0.00073 

50 𝜎 0.00701 0.02078 0.01465 0.00562 

 θ 0.00696 0.00095 0.00120 0.00073 

 π 0.00141 0.00041 0.00070 0.00054 

150 𝜎 0.00169 0.00521 0.00197 0.00352 

 θ 0.00169 0.00045 0.00045 0.00018 

 π 0.00062 0.00029 0.00048 0.00025 

300 𝜎 0.00078 0.00256 0.00154 0.00057 

 θ 0.00078 0.00028 0.00023 0.00004 

 

 

 

Table 2: MSEs for π=0.4 , σ=1.2 and θ=1.2 
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n  MLE OLS WLS Bayesian 

 π 0.00429 0.00582 0.00523 0.00621 

50 𝜎 0.00686 0.03452 0.03015 0.00645 

 θ 0.00683 0.01254 0.01245 0.02587 

 π 0.00142 0.00145 0.00153 0.00184 

150 𝜎 0.00226 0.00247 0.00185 0.00045 

 θ 0.00226 0.00274 0.00295 0.00365 

 π 0.00065 0.00078 0.00078 0.00075 

300 𝜎 0.00103 0.00163 0.00084 0.00065 

 θ 0.00103 0.00198 0.00193 0.00153 

 

Table 3: MSEs for π=0.8 , σ=0.7 and θ=0.7 

n  MLE OLS WLS Bayesian 

 π 0.00105 0.00412 0.00326 0.02154 

50 𝜎 0.00426 0.00352 0.00287 0.00547 

 θ 0.45841 0.00216 0.00356 0.00452 

 π 0.00032 0.00073 0.00205 0.00078 

150 𝜎 0.00135 0.00081 0.00045 0.00058 

 θ 0.06960 0.00035 0.00088 0.00042 

 π 0.00016 0.00056 0.00145 0.00053 

300 𝜎 0.00070 0.00042 0.00025 0.00031 

 θ 0.00536 0.00021 0.00064 0.00005 

 

6. Real data modeling for comparing Bayesian and non-Bayesian methods 

For the purpose of contrasting the Bayesian and non-Bayesian estimate approaches, four examples of real data sets 

are provided in this section. For comparing Bayesian and non-Bayesian estimating approaches, we take into account 

the Akaike information criterion (AIC) and Correct Akaike IC (CAIC) statistics. 

 

6.1 Failure times data of 50 devices 

According to Bebbington et al. (2012), this information indicates the failure rates of 50 devices submitted to a 

specific life test (in weeks). Table 4 lists the estimators for the AIC and CAIC statistics, Bayesian and non-Bayesian 

estimate techniques. Based on Table 4, the MLE method is the best method with Kolmogorov Smirnov (ks) test ks 

=0.1672 and p-value =0.1220, then the OLS method. However, the Bayesian and WLS methods do not perform 

well.  

Table 4: Estimators under Bayesian and non-Bayesian estimation methods, 

 AIC and CAIC statistics for 50 device failure rates' data. 

Method 𝜋̂ θ̂ 𝜎̂ ks p-value 

MLE 0.9923 0.2321 0.9777 0.1672 0.1220 

OLS 0.9898 0.2040 0.8908 0.2098 0.0245 

WLS 0.9843 0.2792 2.2852 0.2209 0.0152 

Bayesian 0.9255 0.1884 2.0864 0.2684 0.0015 

 

6.2 Failure times of 15 electronic components 

In an acceleration lifetime test, this lifetime data provides the failure durations for 15 electrical components (see 

Lawless (2003)). For the fifteen electrical components’ failure rates data, Table 5 lists the estimators for the 

Bayesian and non-Bayesian estimating techniques, AIC and CAIC statistics. Based on Table 5, the WLS method is 

the best method with ks =0.0938 and p-value =0.9994, then the OLS method and then the MLE method. However, 

the Bayesian method does not perform well.  
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Table 5: Estimators under Bayesian and non-Bayesian estimation methods, 

 AIC and CAIC statistics for the fifteen electrical components’ failure rates data. 

Method 𝜋̂ θ̂ 𝜎̂ ks p-value 

MLE 0.8289 0.2417 3.4122 0.1222 0.9785 

OLS 0.9873 0.2288 0.9260 0.1029 0.9973 

WLS 0.9224 0.2228 2.0254 0.0938 0.9994 

Bayesian 0.8812 0.2146 2.0003 0.2175 0.4771 

 

6.3 Counts of cysts of kidneys 

This information shows the numbers of cysts in kidney dysmorphogenetic caused by corticosteroids and linked to 

uncontrolled production of Indian hedgehog and other recognized cytogenic molecules (see Chan et al., 2009). Table 

6 gives the estimators under Bayesian and non-Bayesian estimation methods, AIC and CAIC statistics for numbers 

of kidney cysts. Based on Table 6, the MLE method is the best method with ks =0.7660 and p-value =0.6818, then 

the Bayesian method then the WLS method. However, the OLS method does not perform well.  

Table 6: Estimators under Bayesian and non-Bayesian estimation methods, 

 AIC and CAIC statistics for numbers of kidney cysts. 

Method 𝜋̂ θ̂ 𝜎̂ ks p-value 

MLE 0.6791 0.1799 1.1202 0.7660 0.6818 

OLS 0.8020 0.1539 0.8233 3.4632 0.1770 

WLS 0.9903 0.1901 0.2036 2.3787 0.3044 

Bayesian 0.6765 0.1729 1.1096 0.7048 0.7030 

  

 

6.4 Number of European corn-borer larvae parasites 

According to Bodhisuwan and Sangpoom (2016), this information reflects the quantity of parasitic European corn-

borer larvae in the field. Bodhisuwan and Sangpoom (2016) randomly chose 8 hills from 15 replications for their 

stochastic biological experiment and counted the number of corn borers on each hill. Table 7 gives the estimators 

under Bayesian and non-Bayesian estimation methods, AIC and CAIC statistics for number of European corn-

borer larvae parasites data. Based on Table 7, the MLE method is the best method with ks =0.8160 and p-value 

=0.6650, then the Bayesian method. However, the OLS and the WLS method does not perform well.  

Table 7: Estimators under Bayesian and non-Bayesian estimation methods, 

 AIC and CAIC statistics for number of European corn-borer larvae parasites data. 

Method 𝜋̂ θ̂ 𝜎̂ ks p-value 

MLE 0.0027 0.2218 3.3132 0.8160 0.6650 

OLS 0.2756 0.2194 1.8667 11.1726 0.0038 

WLS 0.0877 0.2062 2.2879 11.4121 0.0033 

Bayesian 0.2444 0.2150 2.1242 5.8520 0.0540 

  

 

7. Real data modeling for comparing the competitive models  

We illustrate the flexibility and the importance of the DGR-W distributions using four real data applications. The 

fitted distributions (see Table 8) are analyzed and compared using the log-likelihood function (ℓ), AIC, CAIC, Chi-

square (𝜒𝑉
2) with degree of freedom (d.f) and its p-value, Kolmogorov-Smirnov (𝐾 − 𝑆) and its p-value. Table 4 below 

gives the competitive models. 

 

7.1 Failure times data of 50 devices 

We compare the DGR-W model's fits to those of other rival models, including DW, EDW, DIW, EDLi, DPa, DLi-II, 

and DLL. The goodness of fit (GOF) test statistics and the MLEs, together with their accompanying standard errors 

(SEs), are provided in Tables 9 and 10, respectively. For the analysis of data with a regularly distributed distribution, 

statisticians have created a potent collection of tools. The "normal quantile-quantile (Q-Q) plot" is the most well-liked 

one. All the quantile points would fall between the two blue lines if the data distribution precisely matched the normal 

distribution. The Q-Q plot is shown in Figure 3 (left plot) for 50 device failure rates’ data. Figure 3 (right panel) 
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displays a box with statistics on failure rates (50 device failure rates' data). The HRF's form can influence which model 

is used for an application. The total time on test (TTT) plot is used for this purpose. It has a "convex form" for 

"monotonically dropping HRF" and a "concave shape" for "monotonically increasing HRF." When the solid line and 

dashed line coincide, the HRF of the data is said to be "continuous." For the DGR-W model for 50 device failure rates' 

data, Figure 4 displays the TTT plot (left panel) and estimated HRF (EHRF). The DGR-W offers the finest fits versus 

all competing models, according to Table 10. 

Table 8: The competitive models. 

 Discrete Model Abbreviation 

1 Pareto DPa 

2 Lomax DLx 

3 Lindley DLi 

4 Weibull DW 

5 Rayleigh DR 

6 Log-logistic DLL 

7 Exponential DE 

8 Burr type XII DBXII 

9 Lindley type II DLi-II 

10 Inverse Rayleigh DIR 

11 Poisson (Poisson (1837)) Poisson 

12 Inverse Weibull DIW 

13 Exponentiated Weibull EDW 

14 Exponentiated Lindley EDLi 

15 Generalized Exponentiated type II DGE-II 

16 Negative Binomial (Dougherty (1992)) NB 

 

   Table 9: MLEs (SEs) for 50 device failure rates' data. 

Model 𝜋̂ θ̂ 𝜎̂ 

DGR-W 0.9923 0.2321 0.9777 

 (0.01106) (0.01779) (0.67611) 

EDW 0.989 1.139 0.784 

 (0.164) (3.227) (3.053) 

DW 0.981 1.023  

 (0.011) (0.131)  

DIW 0.018 0.582  

 (0.013) (0.061)  

DLi-II 0.969 0.058  

 (0.005) (0.027)  

EDLi 0.972 0.480  

 (0.005) (0.087)  

DLLc 1.000 0.439  

 (0.321) (0.062)  

DPa 0.739   

 (0.032)   

 

  Table 10: The GOF statistics for 50 device failure rates' data. 

Model↓ -ℓ AIC CAIC K-S p-value 

DGR-W 237.5 480.9 481.5 0.167 0.122 

EDW 240.2 486.7 487.2 0.195 0.045 

DW 241.6 487.2 487.5 0.187 0.061 

DIW 261.9 527.8 528.1 0.258 0.003 

DLi-II 240.6 485.2 485.4 0.186 0.064 

EDLi 240.3 484.6 484.8 0.195 0.045 

DLLc 294.9 593.8 594.0 0.535 < 0.001 

DPa 275.9 553.7 553.8 0.335 < 0.001 
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Figure 3: Q-Q plot and box for the failure times data. 

 

 

 
Figure 4: TTT plot and EHRF for the DGR-W model for 50 device failure rates’ data. 

 

7.2 Failure times of 15 electronic components 

We compare the DGR-W model's fits to those of other rival models for this application, including DGE-II, DLx, DEx, 

DIR, DR, DIW, DPa, and DBXII. Tables 11 and 12, respectively, include information on the MLEs with their SEs 

and the GOF data. The Q-Q plot and box for the failure times data are shown in Figure 5. Figure 6 displays the 

estimated HRF (EHRF) and total time test plots (TTT) plots for the DGR-W model for the fifteen electrical 

components’ failure rates data. The DGR-W offers the finest fits versus all competing models, according to Table 12. 
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Table 11: MLEs (SEs) for fifteen electrical components’ failure rates. 

Model 𝜋̂ θ̂ 𝜎̂ 

DGR-W 0.8289 0.2417 3.4122 

 (0.8065) (0.0681) (5.5934) 

DGE-II 0.9563 1.491  

 (0.0133) (0.535)  

DIW 2.2 × 10⁻⁴ 0.875  

 (7.8 × 10⁻⁴) (0.164)  

DLx 0.01243 104.506  

 (0.039) (84.409)  

DBXII 0.9753 13.367  

 (0.051) (27.785)  

DR 0.9991   

 (2.58 × 10⁻⁴)   

DIR 1.8 × 10⁻⁷   

 (0.055)   

DPa 0.7202   

 (0.061)   

DE 0.9654   

 (0.0091)   

 

 

Table 12: The GOF statistics for fifteen electrical components’ failure rates. 

Model↓ -ℓ AIC CAIC K-S p-value 

DGR-W 63.9 133.9 136.1 0.122 0.978 

DE 65.0 134.0 136.3 0.177 0.673 

DGE-II 64.4 134.8 135.8 0.129 0.937 

DR 66.4 134.8 136.1 0.216 0.433 

DIR 89.1 180.2 180.5 0.698 < 0.0001 

DIW 68.7 141.4 142.4 0.209 0.482 

DLx 65.9 135.7 136.7 0.205 0.491 

DB-XII 75.7 155.5 156.5 0.388 0.015 

DPa 77.4 156.8 157.1 0.405 0.009 

 

 

 
 

Figure 5: Q-Q plot and box for the failure times data (fifteen electrical components’ failure rates). 
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Figure 6: TTT plot and EHRF for the DGR-W model for fifteen electrical components’ failure rates. 

 

 

7.3 Counts of cysts of kidneys 

We compare the DGR-W distribution's fits to those of the DW, DR, DIW, DE, DLx, DLi-II, DLi, and Poisson for this 

real data set. Table 13 includes a list of the MLEs together with their SEs. The GOF data are shown in Table 14. For 

numbers of kidney cysts, Figure 7 displays the TTT plot, Q-Q plot, and Box plot vs the EHRFs. The fitted PMFs and 

EHRF for numbers of kidney cysts are shown in Figure 8. The DGR-W offers the finest fits versus all competing 

models, according to Table 14. 

 

Table 13: MLEs (SEs) for numbers of kidney cysts.          

Model 𝜋̂ θ̂ 𝜎̂ 

DGR-W 0.6761 0.1799 1.1202 

 (0.4551) (0.0269) (0.7666) 

DW 0.750 0.431  

 (0.084) (0.340)  

DIW 0.581 1.049  

 (0.048) (0.146)  

DLi-II 0.581 0.001  

 (0.045) (0.058)  

DLx 0.150 1.830  

 (0.098) (0.951)  

DR 0.901   

 (0.009)   

DE 0.581   

 (0.030)   

DLi 0.436   

 (0.026)   

Poisson 1.390   

 (0.112)   
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Table 14: The GOF statistics for fifteen electrical components’ failure ratesI.    

Z OF DGR-W DW DIW DR DEx DLi DLi-II DLx  Poisson 

0 65  63.4 59.01 63.91 11.00 46.09 40.25 46.03 61.89 27.42 

1 14  16.65 19.84  20.70 26.83 26.78 29.83 26.77 21.01 38.08 

2 10  9.37 10.78 8.05 29.55 15.56 18.36 15.57 9.65 26.47 

3 6 5.95 6.26 4.23 22.23 9.04 10.35 9.05 5.24 12.26 

4 4 4.00 4.19  2.60 12.49 5.25 5.53 5.27 3.17 4.26 

5 2 2.79 2.01 1.75 5.42 3.05 2.86 3.06 2.06 1.18 

6 2 1.99 1.99 1.26 1.85 1.77 1.44 1.78 1.42 0.27 

7 2 1.45 1.32 0.95 0.52 1.03  0.71 1.04 1.02  0.05 

8 1 1.07 0.99 0.74 0.11 0.60 0.35 0.60 0.76 0.01 

9 1 0.80  0.86 0.59 0.02  0.35 0.17 0.35 0.58 0.00 

10 1 0.60 0.76 0.48 0.00 0.20 0.08 0.20 0.46 0.00 

11 2  0.46 1.99 4.74 0.00 0.28 0.07 0.28 2.74  0.00 

-ℓ  167.48 170.14  172.93  277.78  178.77  189.1  178.8  170.48  246.21 

AIC   340.96 344.28  349.87  557.56  359.53  380.2  361.5  344.96  494.42 

CAIC   341.19 344.39 349.98  557.59  359.57  380.3  361.6  345.07  494.46 

𝜒2  0.766 3.125 6.463  321.07  22.88  43.48  22.89  3.316  294.10 

d.f  2 3 3  4  4 4 3 3 4 

p-value  0.682 0.373 0.091 <0.0001  0.0001  <0.0001 <0.0001  0.345  <0.0001 

 

   

Figure 7: TTT plot, Q-Q plot and Box plot versus the EHRFs for numbers of kidney cysts. 

 

 

 
Figure 8: The fitted PMFs and EHRF for numbers of kidney cysts. 
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7.4 Number of European corn-borer larvae parasites 

We will evaluate how well DIW, DGIW, DIR, DPa, DR, DBXII, NB, and Poisson distributions match the DGR-W 

distributions. Table 15 gives the MLEs together with the matching SEs. The GOF data are shown in Table 16. For 

the number of European corn-borer larvae parasites, Figure 9 displays the TTT plot, Q-Q plot, and box plot vs the 

EHRFs. The fitted PMFs and EHRF for number of European corn-borer larvae parasites are shown in Figure 10. 

The DGR-W offers the finest fits versus all competing models, according to Table 16. 

    Table 15: MLEs (SEs) for number of European  

corn-borer larvae parasites. 

Model 𝜋̂ θ̂ 𝜎̂ β̂ 

DGR-W 0.0027 0.2218 3.3132  

 (0.0096) (0.0225) (0.5337)  

DGW 0.0450 2.539 2.159 0.479 

 (0.429) (4.703) (2.698) (0.466) 

DIW 0.3454 1.5414   

 (0.043) (0.156)   

DBXII 0.5193 2.358   

 (0.051) (0.366)   

NB 0.8703 9.956   

 (0.036) (0.096)   

DIR 0.319    

 (0.042)    

DR 0.867    

 (0.012)    

DPa 0.3293    

 (0.034)    

Poisson 1.4836    

 (0.025)    

 

Table 16: The GOF statistics for number of European corn-borer larvae parasites.   

Z OF DGR-W DIW DBXII DIR DR NB DPa Poisson 

0 43 44.57 41.37 43.84 38.28 15.92 30.12  64.45 27.23 

1 35 30.86 41.85 39.61 51.90 36.17 38.87  20.15 40.38 

2 17 18.94 15.42 15.62 15.51 34.58 27.61  9.69 29.95 

3 11 11.20 7.17 7.20 6.04 21.03 14.26  5.65 14.81 

4 5 6.45 3.94 3.91 2.91 8.89 5.99  3.68  

5 4 3.64 2.42 2.37 1.61 2.70 2.17  2.58 1.63 

6 1 2.01 1.61 1.56  0.98 0.60 0.70  1.90 0.40 

7 2 1.1 1.13 1.09 0.64 0.09 0.21  1.46 0.09 

8 2 0.59 5.09 4.80 2.14 0.02 0.06  10.44 0.02 

-ℓ  200.31 204.810 204.293 208.440 235.23 211.52 220.63 219.19 

AIC   406.61 413.621 412.587 418.881 472.45 427.05 443.24 440.38 

CAIC   406.82 413.723 412.689  418.915 472.49 427.14 443.27 440.41 

𝜒2  0.816 5.511 4.664 14.274 70.688  20.367 32.462 38.478 

d.f  2 3 3 4  4  3  4 4 

p-value  0.665 0.138 0.198 < 0.0001  < 0.0001  0.0001  < 0.0001  < 0.0001 
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Figure 9: TTT plot, Q-Q plot and box plot versus the EHRFs for data set number  

of European corn-borer larvae parasites. 

 

 
 

Figure 10: The fitted PMFs and EHRF for data set number of European corn-borer larvae parasites. 

 

 

8. Concluding remarks 

In this study, we introduced and investigated the discrete generated Rayleigh G (DGR-G) family of distributions, a 

novel discrete counterpart based on the continuous Rayleigh distribution. Moments, cumulant generating function, L- 

moments, moment generating function, probability generating function, central moment, and dispersion index are 

some of its statistical features that are derived. It is described how a Weibull distribution relates to a specific discrete 

variant of the DGR-G family. 

 

A particular case is investigated and visually examined. The new hazard rate function offers a broad range of 

flexibilities, including "monotonically decreasing," "upside down", "monotonically increasing", "constant," 

"decreasing-constant" and "decreasing-constant-increasing (U- hazard rate function)". Moreover, the new probability 

mass function accommodates many useful forms in the field of modeling, including the "right skewed with one peak", 

"right skewed with two peaks (right skewed and bimodal)", "symmetric mass function", "left skewed with one peak". 

Some pertinent characterizations results are generated and provided using the conditional expectation of a certain 

function of the random variable of the hazard function. Also, the Bayesian process under the SELF is shown in detail, 

it is advised to take samples from the joint posterior of the parameters as the conditional posteriors of the parameters 

cannot be obtained in any conventional forms. To compare non-Bayesian versus Bayesian estimates, MCMC 

simulations are run. Gibbs sampling and the M-H method are used. The Bayesian approach offers the lowest mean 
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squared errors across all sample sizes. The non-Bayesian estimating techniques work admirably but fall short of the 

Bayesian approach, the performance for all estimation methods (Bayesian and non-Bayesian) improves as 𝓃 increases. 

 

The Bayesian and non-Bayesian approaches are compared using four real-world applications of data sets. Four real 

data applications are used to highlight the new discrete class's significance and adaptability. Various unique member 

distributions might be considered and researched in separate studies in the future. Future research may consider the 

DGR-G family's bivariate and multivariate expansions. We anticipate that the DGR-G family will draw more 

applications in engineering, dependability, and other fields of study. Particularly in terms of the statistical testing of 

hypotheses and validation, whether in the case of complete data or in the case of censored data, discrete distributions 

still require more research and applications. 

 

The DGR-G family offered a powerful and flexible framework for modeling count data in reliability engineering and 

related fields. It stands out due to its ability to capture a wide range of hazard rate shapes, such as monotonically 

decreasing, increasing, constant, bathtub-shaped, and more complex forms like decreasing-constant-increasing. This 

versatility made it especially valuable for modeling failure times and events counts where the risk of occurrence 

evolves over time in non-trivial ways. Unlike many traditional discrete distributions, the DGR-G family can 

accommodate zero-inflation, over-dispersion, and multimodal structures commonly seen in real-world datasets. Its 

probability mass function exhibits diverse shapes, including right-skewed, left-skewed, symmetric, and bimodal 

forms, enhancing its applicability across various domains. The model was rigorously evaluated using both classical 

and Bayesian estimation techniques, showing superior performance in terms of accuracy and robustness, particularly 

in small sample sizes. When applied to real-world data from engineering, medical, and agricultural contexts, the DGR-

G family consistently outperformed 16 existing discrete models in goodness-of-fit measures. These applications 

included failure times of electronic components, counts of kidney cysts, and parasitic insect populations, 

demonstrating the model’s adaptability to different types of count data. The theoretical characterizations based on 

truncated moments and hazard function properties further support its statistical foundation. With potential extensions 

into multivariate settings and regression modeling, the DGR-G family represents a promising tool for future research 

and practical use in reliability analysis and beyond. 

 

Contributions: All authors participated equally in the preparation of the paper and have equal shares in all types of 

contributions. 

 

Data Availability: Data will be provided by Haitham M. Yousof upon request. 

 

Conflict of interests: The authors declare that there is no conflict of interests. 

 

Acknowledgments: This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate 

Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. KFU252917]. 

 

 

References 

1. Aboraya, M., M. Yousof, H. M., Hamedani, G. G., & Ibrahim, M. (2020). A new family of discrete distributions 

with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods. Mathematics, 

8, 1648. 

2. Bebbington, M., Lai, C. D., Wellington, M., & Zitikis, R. (2012). The discrete additive Weibull distribution: A 

bathtub-shaped hazard for discontinuous failure data. Reliability Engineering & System Safety, 106, 37-44. 

3. Bodhisuwan, W., & Sangpoom, S. (2016, October). The discrete weighted Lindley distribution. In 2016 12th 

International Conference on Mathematics, Statistics, and Their Applications (ICMSA) (pp. 99-103). IEEE. 

4. Cai, L. (2010). Metropolis-Hastings Robbins-Monro algorithm for confirmatory item factor analysis. Journal of 

Educational and Behavioral Statistics, 35(3), 307-335. 

5. Chib, S., & Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american 

statistician, 49(4), 327-335. 

6. Consul, P. C., & Jain, G. C. (1973). A generalization of the Poisson distribution. Technometrics, 15(4), 791-799. 

7. Chan, S. K., Riley, P. R., Price, K. L., McElduff, F., Winyard, P. J., Welham, S. J., ... & Long, D. A. (2010). 

Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic 

molecules, as well as Indian hedgehog. American journal of physiology-renal physiology, 298(2), F346-F356. 



Pak.j.stat.oper.res.  Vol.21  No. 3 2025 pp 403-427  DOI: https://doi.org/10.18187/pjsor.v21i3.4750 

  
A Flexible Discrete Rayleigh-G Family for Engineering and Reliability Modeling: Properties, Characterizations, Bayesian and Non-Bayesian Inference 426 

 

8. Chesneau, C., Yousof, H., Hamedani, G. G., & Ibrahim, M. (2022). The Discrete Inverse Burr Distribution with 

Characterizations, Properties, Applications, Bayesian and Non-Bayesian Estimations. Statistics, Optimization & 

Information Computing, 10(2), 352-371. 

9. Cordeiro, G. M., Yousof, H. M., Ramires, T. G., & Ortega, E. M. (2018). The Burr XII system of densities: 

properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-

456. 

10. Dougherty, E. R. (1990). Probability and statistics for the engineering, computing, and physical sciences. 

Prentice-Hall, Inc. 

11. Eliwa, M. S., Alhussain, Z. A., & El-Morshedy, M. (2020). Discrete Gompertz-G family of distributions for 

over-and under-dispersed data with properties, estimation, and applications. Mathematics, 8(3), 358. 

12. Eliwa, M. S., El-Morshedy, M., Yousof, H. M. (2022). A Discrete Exponential Generalized-G Family of 

Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and 

Agriculture Data. Mathematics, 10, 3348. https://doi.org/10.3390/math10183348 

13. El-Morshedy, M., Eliwa, M. S., & Altun, E. (2020). Discrete Burr-Hatke distribution with properties, estimation 

methods and regression model. IEEE access, 8, 74359-74370. 

14. El-Morshedy, M., Eliwa, M. S., & Tyagi, A. (2022). A discrete analogue of odd Weibull-G family of 

distributions: properties, classical and Bayesian estimation with applications to count data. Journal of Applied 

Statistics, 49(11), 2928-2952. 

15. El-Morshedy, M., Eliwa, M. S., & Nagy, H. (2020). A new two-parameter exponentiated discrete Lindley 

distribution: properties, estimation and applications. Journal of applied statistics, 47(2), 354-375. 

16. Gómez-Déniz, E. (2010). Another generalization of the geometric distribution. Test, 19(2), 399-415. 

17. Gómez-Déniz, E., & Calderín-Ojeda, E. (2011). The discrete Lindley distribution: properties and 

applications. Journal of statistical computation and simulation, 81(11), 1405-1416. 

18. Hamedani, G. G., Yousof, H. M., Rasekhi, M., Alizadeh, M., & Najibi, S. M. (2018a). Type I general exponential 

class of distributions. Pakistan Journal of Statistics and Operation Research, 39-55. 

19. Hamedani, G. G., Altun, E., Mustafa, Ã., Yousof, H. M., & Butt, N. S. (2018b). A new extended G family of 

continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan 

Journal of Statistics and Operation Research, 737-758. 

20. Hamedani, G. G., Rasekhi, M., Najibi, S., Yousof, H. M., & Alizadeh, M. (2019). Type II general exponential 

class of distributions. Pakistan Journal of Statistics and Operation Research, 503-523. 

21. Hussain, T., & Ahmad, M. (2014). DISCRETE INVERSE RAYLEIGH DISTRIBUTION. Pakistan Journal of 

Statistics, 30(2). 

22. Hussain, T., Aslam, M., & Ahmad, M. (2016). A two parameter discrete Lindley distribution. Revista 

Colombiana de EstadÝstica, 39(1), 45-61. 

23. Ibrahim, M., Ali, M. M. and Yousof, H. M. (2021). The discrete analogue of the Weibull G family: properties, 

different applications, Bayesian and non-Bayesian estimation methods. Annals of Data Science, 

https://link.springer.com/article/10.1007/s40745-021-00327-y 

24. Jazi, M. A., Lai, C. D., & Alamatsaz, M. H. (2010). A discrete inverse Weibull distribution and estimation of its 

parameters. Statistical Methodology, 7(2), 121-132. 

25. Kemp, A. W. (2004). Classes of discrete lifetime distributions. Commun. Stat. Theor. Methods. 2004, 33(12), 

3069--3093. 

26. Kemp, A. W. (2008). The discrete half-normal distribution. In Advances in mathematical and statistical 

modeling (pp. 353-360). Birkhäuser Boston. 

27. Korkmaz, M. Ç., Altun, E., Yousof, H. M., & Hamedani, G. G. (2019). The odd power Lindley generator of 

probability distributions: properties, characterizations and regression modeling. International Journal of 

Statistics and Probability. 

28. Korkmaz, M. Ç., Yousof, H. M., Hamedani, G. G., & Ali, M. M. (2018a). Pak. J. Statist. 2018 Vol. 34 (3), 251-

267 The Marshall-Olkin generalized G Poisson family of distributions. Pak. J. Statist, 34(3), 251-267. 

29. Korkmaz, M. C., Yousof, H. M., Rasekhi, M., & Hamedani, G. G. (2018b). The odd Lindley Burr XII model: 

Bayesian analysis, classical inference and characterizations. Journal of data science, 16(2), 327-353. 

30. Krishna, H., & Pundir, P. S. (2009). Discrete Burr and discrete Pareto distributions. Statistical 

methodology, 6(2), 177-188. 

31. Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons. 

32. Nakagawa, T., & Osaki, S. (1975). The discrete Weibull distribution. IEEE transactions on reliability, 24(5), 

300-301. 

33. Nekoukhou, V., & Bidram, H. (2015). The exponentiated discrete Weibull distribution. Sort, 39, 127-146. 



Pak.j.stat.oper.res.  Vol.21  No. 3 2025 pp 403-427  DOI: https://doi.org/10.18187/pjsor.v21i3.4750 

  
A Flexible Discrete Rayleigh-G Family for Engineering and Reliability Modeling: Properties, Characterizations, Bayesian and Non-Bayesian Inference 427 

 

34. Nekoukhou, V., Alamatsaz, M. H., & Bidram, H. (2013). Discrete generalized exponential distribution of a 

second type. Statistics, 47(4), 876-887. 

35. Nascimento, A. D., Silva, K. F., Cordeiro, G. M., Alizadeh, M., Yousof, H. M., & Hamedani, G. G. (2019). The 

odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum 

Mathematicarum Hungarica, 56(2), 185-210. 

36. Para, B. A., & Jan, T. R. (2016). Discrete version of log-logistic distribution and its applications in 

genetics. International Journal of Modern Mathematical Sciences, 14(4), 407-422. 

37. Para, B. A., & Jan, T. R. (2016). On discrete three-parameter Burr type XII and discrete Lomax distributions and 

their applications to model count data from medical science. Biometrics and Biostatistics International 

Journal, 4(2), 1-15. 

38. Poisson, S. D.  (1837). Recherches sur la probabilité des jugements en matière criminelle et en matière civile: 

précédées des règles générales du calcul des probabilités. Bachelier. 

39.  Roy, D. (2004). Discrete rayleigh distribution. IEEE Transactions on Reliability, 53(2), 255-260. 

40. Yousof, H. M., Chesneau, C., Hamedani, G. and Ibrahim, M. (2021). A New Discrete Distribution: Properties, 

Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations. Statistica, 81(2), 135-

162. 

 

 

 

 

 

 


