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Abstract  

Heteroscedasticity is a well-known violation of an assumption in parametric regression analysis. In such cases, to 

handle this problem, a generalized least squares method is used. In this article, we have manifested the robustness 

of nonparametric regression in the case of heteroscedastic errors. Nonparametric regression is a robust method 

that proceeds without requiring inflexible assumptions from the model.  We empirically compared the 

performance of the generalized least squares method with multivariate nonparametric kernel regression. 

Multivariate nonparametric kernel regression is used with a Gaussian kernel and six bandwidths on China's per 

capita consumption expenditure. The performance of nonparametric regression with Bayesian bandwidth was 

found better on the basis of mean squared error. Simulation results are also presented, with their graphical 

representation, where nonparametric regression with different bandwidths at different heteroscedastic levels is 

observed, and we found that our proposed method performed best in both presence and absence of 

homoscedasticity. 
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1. Introduction  

Regression analysis is a statistical process that is specifically used to estimate the association between income and 

expenditure, sales and purchases, etc. Not only this, regression analysis has large applications, i.e., for forecasting 

future opportunities, optimizing business processes, empirical support to management decisions, and also for 

identifying errors in judgment, etc. (Syla, 2013; Rusov et al., 2017). When the relationship between the response and 

explanatory variables is known, parametric regression models are used. Parametric models are inflexible and have 

some constraints, like the linear relationship among response and explanatory variable(s), uncorrelated errors, 

homoscedasticity of the errors, and errors following the normal distribution (Leeflang et al. 2000). When 

assumptions about parametric models are violated, then it provides misleading results (DiNardo and Tobias, 2001).  

 If the relationship is unknown, it is better to use nonparametric regression models (Hardle, 1990; Stuart et 

al., 1999). The nonparametric regression (NPR) approach is popular due to less restrictive assumptions and is 

applied with the help of information derived from the data (Stuart et al. 1999). Nonparametric kernel regression is 

based on kernels that are constrained symmetrical and nonnegative real-valued functions K, whose integration 

results in unity (Hardle, 1990). Bandwidth (b) or smoothing parameter plays a very important role in the 

performance of the kernel estimators. The optimal value of b minimizes the mean integrated squared error (MISE). 

Various methods for selection of b are featured, which can be categorized into two quite different approaches: 

Classical and Plug-in (Sheather et al. 1991; Loader, 1999; Wand and Jones, 1995). 

 The wide applications of regression can be observed in Agriculture (Ujjainia et al., 2020), Finance 

(Anghelache and Anghel, 2014), Management sciences (Henderson and Souto, 2018), Biology (Paul and Saha, 

2007), Ecology (Akselrud, 2024), Engineering (Robinson, 2003), Insurance (Siddig, 2016), Medical Sciences 

(Grover et al. 2013), Mining (Mafudi and Suyono, 2018), Toxicology (Shaki, 2024), Physics (Krueger, 2011), and 

Pakistan Journal of Statistics and Operation Research 



Pak.j.stat.oper.res.  Vol.21  No. 4 2025 pp 545-554  DOI: https://doi.org/10.18187/pjsor.v21i4.4746 

 

 
Empirical Performance of Nonparametric Regression with Heteroscedasticity 546 

 

Chemical Sciences (Khan and Akbar, 2019). Heteroscedasticity is the violation of homoscedasticity. This problem is 

encountered in data sets when the error term differs across values of an independent variable. The impact of 

violating the assumption of homoscedasticity is a matter of degree, increasing as heteroscedasticity increases. In this 

case, the use of the weighted least squares (WLS) model is suggested, but if there is a certain correlation among 

residuals, WLS gives misleading inference. Aitken (1934) suggested to use of a generalized least squares (GLS) 

model, which provides unbiased, efficient, consistent, and asymptotically normal estimators. Similarly, Rao (1973) 

suggested using minimum norm quadratic unbiased estimation (MINQUE). The efficiency losses of MINQUE are 

not substantial when the number of observations per sample is large, especially for a small number of independent 

samples. A rich literature is available, which justifies the use of a heteroscedasticity consistent covariance matrix 

estimator (HCCME). By using these estimators, testing inferences are performed, and results are asymptotically 

valid, regardless of whether or not the errors share the same variance (Aslam, 2014).  

 The present study is motivated by the lack of research on the performance of NPR on heteroscedastic data 

when such data is modeled, particularly by GLS. It occurs more often in datasets that have a large range between the 

largest and smallest observed values. Usually, heteroscedasticity is detected by some specific tests, e.g., Park test 

(1966), Glejser test (1969, 2000), Breusch-Pagan test (1979), White test (1980), etc., and then heteroscedasticity is 

removed by different methods like logarithmized data, Box-Cox transformation, etc. Here we are going to model 

such data by the nonparametric regression method, and model the data without removing the heteroscedasticity. 

Here, we are going to inquire about its robustness via simulated and real data. This article is planned in five sections. 

In the Second section, NPR and GLS are introduced, and Section 3 explains the concerned methods for selecting the 

bandwidth. In Section 4, real data example and the Monte Carlo simulation experiments are presented, and Section 5 

concludes. 

 

2. Methodology 

2.1 Multivariate Nonparametric regression model 

  

The relationship between a response (y) and a set of explanatory variables (x=(x1,x2,…xd)') can be described by the 

multivariate kernel regression model as, 

yi=m(xi)+εi, 

where εi, are assumed to be independent and identically distributed (iid) for i=1, 2, …, n, with mean zero and 

variance σm
2 . The Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) of m(.) is given by 

  m̂(x,b)=
n-1 ∑ Kb(x-xi)yi

n
i=1

n-1 ∑ Kb(x-xj)
n
j=1

,    (1) 

where b=(b1, b2, …,bd)' is a vector of bandwidths with all positive elements, and 

Kb(x)=
1

(b1, b, …,bd)
K (

x1

b1

,
x2

b2

,…, 
xd

bd
) 

with K(.) denotes a multivariate kernel function. Hardle (1990) expressed equation (1) as; 

m̂(x,b)=
1

n
∑ wb,i(x)yi

n
i=1 ,      (2) 

where 

wb,i(x)= Kb(x-xi) f̂b(x),⁄  

f̂b(x)=
1

n
∑ Kb(x-xi)

n

i=1

. 

2.2 Generalized least square (GLS) 

The generalization of the ordinary least squares (OLS) estimator is known as the generalized least squares (GLS) 

estimator of the coefficients of a linear regression. This method is used as a remedial measure when there is 
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heteroscedasticity in the data and the absence of serial correlation is violated. In such a situation, the OLS estimator 

does not remain BLUE (best linear unbiased estimator) so, the GLS estimator is BLUE. Here, we use the equation as 

ỹ=X̃β+ε,̃       (3) 

where ỹ=Σ-1y, X̃=Σ-1X and ε̃=Σ-1ε, with Σ is an invertible matrix (Baltagi, 2008). 

3. Bandwidths  

 

As we discussed before, in nonparametric estimation, the selection of bandwidth (b) is very crucial. The following 

are data-driven bandwidths that can deal with multivariate regression. From a classical type of bandwidth category, 

biased and least square cross-validation (BCV and LSCV), Bayesian, smoothed cross-validation (SCV), and Normal 

scale rule (NSR), and from the Plug-in category, Direct plug-in (DPI) (Loader, 1999; Jones et al., 1996). 

3.1 Least squares and biased cross-validation (LSCV and BCV) 

 

Sain et al., (1994) explicitly derived and compared multivariate versions of the least-squares cross-validation 

method (due to its unbiasedness, the LSCV selector is sometimes called the unbiased cross-validation (UCV) 

selector) developed by Bowman (1984) and Rudemo (1982) and a biased cross-validation method similar to that of 

Scott and Terrell (1987) for multivariate kernel estimation using the product kernel estimator. The multivariate 

versions are straightforward generalizations of the univariate form. 

𝐿𝑆𝐶𝑉(𝑏1, 𝑏2, … , 𝑏𝑑) =
1

(2√𝜋)
𝑑

𝑛𝑏1, , … , 𝑏𝑑

+
1

(2√𝜋)
𝑑

𝑛2𝑏1, , … , 𝑏𝑑

 

× ∑ ∑ [𝑒𝑥𝑝 {−
1

4
∑ ∆𝑖𝑗𝑘

2𝑑
𝑘=1 } − (2 × 2𝑑 2⁄ )𝑒𝑥𝑝 {−

1

2
∑ ∆𝑖𝑗𝑘

2𝑑
𝑘=1 }] .𝑗≠𝑖

𝑛
𝑖=1      (4) 

 

𝐵𝐶𝑉(𝑏1, 𝑏2, … , 𝑏𝑑) =
1

(√2𝜋)
𝑑

𝑛𝑏1, , … , 𝑏𝑑

+
1

4𝑛(𝑛 − 1)𝑏1, , … , 𝑏𝑑

 

× ∑ ∑ [(∑ ∆𝑖𝑗𝑘
2𝑑

𝑘=1 ) − (2𝑑 + 4)(∑ ∆𝑖𝑗𝑘
2𝑑

𝑘=1 ) + (𝑑2 + 2𝑑] × ∏ 𝜙(∆𝑖𝑗𝑘
𝑑
𝑘=1 ).𝑗≠𝑖

𝑛
𝑖=1    (5) 

where ∆𝑖𝑗𝑘= (𝑥𝑖𝑘 − 𝑥𝑗𝑘) 𝑏𝑘⁄ . 

 

3.2 Smoothed cross-validation (SCV) 

 

Chacon and Duong (2011) presented this type of cross-validation. The smoothed cross-validation method is famous, 

due to its specialty that it reduces the variability of its non-smoothed counterpart. However, it shares a pilot 

bandwidth matrix with the plug-in. The choice of an optimal pilot bandwidth matrix is full of mathematical 

difficulties. But this method overcomes this problem by unconstrained pilot matrix. So, this method can be 

performed as follows: 

 

𝑆𝐶𝑉(𝑏1, 𝑏2, … , 𝑏𝑑) = 𝑛−1(𝑏1, 𝑏2, … , 𝑏𝑑)−1 2⁄ 𝑅(𝐾) + 𝑛−2 ∑ (∆̅(𝑏1,𝑏2 ,…,𝑏𝑑) ∗ 𝐿̅𝐺)(𝑋𝑖 − 𝑋𝑗)𝑛
𝑖,𝑗=1 , (6) 

where 𝐿𝐺 is a kernel with pilot bandwidth, 
2( ) ( )

R
R K K x dx=  ,  ∆̅(𝑏1,𝑏2 ,…,𝑏𝑑)= 𝐾(𝑏1,𝑏2,…,𝑏𝑑) − 2𝐾(𝑏1,𝑏2,…,𝑏𝑑) + 𝐾0 

and 𝐾0 is a notation for the Dirac delta function. 

 

3.4 Bayesian 

 

Zhang et al., (2009) described a Bayesian approach for multivariate kernel regression. In which they considered that 

𝜀𝑖, for 𝑖 = 1, 2, … , 𝑛, are iid and follow 𝑁(0, 𝜎𝑚
2 ) with 𝜎𝑚

2  an unknown parameter. It follows that 
𝑦𝑖−𝑚(𝑥𝑖)

𝜎𝑚
~𝑁(0,1). 
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 Let 𝜋(𝒃) and 𝜋(𝜎𝑚
2 ) denote the prior densities of 𝒃 and 𝜎𝑚

2  respectively, and denote (𝑦1, 𝑦2 , … , 𝑦𝑛)′ as 𝑦. 

According to Bayes theorem, the posterior of (𝑏, 𝜎𝑚
2 )′ is 

𝜋(𝒃, 𝜎𝑚
2 |𝒚) ∝ 𝜋(𝒉)𝜋(𝜎𝑚

2 )𝑙((𝑦1, 𝑦2 , … , 𝑦𝑛|𝒃, 𝜎𝑚
2 ). 

They assume that the prior density of 𝜎𝑚
2 is 

𝜋(𝜎𝑚
2 ) ∝ (

1

𝜎𝑚
2 )

𝑝 2⁄ +1

𝑒𝑥𝑝 {−
𝑣 2⁄

𝜎𝑚
2 }, 

where 𝑝 and 𝑣 are hyperparameters. The prior density of ℎ𝑗 is assumed to be 

𝜋( ℎ𝑗) ∝
1

1+𝜆𝑏𝑗
2, 

Then the posterior of 𝜋(𝒃, 𝜎𝑚
2 |𝒚)becomes 

𝜋(𝒃, 𝜎𝑚
2 |𝒚) ∝ ∏ 𝜋( 𝑏𝑗)𝑑

𝑗=1 (
1

𝜎𝑚
2 )

(𝑛+𝑝) 2⁄ +1

𝑒𝑥𝑝 {−
∑ (𝑦𝑖−𝑚̂−𝑖(𝒙𝒊,𝒃))𝑛

𝑖=1
2

+𝑣

2𝜎𝑚
2 }.  (7) 

 

3.5 Normal scale rule (NSR) 

 

Chacon et al. (2011) discussed that for multivariate regression major obstacle is tackling the matrix analysis when 

treating higher-order multivariate derivatives. With an alternative vectorization of these higher-order derivatives, 

they exhibit a closed-form expression for a normal scale bandwidth matrix. 

𝑩̂𝑁𝑆 = (
4

𝑑+2𝑟+2
)

2 (𝑑+2𝑟+4)⁄

𝚺̂𝑛−2 (𝑑+2𝑟+4)⁄ ,     (8) 

 

where 𝚺̂ is an estimate of 𝚺 which is the variance-covariance matrix. 

 

3.6 Direct plug-in (DPI) 

 

 Chacon and Duong (2010) explained the crucial factor of multivariate regression, which requires an 

optimal bandwidth matrix with restricted parameterizations. They presented the first plug-in bandwidth selector with 

unconstrained parameterizations by introducing an alternative vectorization that gives elegant and tractable 

expressions. 

𝑩̂𝑃𝐼,𝑙 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑩𝜖ℱ
{𝑛−1|𝑩|−1 2⁄ (4𝜋)−𝑑 2⁄ +

1

4
(𝑣𝑒𝑐𝑇𝑩)⨂2𝝍̂4,𝑙},   (9) 

where 𝑯  is the bandwidth matrix, ℱ  is the set of all symmetric and positive definite 𝑑 × 𝑑 matrices where d 

represents the length of regressors,  ⨂2 is the second Kronecker product of matrices and 𝝍̂4,𝑙 fourth-order integrated 

density derivatives of 𝑓(𝑥). 

 

4. Empirical Evaluation 

4.1 Simulation  

 

Now we are going to examine its performance at different levels of heteroscedasticity. The purpose of this section is 

to compare the performance of GLS with NPR by using different bandwidths through simulation, with varying 

sample sizes. 

 In this sub-section, we used the following model; 

yi=x1i+x2i+σ(xi)εi,   i=1,2,…,n.   (10) 

Where x1i, x2i~N(0,1) and εi~N(0,1) . By following Lei and Chang-Lin (2008), we use σ(xi)=exp(λx1)  as a 

variance function, where λ describes the intensity levels of heteroscedasticity. In this article, we use 

λ=0, 0.25, 0.50, 1, 2, 4. Simulation results are presented in Table 1 for n=25, 50, 100, 200, and 500 with 1000 

replications, and they are graphically represented in Figure 1. 

Table 1. AMSE of GLS and NPR 

λ = 0 

 BCV LSCV NSR DPI SCV Bayesian LRM 

25 0.4492 0.9326 0.3438 0.5257 0.7465 0.5119 0.8811 

50 0.5076 0.2115 0.4346 0.3482 0.4995 0.9308 0.9391 

100 0.5745 0.3033 0.4964 0.5051 0.6294 1.1479 0.9700 

200 0.5949 0.5328 0.5213 0.4831 0.5986 1.3749 0.9854 
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500 0.6798 0.7109 0.6150 0.6407 0.6819 1.5307 0.9951 

λ = 0.25 

 BCV LSCV NSR DPI SCV Bayesian GLS 

25 0.38378 0.0521 0.3178 0.1525 0.3949 1.2176 0.9592 

50 0.5787 0.7156 0.4938 0.5073 0.6480 0.9026 0.9094 

100 0.6406 0.8375 0.5521 0.6111 0.7405 1.1744 1.1076 

200 0.6574 0.6308 0.5782 0.5745 0.6750 1.5159 1.1254 

500 0.6874 0.4638 0.6103 0.5270 0.6217 1.6726 1.0734 

λ = 0.50 

 BCV LSCV NSR DPI SCV Bayesian GLS 

25 0.4328 0.3395 0.3551 0.2492 0.4312 1.0740 1.0822 

50 0.5787 0.8669 0.4489 0.4929 0.7411 1.0192 1.1551 

100 0.6336 0.3729 0.5435 0.5302 0.6807 1.3000 1.2356 

200 0.9821 1.0768 0.8648 0.8831 0.9823 2.1452 1.8524 

500 0.9764 0.8129 0.8586 0.7881 0.8905 2.2254 1.6994 

λ = 1 

 BCV LSCV NSR DPI SCV Bayesian GLS 

25 3.8423 10.0857 2.8884 3.8755 7.1877 7.1960 14.2174 

50 1.3508 1.5289 1.0420 0.7736 1.8195 3.3697 3.9161 

100 1.8559 1.8704 1.4152 1.2019 2.0777 6.2091 6.8970 

200 2.1750 2.8988 1.7870 2.0598 2.4768 5.4114 5.2326 

500 2.2833 1.8943 1.9659 1.9602 2.3141 7.5118 7.1871 

λ = 2 

 BCV LSCV NSR DPI SCV Bayesian GLS 

25 0.9695 0.1418 0.7307 0.6413 1.5582 6.2920 5.6008 

50 77.2308 7.2274 48.3309 19.1839 72.66355 163.2193 651.8484 

100 20.8757 33.83195 18.1412 19.7735 24.6865 451.7273 13681.8600 

200 110.6608 96.7910 91.3962 97.4926 124.6419 436.9494 479.0530 

500 91.9671 78.6006 78.5181 76.9889 91.5080 3281.7380 4078.3850 

λ = 4 

 BCV LSCV NSR DPI SCV Bayesian GLS 

25 413489.7 855056.1 222547.8 117520.9 593092.9 808602.4 3504016.0 

50 39741.4 3601096.0 31644.5 49461.2 320831.1 16092317.0 26910577.0 

100 43386.4 139206.3 20444.0 32008.1 72417.8 413760.7 443436.3 

200 190107.9 33160.3 101489.0 32192.5 107144.0 63071113.0 96042820.0 

500 671692.1 385788.2 420766.10 443146.6 677168.6 16151916 .0 17095630.0 

 

 In Table 1, AMSEs of NPR and GLS are presented. In this section, six different bandwidths are used for 

comparison. It is evident that the performance of NPR is better than the GLS for all levels of heteroscedasticity. 

AMSEs are increasing rapidly as levels of heteroscedasticity are growing, which is more evident in Figure 1, but 

NPR is less affected than GLS.   

 For the homoscedastic case (λ = 0), NPR is performing better with different bandwidths (for different 

sample sizes). For the moderate level of heteroscedasticity, LSCV and DPI exhibit acceptable performance. In the 

case of a severe level of heteroscedasticity (λ = 2, 4), the performance of NPR is much better than GLS with 

different bandwidths, i.e., DPI, NSR, and LSCV. 

In our simulation scheme, no bandwidth performs uniformly best for all heteroscedastic levels, but generally, LSCV, 

NSR, and DPI perform better for all sample sizes. From Figure 2, performance of bandwidths can be examined. It is 

apparent that the AMSEs of all bandwidths increase as the level of heteroscedasticity increases, yet they still 

outperform LRM/GLS. 
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Figure 1: AMSEs according to sample size varying bandwidths 
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Figure 2: AMSEs according to sample size varying heteroscedasticity levels 
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4.2 China per capita data 

 Here, we will use a real data set to illustrate the results. A data set is based on per capita consumption 

expenditure (PCCE), agricultural business income (ABI), and other income (OI) for 31 different regions in China in 

2009. This data is also used by Su et al. (2012), who mentioned that the data has a problem of heteroscedasticity, 

and this is also evident in Table 2. 

 

Table 2. MSE of China per capita data consumption expenditure (PCCE) 

  

In Table 2, Breusch-Pagan test is applied to examine the heteroscedasticity of data. It can be examined that in the 

presence of heteroscedasticity, performance of NPR is outstanding as compared to GLS in form of Mean Squared 

Error (MSE). NPR is applied with above mentioned bandwidths, where Bayesian bandwidth selection method 

performs very well. Further, Box-Cox transformation is applied to remove the heteroscedasticity and all methods are 

applied again. It can be examined that after transformation, heteroscedasticity is removed and after removing 

heteroscedasticity we again examined the MSE of data and found that NPR with Bayesian bandwidth is better than 

GLS, this time too. 

 

5. Discussion and Conclusion 

 

Regression is a famous tool for inquiring about performance indicators in any field of life. It is well known fact that 

before the implementation, parametric regression required different assumptions to be satisfied. If the equal variance 

assumption is violated, the ordinary least squares (OLS) estimators will no longer be Best Linear Unbiased 

Estimators (BLUE), and resultantly, the regression predictions will be inefficient too, and as a result, the tests of 

hypotheses (t-test, F-test) are no longer valid (Gujrati, 2008). Different approaches are used to overcome these 

problems. NPR is also a famous technique and imposes fewer restrictions due to its robustness. 

 In this article, we showed the robustness of NPR under heteroscedasticity. We showed the NPR 

performance with a real data example. Data is based on China's per Capita income and expenditure. Firstly, we 

apply the Breusch-Pagan test to show that the data is heteroscedastic. We applied GLS and NPR with considered 

bandwidths and a Gaussian kernel, and we found that the performance of NPR is better with Bayesian bandwidth 

than GLS in terms of MSE (Table 1). Then we removed the heteroscedasticity by using the Box-Cox transformation 

method. After removing heteroscedasticity, the considered methods are applied again. In this case, again, NPR 

performs better with Bayesian bandwidth than LRM. Then we design a simulation study to compare GLS and NPR 

methods at different levels of heteroscedasticity. We observed that NPR outperformed GLS with all considered 

bandwidths than GLS. No bandwidth performs optimally in every scenario, but NSR, LSCV, and DPI perform 

superior than others.  

 Fortunately, significance tests are generally robust to mild heteroscedasticity, so OLS estimates remain 

reliable in most cases. Nonetheless, severe heteroscedasticity can lead to problematic distortions (Berry and 

Feldman, 1985). From this whole study, it can be concluded that it is unnecessary to eliminate heteroscedasticity and 

to know about the severity of heteroscedasticity. NPR does not require such a process and performs well with all 

levels of heteroscedasticity. Therefore, we recommend a nonparametric approach as the most effective solution, 

Methods Before Transformation After Transformation 

Breusch-Pagan test 

 

Chi-square =11.53282 

p = 0.00068 

Chi-square = 0 .8332667 

p = 0.36133 

GLS/LRM 51589.9 6.221653e-13 

BCV 650471.8 4.007885e-12 

LSCV 649914.6 4.005497e-12 

NSR 650470.8 4.007876e-12 

SCV 650457.3 4.007843e-12 

DPI 650457.8 4.007834e-12 

Bayesian 21.6 1.897534e-15 
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given its robustness and speed. It remains unaffected by the degree of heteroscedasticity and yields the minimum 

mean squared error (MSE). 
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