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Abstract

Heteroscedasticity is a well-known violation of an assumption in parametric regression analysis. In such cases, to
handle this problem, a generalized least squares method is used. In this article, we have manifested the robustness
of nonparametric regression in the case of heteroscedastic errors. Nonparametric regression is a robust method
that proceeds without requiring inflexible assumptions from the model. We empirically compared the
performance of the generalized least squares method with multivariate nonparametric kernel regression.
Multivariate nonparametric kernel regression is used with a Gaussian kernel and six bandwidths on China's per
capita consumption expenditure. The performance of nonparametric regression with Bayesian bandwidth was
found better on the basis of mean squared error. Simulation results are also presented, with their graphical
representation, where nonparametric regression with different bandwidths at different heteroscedastic levels is
observed, and we found that our proposed method performed best in both presence and absence of
homoscedasticity.
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1. Introduction

Regression analysis is a statistical process that is specifically used to estimate the association between income and
expenditure, sales and purchases, etc. Not only this, regression analysis has large applications, i.e., for forecasting
future opportunities, optimizing business processes, empirical support to management decisions, and also for
identifying errors in judgment, etc. (Syla, 2013; Rusov et al., 2017). When the relationship between the response and
explanatory variables is known, parametric regression models are used. Parametric models are inflexible and have
some constraints, like the linear relationship among response and explanatory variable(s), uncorrelated errors,
homoscedasticity of the errors, and errors following the normal distribution (Leeflang et al. 2000). When
assumptions about parametric models are violated, then it provides misleading results (DiNardo and Tobias, 2001).

If the relationship is unknown, it is better to use nonparametric regression models (Hardle, 1990; Stuart et
al., 1999). The nonparametric regression (NPR) approach is popular due to less restrictive assumptions and is
applied with the help of information derived from the data (Stuart et al. 1999). Nonparametric kernel regression is
based on kernels that are constrained symmetrical and nonnegative real-valued functions K, whose integration
results in unity (Hardle, 1990). Bandwidth (b) or smoothing parameter plays a very important role in the
performance of the kernel estimators. The optimal value of » minimizes the mean integrated squared error (MISE).
Various methods for selection of b are featured, which can be categorized into two quite different approaches:
Classical and Plug-in (Sheather et al. 1991; Loader, 1999; Wand and Jones, 1995).

The wide applications of regression can be observed in Agriculture (Ujjainia et al., 2020), Finance
(Anghelache and Anghel, 2014), Management sciences (Henderson and Souto, 2018), Biology (Paul and Saha,
2007), Ecology (Akselrud, 2024), Engineering (Robinson, 2003), Insurance (Siddig, 2016), Medical Sciences
(Grover et al. 2013), Mining (Mafudi and Suyono, 2018), Toxicology (Shaki, 2024), Physics (Krueger, 2011), and
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Chemical Sciences (Khan and Akbar, 2019). Heteroscedasticity is the violation of homoscedasticity. This problem is
encountered in data sets when the error term differs across values of an independent variable. The impact of
violating the assumption of homoscedasticity is a matter of degree, increasing as heteroscedasticity increases. In this
case, the use of the weighted least squares (WLS) model is suggested, but if there is a certain correlation among
residuals, WLS gives misleading inference. Aitken (1934) suggested to use of a generalized least squares (GLS)
model, which provides unbiased, efficient, consistent, and asymptotically normal estimators. Similarly, Rao (1973)
suggested using minimum norm quadratic unbiased estimation (MINQUE). The efficiency losses of MINQUE are
not substantial when the number of observations per sample is large, especially for a small number of independent
samples. A rich literature is available, which justifies the use of a heteroscedasticity consistent covariance matrix
estimator (HCCME). By using these estimators, testing inferences are performed, and results are asymptotically
valid, regardless of whether or not the errors share the same variance (Aslam, 2014).

The present study is motivated by the lack of research on the performance of NPR on heteroscedastic data
when such data is modeled, particularly by GLS. It occurs more often in datasets that have a large range between the
largest and smallest observed values. Usually, heteroscedasticity is detected by some specific tests, e.g., Park test
(1966), Glejser test (1969, 2000), Breusch-Pagan test (1979), White test (1980), etc., and then heteroscedasticity is
removed by different methods like logarithmized data, Box-Cox transformation, etc. Here we are going to model
such data by the nonparametric regression method, and model the data without removing the heteroscedasticity.
Here, we are going to inquire about its robustness via simulated and real data. This article is planned in five sections.
In the Second section, NPR and GLS are introduced, and Section 3 explains the concerned methods for selecting the
bandwidth. In Section 4, real data example and the Monte Carlo simulation experiments are presented, and Section 5

concludes.
2. Methodology
2.1 Multivariate Nonparametric regression model

The relationship between a response () and a set of explanatory variables (x=(x;,X,,...x;) ) can be described by the
multivariate kernel regression model as,
Yi=m (XI) + Ep

where &, are assumed to be independent and identically distributed (iid) for /=1, 2, ..., n, with mean zero and
variance 0%, The Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) of m(.) is given by

~ ' Y Ky x)y
MO B)= "5 ) M
where b=(by, b,, ...,b,) is a vector of bandwidths with all positive elements, and

X1 X Xq
Ky(0= )

m (b_llg,..., b—d

with K(.) denotes a multivariate kernel function. Hardle (1990) expressed equation (1) as;
. 1
m(xb)= ;Z"’;:l Wy (X) Vi, (2)

where
wy, (X)= Kp(xx) /(%)

. 1o
(== KyGxrx).
=

2.2 Generalized least square (GLS)

The generalization of the ordinary least squares (OLS) estimator is known as the generalized least squares (GLS)
estimator of the coefficients of a linear regression. This method is used as a remedial measure when there is
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heteroscedasticity in the data and the absence of serial correlation is violated. In such a situation, the OLS estimator
does not remain BLUE (best linear unbiased estimator) so, the GLS estimator is BLUE. Here, we use the equation as

J=Xp+z (3)
where =21y, X=2"1 Xand =X !¢, with X is an invertible matrix (Baltagi, 2008).

3. Bandwidths

As we discussed before, in nonparametric estimation, the selection of bandwidth (b) is very crucial. The following
are data-driven bandwidths that can deal with multivariate regression. From a classical type of bandwidth category,
biased and least square cross-validation (BCV and LSCV), Bayesian, smoothed cross-validation (SCV), and Normal
scale rule (NSR), and from the Plug-in category, Direct plug-in (DPI) (Loader, 1999; Jones et al., 1996).

3.1 Least squares and biased cross-validation (LSCV and BCV)

Sain et al., (1994) explicitly derived and compared multivariate versions of the least-squares cross-validation
method (due to its unbiasedness, the LSCV selector is sometimes called the unbiased cross-validation (UCV)
selector) developed by Bowman (1984) and Rudemo (1982) and a biased cross-validation method similar to that of
Scott and Terrell (1987) for multivariate kernel estimation using the product kernel estimator. The multivariate
versions are straightforward generalizations of the univariate form.

1 1
LSCV (by, by, .., by) = +
P (vm) by, by (297) 12Dy, b
X By et |exp {220, 8%, ) — (2 x 29/2)exp { -2 28, 4%, ] (4)
BCV(by, b by) = 1 + !
L Ez e Bdl (m)dnby,...,bd 4n(n — 1)by,, ..., by
RO W [ 6329 A%) — 2d + 8 (Xio, Ay ) + (@ + 2d] x TT¢oq ¢ (Aji)- (5)

where Aijkz (xik — xjk)/bk'
3.2 Smoothed cross-validation (SCV)

Chacon and Duong (2011) presented this type of cross-validation. The smoothed cross-validation method is famous,
due to its specialty that it reduces the variability of its non-smoothed counterpart. However, it shares a pilot
bandwidth matrix with the plug-in. The choice of an optimal pilot bandwidth matrix is full of mathematical
difficulties. But this method overcomes this problem by unconstrained pilot matrix. So, this method can be
performed as follows:

SCV (b, by, .., ba) = 17" (by, by, ..., b)/*R(K) + n7? T s(Bo .. * Le) (Xi = Xj), (6)
where L is a kernel with pilot bandwidth, R(K) = IRK(X)de , E(b1.bz.....bd)= E(b1.bz.....bd) = 2K, b,

.....

and K|, is a notation for the Dirac delta function.
3.4 Bayesian

Zhang et al., (2009) described a Bayesian approach for multivariate kernel regression. In which they considered that
g, fori =1,2,...,n, are iid and follow N(0, 52) with 62 an unknown parameter. It follows that %(x‘) ~N(0,1).
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Let m(b) and m(02) denote the prior densities of b and 02 respectively, and denote (y1,¥5 , ..., V)’ as y.
According to Bayes theorem, the posterior of (b, 62)" is
(b, o|y) x t(W (o)1, Y2, - Yu|b, O).
They assume that the prior density of o, is

1 p/2+1 v/2
n(o5) (E) exp {— g},

where p and v are hyperparameters. The prior density of h; is assumed to be
n(hy) o

1+Ab¥
Then the posterior of (b, 6.2 |y)becomes

(n+p)/2+1 n (@ (b))
n(b,031y) < [an(b) () exp |~ Emlm bl o} ™

o 202,

3.5 Normal scale rule (NSR)

Chacon et al. (2011) discussed that for multivariate regression major obstacle is tackling the matrix analysis when
treating higher-order multivariate derivatives. With an alternative vectorization of these higher-order derivatives,
they exhibit a closed-form expression for a normal scale bandwidth matrix.

_ 4 2/(d+2r+4)
BNS — ( ) Sn 2/(d+2r+4), (8)

d+2r+2
where ¥ is an estimate of ¥ which is the variance-covariance matrix.
3.6 Direct plug-in (DPI)

Chacon and Duong (2010) explained the crucial factor of multivariate regression, which requires an
optimal bandwidth matrix with restricted parameterizations. They presented the first plug-in bandwidth selector with
unconstrained parameterizations by introducing an alternative vectorization that gives elegant and tractable
expressions.

= argmin (_ _ - - 1 -
By = I (nTUBIT 2 (4m) 2 4 (vecTBY®p ), ©)

where H is the bandwidth matrix, F is the set of all symmetric and positive definite d X d matrices where d
represents the length of regressors, ®2 is the second Kronecker product of matrices and {[)4,1 fourth-order integrated
density derivatives of f(x).

4. Empirical Evaluation
4.1 Simulation

Now we are going to examine its performance at different levels of heteroscedasticity. The purpose of this section is
to compare the performance of GLS with NPR by using different bandwidths through simulation, with varying
sample sizes.
In this sub-section, we used the following model;
V=X + X+ 0(x) &, =1,2,...,n (10)
Where x;, X,;~M0,1) and £~M0,1). By following Lei and Chang-Lin (2008), we use o(x;))=exp(lx;) as a
variance function, where A describes the intensity levels of heteroscedasticity. In this article, we use
1=0, 0.25, 0.50, 1, 2, 4. Simulation results are presented in Table 1 for n=25, 50, 100, 200, and 500 with 1000
replications, and they are graphically represented in Figure 1.
Table 1. AMSE of GLS and NPR

A=0
BCV LSCV NSR DPI SCV Bayesian LRM
25 0.4492 0.9326 0.3438 0.5257 0.7465 0.5119 0.8811
50 0.5076 0.2115 0.4346 0.3482 0.4995 0.9308 0.9391
100 0.5745 0.3033 0.4964 0.5051 0.6294 1.1479 0.9700
200 0.5949 0.5328 0.5213 0.4831 0.5986 1.3749 0.9854
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500 0.6798 0.7109 0.6150 0.6407 0.6819 1.5307 0.9951
A=0.25
BCV LSCV NSR DPI SCV Bayesian GLS
25 0.38378 0.0521 0.3178 0.1525 0.3949 1.2176 0.9592
50 0.5787 0.7156 0.4938 0.5073 0.6480 0.9026 0.9094
100 0.6406 0.8375 0.5521 0.6111 0.7405 1.1744 1.1076
200 0.6574 0.6308 0.5782 0.5745 0.6750 1.5159 1.1254
500 0.6874 0.4638 0.6103 0.5270 0.6217 1.6726 1.0734
A=0.50
BCV LSCV NSR DPI SCV Bayesian GLS
25 0.4328 0.3395 0.3551 0.2492 0.4312 1.0740 1.0822
50 0.5787 0.8669 0.4489 0.4929 0.7411 1.0192 1.1551
100 0.6336 0.3729 0.5435 0.5302 0.6807 1.3000 1.2356
200 0.9821 1.0768 0.8648 0.8831 0.9823 2.1452 1.8524
500 0.9764 0.8129 0.8586 0.7881 0.8905 2.2254 1.6994
A=1
BCV LSCV NSR DPI SCV Bayesian GLS
25 3.8423 10.0857 2.8884 3.8755 7.1877 7.1960 14.2174
50 1.3508 1.5289 1.0420 0.7736 1.8195 3.3697 3.9161
100 1.8559 1.8704 1.4152 1.2019 2.0777 6.2091 6.8970
200 2.1750 2.8988 1.7870 2.0598 2.4768 54114 5.2326
500 2.2833 1.8943 1.9659 1.9602 2.3141 7.5118 7.1871
A=2
BCV LSCV NSR DPI SCV Bayesian GLS
25 0.9695 0.1418 0.7307 0.6413 1.5582 6.2920 5.6008
50 77.2308 7.2274 48.3309 19.1839 72.66355 163.2193 651.8484
100 20.8757 33.83195 18.1412 19.7735 24.6865 451.7273 13681.8600
200 110.6608 96.7910 91.3962 97.4926 124.6419 436.9494 479.0530
500 91.9671 78.6006 78.5181 76.9889 91.5080 3281.7380 4078.3850
A=4
BCV LSCV NSR DPI SCV Bayesian GLS
25 413489.7 855056.1 222547.8 117520.9 593092.9 808602.4 3504016.0
50 39741.4 3601096.0 31644.5 49461.2 320831.1 16092317.0 26910577.0
100 43386.4 139206.3 20444.0 32008.1 72417.8 413760.7 443436.3
200 190107.9 33160.3 101489.0 32192.5 107144.0 63071113.0 96042820.0
500 671692.1 385788.2 420766.10 443146.6 677168.6 16151916 .0 17095630.0

In Table 1, AMSEs of NPR and GLS are presented. In this section, six different bandwidths are used for
comparison. It is evident that the performance of NPR is better than the GLS for all levels of heteroscedasticity.
AMSEs are increasing rapidly as levels of heteroscedasticity are growing, which is more evident in Figure 1, but
NPR is less affected than GLS.

For the homoscedastic case (A = 0), NPR is performing better with different bandwidths (for different

sample sizes). For the moderate level of heteroscedasticity, LSCV and DPI exhibit acceptable performance. In the
case of a severe level of heteroscedasticity (A = 2, 4), the performance of NPR is much better than GLS with
different bandwidths, i.e., DPI, NSR, and LSCV.
In our simulation scheme, no bandwidth performs uniformly best for all heteroscedastic levels, but generally, LSCV,
NSR, and DPI perform better for all sample sizes. From Figure 2, performance of bandwidths can be examined. It is
apparent that the AMSEs of all bandwidths increase as the level of heteroscedasticity increases, yet they still
outperform LRM/GLS.
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Figure 1: AMSESs according to sample size varying bandwidths
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Figure 2: AMSEs according to sample size varying heteroscedasticity levels
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4.2 China per capita data

Here, we will use a real data set to illustrate the results. A data set is based on per capita consumption
expenditure (PCCE), agricultural business income (ABI), and other income (OI) for 31 different regions in China in
2009. This data is also used by Su et al. (2012), who mentioned that the data has a problem of heteroscedasticity,
and this is also evident in Table 2.

Table 2. MSE of China per capita data consumption expenditure (PCCE)

Methods Before Transformation After Transformation
Breusch-Pagan test Chi-square =11.53282 Chi-square = 0 .8332667
p =0.00068 p=0.36133
GLS/LRM 51589.9 6.221653e-13
BCV 650471.8 4.007885e-12
LSCV 649914.6 4.005497e-12
NSR 650470.8 4.007876e-12
SCV 650457.3 4.007843e-12
DPI 650457.8 4.007834e-12
Bayesian 21.6 1.897534e-15

In Table 2, Breusch-Pagan test is applied to examine the heteroscedasticity of data. It can be examined that in the
presence of heteroscedasticity, performance of NPR is outstanding as compared to GLS in form of Mean Squared
Error (MSE). NPR is applied with above mentioned bandwidths, where Bayesian bandwidth selection method
performs very well. Further, Box-Cox transformation is applied to remove the heteroscedasticity and all methods are
applied again. It can be examined that after transformation, heteroscedasticity is removed and after removing
heteroscedasticity we again examined the MSE of data and found that NPR with Bayesian bandwidth is better than
GLS, this time too.

5. Discussion and Conclusion

Regression is a famous tool for inquiring about performance indicators in any field of life. It is well known fact that
before the implementation, parametric regression required different assumptions to be satisfied. If the equal variance
assumption is violated, the ordinary least squares (OLS) estimators will no longer be Best Linear Unbiased
Estimators (BLUE), and resultantly, the regression predictions will be inefficient too, and as a result, the tests of
hypotheses (t-test, F-test) are no longer valid (Gujrati, 2008). Different approaches are used to overcome these
problems. NPR is also a famous technique and imposes fewer restrictions due to its robustness.

In this article, we showed the robustness of NPR under heteroscedasticity. We showed the NPR
performance with a real data example. Data is based on China's per Capita income and expenditure. Firstly, we
apply the Breusch-Pagan test to show that the data is heteroscedastic. We applied GLS and NPR with considered
bandwidths and a Gaussian kernel, and we found that the performance of NPR is better with Bayesian bandwidth
than GLS in terms of MSE (Table 1). Then we removed the heteroscedasticity by using the Box-Cox transformation
method. After removing heteroscedasticity, the considered methods are applied again. In this case, again, NPR
performs better with Bayesian bandwidth than LRM. Then we design a simulation study to compare GLS and NPR
methods at different levels of heteroscedasticity. We observed that NPR outperformed GLS with all considered
bandwidths than GLS. No bandwidth performs optimally in every scenario, but NSR, LSCV, and DPI perform
superior than others.

Fortunately, significance tests are generally robust to mild heteroscedasticity, so OLS estimates remain
reliable in most cases. Nonetheless, severe heteroscedasticity can lead to problematic distortions (Berry and
Feldman, 1985). From this whole study, it can be concluded that it is unnecessary to eliminate heteroscedasticity and
to know about the severity of heteroscedasticity. NPR does not require such a process and performs well with all
levels of heteroscedasticity. Therefore, we recommend a nonparametric approach as the most effective solution,
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given its robustness and speed. It remains unaffected by the degree of heteroscedasticity and yields the minimum
mean squared error (MSE).
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