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Abstract

In reality, there are many uses of queueing models where services are provided in groups and these types of queueing
models are widely studied in the literature. In this paper, we examine a particular queueing model wherein the services
are provided in groups ranging from 1 to a pre-defined constant, denoted as K, and the arrival follows a Markovian
arrival process. The service time of each customer follows phase-type distribution. The maximum of each customers
individual service time within a group is defined as the group’s service time. At the service completion moment,
if there are fewer customers than K, the server won’t begin the subsequent service until the system’s customer size
reaches K or a randomly assigned admission period expires, whichever happens first. The phase type representation
of the service times depends on the group’s size. Anytime a server breaks down and it will not proceed to repair,
instead, it will serve the affected customer group at a slower pace. After that specific customer group’s service is
finished, the server will immediately undergo repair to fix any issues. The process of repair and breakdown occurs at
an exponential rate. When the server breaks down, the customer might balk. The Markov chain’s stability condition
is determined and stationary probability vector is computed. Formulas for the primary system performance measures
are given. Numerical and graphical representations of the proposed model are illustrated.
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1. Background

There are numerous practical uses of queueing models with group services which include transportation systems,
telecommunication systems, entertainment systems and health care systems. Group service models usually include
assumptions about the minimum and maximum of group sizes. In Bailey (1954), Bailey proposed the fixed group size
bulk service queueing concept. In Brugno et al. (2017b), D’Arienzo et al. (2020), Dudin et al. (2015) and Haghighi
and Mishev (2016), the authors explored on models of group service queueing were arrival follows Markovian arrival
process. The authors performed a detailed study of bulk service queues with variations like inventory and retrials in
Baba (1996), Chakravarthy et al. (2017), Chaudhry and Templeton (1983) and Neuts (1967).

In Brugno et al. (2017a) and Banerjee et al. (2015), the authors worked on generating a group service queueing model
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with phase-type service time. A survey on the bulk service queueing models were done by Sasikala and Indhira (2016)
is noteworthy. In Niranjan and Indhira (2016) a review on the bulk arrival and batch service queueing models is given.
Real life examples of group service queueing models were carried out in detail in Bruneel et al. (2010), Abolnikov and
Dukhovny (2003) and Bar-Lev et al. (2007). Using a random service time distribution and random arrivals, waiting
time distribution of bulk service queues is obtained in Downton (1955). In Brugno et al. (2017a), Banerjee et al. (2015)
the service time for group service queueing models for customer group of size ′i′ is assumed to be the maximum of
′i′ identical PH distributions, which in turn a PH distribution, this type of group service model is also examined in
D’Arienzo et al. (2020) and Dudin et al. (2015).

A MAP/PH/1 queueing model with flexible group service has been studied by the authors in Brugno et al. (2017a).
Typically, a fixed number, let’s say N , is used in the study of group services. In the situation that there are fewer
than N consumers in the queue, the service is not initiated. Upon service completion, the server serves exactly N
consumers if there are N or more than N . On the other hand, an admission time commences when there are fewer
customers in the queue than N and it follows the PH distribution. If more customers are waiting than N prior to
the admission time ending, the admission time is ended and the service is continued with N customers. The group
of ′i′ customers is served continually by the server if the admission time finishes before the N th customer comes,
alternatively, if the admission period ends and no one is in line, a new admissions time begins, and the procedure is
repeated. Here, ′i′ varies from 1 to N − 1.
Anytime a server may breaks down and it will not proceed to repair, instead, it will serve the affected customer group
at a slower pace. After that specific customer group’s service is finished, the server will immediately undergo repair to
fix any issues, this concept is called working breakdown and it was first proposed by Kalidass and Kasturi in (2012).

In this paper, we study a flexible group service MAP/PH/1 queueing model with working breakdown, repair and
balking. The following is the order of the sections in the article. Section 2 presents a graphic representation of
the mathematical model together with a narrative explaining it and formulating the QBD matrix. In section 3, the
steady-state probability vector and the ergodicity (stability) requirement are derived. We calculated a few performance
measures for this model in section 4. Section 5 presents a few numerical results together with graphical representations,
and Section 6 provides the conclusion.

2. The Narration of the Model

In this paper, The basic operation of the model can be described as:
Arrival process: Markovian arrival process is considered with depiction (D0, D1) of order n with the generator
matrix D̃ = D0 +D1. Markovian arrival’s fundamental rate is defined as

τ = ϖD1em,

where ϖ is the vector of stationary probability of D̃.
Service process: We assume that the customers will get service in groups of size K, with K ≥ 2 a fixed integer. If
there are K − 1 customers in the queue and the server is idle an arriving customer will get a immediate service and its
PH representation is denoted as (σ(K), H(K)) of order S(K) with

H
(K)
0 +H(K)e = 0 which implies H

(K)
0 = −H(K)e,

otherwise based on the sequence of their arrival, the arriving customers are placed in the buffer and at this moment
choosing customers from the buffer at the time a service is complete is defined as follows, when a service is completed
and there areK or more customers in the queue, then the server provides a service to the group of exactlyK customers
with PH representation (σ(K), H(K)) of order S(K) and we refer such a group of K customers a block. On the other
hand, an admission period is initiated if the number of customer is waiting is fewer than K and we refer to this group
of customers as a pool.
Admission period: The admission period is based on the PH distribution, (γ,G) of order S(0) where

G0 +Ge = 0 and it implies G0 = −Ge.
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If the number of customers in the pool reaches K before the admission period expires, the admission period is stopped
and a service with K customers starts. If the admission period runs out before the Kth customer turns up, then the
server accepts all the waiting customers in the pool and provides a service. So a service of size ranging from 1 toK−1
is provided in such a way for a group and the service of k, customers 1 ≤ k ≤ K − 1 follows the PH distribution
(σ(k), H(k)) of order S(k) with H(k)

0 + H(k)e = 0, implying H(k)
0 = −H(k)e. A fresh admission period begins if

there are no customers in the queue. The basic rate of admission period is

λ = [γ(−G)−1e]
−1
.

Fundamental rate of service to k customers where 1 ≤ k ≤ K is defined as

δk = [σ(k)(−Hk)−1e]
−1
.

Figure 1: Diagram illustrating the current model

Working breakdown: Anytime a server may breaks down and it will not proceed to repair, instead, it will serve the
affected customer group at a slower pace with PH representation (σ(k), ϵH(k)), where (0 < ϵ < 1).After that specific
customer group’s service is finished, the server will immediately undergo repair to fix any issues.

The process of repair and breakdown occurs at an exponential rate with parameter α and β. When the server breaks
down, the customer might balk, with probability c.

Notations for our model

• ⊗ - the matrix Kronecker product.

• ⊕ - the matrix Kronecker sum .

• Im - an identity matrix of m- dimension.
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• e- a column matrix with each entry is 1 of an appropriate dimension.

• diag{d1, d2, · · · , dn} is the diagonal matrix, whose entries for the diagonals are enclosed in brackets. For
example if A = diag{x, y, z} then

A =

x 0 0
0 y 0
0 0 z


.

• A = (agh), where A is square matrix of order K ×K, that is 1 ≤ g ≤ K; 1 ≤ h ≤ K;

• Fk is the row matrix of dimension k each of its entries as 0.

Let
Ψ(t) =

{
B(t), C(t), P (t),M(t), I(t)(M(t)), V (t) : t ≥ 0

}
where,

• B(t) depicts the number of customer blocks in the system, including one in service, at moment t.

• C(t) depicts the server’s position at moment t

C(t) =


0 while server is not in use

1 while server providing service in normal mode

2 while server providing service in breakdown

3 while server in repair.

• P (t) depicts number of customers in the pool at moment t, thus 0 ≤ P (t) ≤ K − 1.

• M(t) depicts number of customers receiving the service at moment t. Note that M(t) = 0 if B(t) = 0 ,
therefore admission period will be taking place and 1 ≤M(t) ≤ K if B(t) ≥ 1.

• If M(t) = 0 then I(t)(M(t)) depicts the PH process of customer admission with
1 ≤ I(t)(0) ≤ S(0) and if 1 ≤ M(t) ≤ K then I(t)(M(t)) depicts the PH process of customer service with
1 ≤ I(t)(M(t)) ≤ S(M(t)).

• V (t) depicts the Markovian arrival process with 1 ≤ V (t) ≤ m.

Ψ(t) has the below states,

Ψ = ψ(0)
⋃

ψ(n)

where,

ψ(0) = {(0, 0, p, i, j) : 0 ≤ p ≤ K − 1 ; 1 ≤ i ≤ S(0) ; 1 ≤ j ≤ m }⋃
{(0, 3, p, i, j) : 0 ≤ p ≤ K − 1 ; 1 ≤ i ≤ s(0) ; 1 ≤ j ≤ m }.

Moreover, this can be expressed as

ψ(0) = {(0, 0, p) : 0 ≤ p ≤ K − 1 }
⋃

{(0, 3, p) : 0 ≤ p ≤ K − 1 }

phases of Markovian arrival and the PH process of admission period are comprehended.

For n ≥ 1,

ψ(n) = {(b, 1, p, k, i, j) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K ; 1 ≤ i ≤ S(k) ; 1 ≤ j ≤ m }⋃
{(b, 2, p, k, i, j) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K ; 1 ≤ i ≤ S(k) ; 1 ≤ j ≤ m }⋃
{(b, 3, p, k, j) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K ; 1 ≤ j ≤ m }
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and this can be simply written as

ψ(n) = {(b, 1, p, k) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K }⋃
{(b, 2, p, k) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K }⋃
{(b, 3, p, k) : b ≥ 1 ; 0 ≤ p ≤ K − 1 ; 1 ≤ k ≤ K }

phases of Markovian arrival and the PH process of service to k number of customers where 1 ≤ k ≤ K are
comprehended.

The rate of transition matrix of the QBD process is given as,

Q =



A00 A01 0 0 0 0 · · · · · ·
A10 B0 B+ 0 0 0 · · · · · ·
0 B− B0 B+ 0 0 · · · · · ·
0 0 B− B0 B+ 0 · · · · · ·
0 0 0 B− B0 B+ · · · · · ·
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .


The block matrices of the above matrix are given below

A00 =



A00
11 A00

12 0 · · · 0 0 · · · 0
0 A00

22 A00
23 · · · 0 0 · · · 0

...
. . . . . .

...
...

. . .
...

...
... A00

K−1 K−1 A00
K−1 K

...
. . .

...
0 · · · 0 A00

K K 0 · · · 0 0

0 0 · · · 0 A00
K+1 K+1 A00

K+1 K+2 · · · 0

0 0 · · · 0 0 A00
K+2 K+2 A00

K+2 K+3

...
. . . · · ·

...
...

. . . . . .
...

...
. . .

... 0
. . .

0 · · · 0 0 0 · · · 0 A00
2K 2K


where

A00
11 = (G+G0γ)⊕D0;A00

12 = D1 ⊗ IS(0) ,

In general for j, 2 ≤ j ≤ K − 1,

A00
j j = G⊕D0;A00

j j+1 = D1 ⊗ IS(0) ,

and
A00

K K = G⊕D0;A00
K+1 K+1 = (G+G0γ)⊕D0;A00

K+1 K+2 = D1 ⊗ IS(0) ,

In general for j, 2 ≤ j ≤ K − 1,

A00
K+j K+j = G⊕D0;A00

K+j K+(j+1) = D1 ⊗ IS(0) and A00
2K 2K = G⊕D0.

A01 =

(
A01

01 A02
01 A03

01

A31
01 A32

01 A33
01

)
,

A01
01 = (A01

01gh), where A01
01 is square matrix of order K ×K, thus 1 ≤ g ≤ K; 1 ≤ h ≤ K and

A01
01gh =

{
(Q0

01)g−1,0, if 2 ≤ g ≤ K;h = 1

0 , otherwise
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where
(Q0

01)j,0 =
(
Fj−1, G0 ⊗ σ(j) ⊗ Im, FK−j

)
for 1 ≤ j ≤ K − 2, and

(Q0
01)K−1,0 =

(
FK−2, G0 ⊗ σ(K−1) ⊗ Im, eS(0) ⊗ σ(K) ⊗D1

)
.

A33
01 = (A33

01gh), where A33
01 is square matrix of order K ×K, thus 1 ≤ g ≤ K; 1 ≤ h ≤ K;

A33
01gh =

{
(Q3

01)g−1,0, if 2 ≤ g ≤ K;h = 1

0 , otherwise

where
(Q3

01)j,0 =
(
Fj−1, G0 ⊗ Im, FK−j

)
for 1 ≤ j ≤ K − 2, and

(Q3
01)K−1,0 =

(
FK−2, G0 ⊗ Im, eS(0) ⊗D1

)
.

A02
01;A

03
01;A

31
01;A

32
01 are zero matrices.

A10 =

A10
10 0
0 A23

10

0 0

,
A10

10 = diag{(Q1,0)1,1, (Q1,0)2,2, . . . , (Q1,0)K,K},

for, 1 ≤ j ≤ K, (Q1,0)j,j =

H0
(1) ⊗ γ ⊗ Im

...
H0

(K) ⊗ γ ⊗ Im

 .

A23
10 = diag{(Q1,0)K+1,K+1, (Q1,0)K+2,K+2, . . . , (Q1,0)2K,2K},

for, 1 ≤ j ≤ K, (Q1,0)K+j,K+j =

 ϵH0
(1) ⊗ γ ⊗ Im

...
ϵH0

(K) ⊗ γ ⊗ Im

 .

B0 =

B0
11 B0

12 0
0 B0

22 0
B0

31 0 B0
33

,

B0
11 =



(B0
11)0,0 (B0

11)0,1 0 0 · · · 0
0 (B0

11)1,1 (B0
11)1,2 0 · · · 0

0 0
. . . . . . · · · 0

...
...

. . . . . .
...

0 0 · · · 0 (B0
11)K−2,K−2 (B0

11)K−2,K−1

0 0 · · · 0 (B0
11)K−1,K−1


,

for 0 ≤ j ≤ K − 1, (B0
11)j,j = diag

{
(D0 − αIm)⊕H(k); 1 ≤ k ≤ K

}
,

for 0 ≤ j ≤ K − 2, (B0
11)j,j+1 = diag

{
D1 ⊗ IS(k) ; 1 ≤ k ≤ K

}
.

B0
12 = diag

{
(B0

12)1,K+1, (B
0
12)2,K+2, . . . , (B

0
12)K,2K

}
,

for 1 ≤ j ≤ K, (B0
12)j,K+j = diag

{
αIm ⊗ IS(k) ; 1 ≤ k ≤ K

}
.
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B0
22 =



(B0
22)K+1,K+1 (B0

22)K+1,K+2 0 0 · · · 0
0 (B0

22)K+2,K+2 (B0
22)K+2,K+3 0 · · · 0

... 0
. . . . . . 0

0
...

. . . . . .
...

0 0 · · · 0 (B0
22)2K−1,2K−1 (B0

22)2K−1,2K

0 0 · · · 0 (B0
22)2K,2K


,

for 1 ≤ j ≤ K, (B0
22)K+j,K+j = diag

{
(D0 + cD1)⊕ ϵH(k); 1 ≤ k ≤ K

}
,

and for 1 ≤ k ≤ K − 1, (B0
22)K+j,K+(j+1) = diag

{
(1− c)D1 ⊗ IS(k) ; 1 ≤ k ≤ K

}
.

B0
31 = diag

{
(B0

31)2K+1,1, (B
0
31)2K+2,2, · · · , (B0

31)3K,K

}
,

for 1 ≤ j ≤ K, (B0
31)2K+j,j = diag

{
βIm ⊗ σk; 1 ≤ k ≤ K

}
.

B0
33 =



(B0
33)2K+1,2K+1 (B0

33)2K+1,2K+2 0 0 · · · 0
0 (B0

33)2K+2,2K+2 (B0
33)2K+2,2K+3 0 · · · 0

... 0
. . . . . . 0

0
...

. . . . . .
...

0 0 · · · 0 (B0
33)3K−1,3K−1 (B0

33)3K−1,3K

0 0 · · · 0 (B0
33)3K,3K


,

for 1 ≤ j ≤ K, (B0
33)2K+j,2K+j = diag

{
D0 − βIm, . . . , D0 − βIm

}
,

for 1 ≤ k ≤ K − 1, (B0
33)2K+j,2K+(j+1) = diag

{
D1, . . . , D1

}
.

B− =

B−
11 0 0
0 0 B−

23

0 0 0


B−

11 = diag
{
(B−

11)0,0, (B
−
11)1,1, . . . , (B

−
11)K−1,K−1

}
,

for 0 ≤ j ≤ K − 1, (B−
11)j,j =

0 · · · 0 H0
(1) ⊗ σ(K) ⊗ Im

...
. . .

...
...

0 · · · 0 H0
(K) ⊗ σ(K) ⊗ Im

,
B−

23 = diag
{
(B−

23)0,0, (B
−
23)1,1, . . . , (B

−
23)K−1,K−1

}
,

for 0 ≤ j ≤ K − 1, (B−
23)j,j = diag

{
ϵH0

(1) ⊗ Im, ϵH0
(2) ⊗ Im, . . . , ϵH0

(K) ⊗ Im
}
.

B+ =

B+
11 0 0
0 B+

22 0
0 0 B+

33


B+

11 = (B+
11gh), where B+

11 is square matrix of order K ×K, thus 1 ≤ g ≤ K; 1 ≤ h ≤ K;

B+
11gh =

{
(B+

11)g−1,0, if g = K;h = 1

0 , otherwise

where (B+
11)K−1,0 = diag

{
IS(k) ⊗D1; 1 ≤ k ≤ K

}
.

Flexible Group Service MAP/PH/1 Queueing Model with Working Breakdown, Repair and Balking 621



Pak.j.stat.oper.res. Vol.20 No. 4 2024 pp 615-632 DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4734

B+
22 = (B+

22gh), where B+
22 is square matrix of order K ×K, thus 1 ≤ g ≤ K; 1 ≤ h ≤ K;

B+
22gh =

{
(B+

22)g−1,0, if g = K;h = 1

0 , otherwise

where (B+
22)K−1,0 = diag

{
IS(k) ⊗ (1− c)D1; 1 ≤ k ≤ K

}
.

B+
33 = (B+

33gh), where B+
33 is square matrix of order K ×K, thus 1 ≤ g ≤ K; 1 ≤ h ≤ K;

B+
33gh =

{
(B+

33)g−1,0, if g = K;h = 1

0 , otherwise

where (B+
33)K−1,0 = diag

{
D1; 1 ≤ k ≤ K

}
.

3. Condition for stableness

Let us define the matrix
U = B− +B0 +B+,

then

U =

F11 F12 0
0 F22 F23

F31 F33

,

F11 =


E E1

. . . . . .
E E1

E1 E

,

where E =


(D0 − αIm)⊕H(1) H0

(1)σ(K) ⊗ Im
. . .

...
. . . H0

(K−1)σ(K) ⊗ Im
((D0 − αIm)⊕H(K)) + (H0

(K)σ(K) ⊗ Im)

,
and E1 = diag

{
D1 ⊗ IS(1) , D1 ⊗ IS(2) , . . . , D1 ⊗ IS(K)

}
.

F12 = diag
{
E6, E6, . . . , E6

}
where E6 = diag

{
αIm ⊗ IS(1) , αIm ⊗ IS(2) , . . . , αIm ⊗ IS(K)

}
.

F22 =


E2 E3

. . . . . .
E2 E3

E3 E2

,
where E2 = diag

{
(D0 + cD1)⊕ ϵH(1), (D0 + cD1)⊕ ϵH(2), . . . , (D0 + cD1)⊕ ϵH(K)

}
,

and E3 = diag
{
(1− c)D1 ⊗ IS(1) , (1− c)D1 ⊗ IS(2) , . . . , (1− c)D1 ⊗ IS(K)

}
.

F23 = diag
{
E7, E7, . . . , E7

}
,

where E7 = diag
{
ϵH(1) ⊗ Im, ϵH

(2) ⊗ Im, . . . , ϵH
(K) ⊗ Im

}
.

F31 = diag
{
E8, E8, . . . , E8

}
,
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where E8 = diag
{
βIm ⊗ σ1, βIm ⊗ σ2, . . . , βIm ⊗ σK

}
.

F33 =


E4 E5

. . . . . .
E4 E5

E4 E5

,
where E4 = diag

{
(D0 − βIm), (D0 − βIm), . . . , (D0 − βIm)

}
,

and E5 = diag
{
D1, D1, . . . , D1

}
.

It is obvious that the generator matrix U is a square matrix of order
2K(S(1) m+ S(2) m+ · · ·+ S(K) m)+K(Km+ · · ·+Km) or simply 2K

(
S(1)+S(2)+ · · ·+S(K)

)
m+K2m.

The steady-state probability vector of U is indicated by y. And the vector y is denoted as
y = (y1, y2, y3, . . . , yK , yK+1, yK+2, · · · , y2K , y2K+1, y2K+2, · · · , y3K), where yi = (y1i , y

2
i , · · · , yKi ) , 1 ≤ i ≤

3K which satisfies yU = 0 and ye = 1.
It may be inferred from Neuts(1994) that the fulfillment of the inequality yB+e < yB−e, is the criterion for the
ergodicity of the Markov chain Ψ(t). It is possible to find the vector y by solving the following equations.
y11(H

(1) ⊕ (D0 − αIm)) + y1K(IS(1) ⊗D1) + y12K+1(βIm ⊗ σ1) = 0
...
yK−1
1 (H(K−1) ⊕ (D0 − αIm)) + yK−1

K (IS(K−1) ⊗D1) + yK−1
2K+1(βIm ⊗ σK−1) = 0∑K−1

k=1 yk1 (H0
(k) ⊗ σ(K) ⊗ Im) + yK1 [(H0

(K) ⊗ σ(K) ⊗ Im) + (H(K) ⊕ (D0 − αIm))]
+ yKK (IS(K) ⊗D1) + yK2K+1(βIm ⊗ σK) = 0

for j , 2 ≤ j ≤ K we have,
y1j−1(IS(1) ⊗D1) + y1j (H

(1) ⊕ (D0 − αIm)) + y12K+j(βIm ⊗ σ1) = 0
...
yK−1
j−1 (IS(K−1) ⊗D1) + yK−1

j (H(K−1) ⊕ (D0 − αIm)) + yK−1
2K+j(βIm ⊗ σK−1) = 0∑K−1

k=1 ykj (H0
(k) ⊗ σ(K) ⊗ Im) + yKj [(H0

(K) ⊗ σ(K) ⊗ Im) + (H(K) ⊕ (D0 − αIm))]

+ yKj−1(IS(K) ⊗D1) + yK2K+j(βIm ⊗ σK) = 0.

y11(IS(1) ⊗ αIm) + y1K+1((D0 + cD1)⊕ ϵH1) + y12K(1− c)D1 ⊗ IS(1) = 0
y21(IS(2) ⊗ αIm) + y2K+1((D0 + cD1)⊕ ϵH2) + y22K(1− c)D1 ⊗ IS(2) = 0
...
yK1 (IS(K) ⊗ αIm) + yKK+1((D0 + cD1)⊕ ϵHK) + yK2K(1− c)D1 ⊗ IS(K) = 0

for j , 2 ≤ j ≤ K we have,
y1j (IS(1) ⊗ αIm) + y1K+(j−1)(1− c)D1 ⊗ IS(1) + y1K+j((D0 + cD1)⊕ ϵH1) = 0

y2j (IS(2) ⊗ αIm) + y2K+(j−1)(1− c)D1 ⊗ IS(2) + y2K+j((D0 + cD1)⊕ ϵH2) = 0

...
yKj (IS(K) ⊗ αIm) + yKK+(j−1)(1− c)D1 ⊗ IS(K) + yKK+j((D0 + cD1)⊕ ϵHK) = 0

y1K+1(ϵH0
1 ⊗ Im) + y12K+1(D0 − βIm) + y13KD1 = 0

y2K+1(ϵH0
2 ⊗ Im) + y22K+1(D0 − βIm) + y23KD1 = 0

...
yKK+1(ϵH0

K ⊗ Im) + yK2K+1(D0 − βIm) + yK3KD1 = 0
for j , 2 ≤ j ≤ K we have,
y1K+j(ϵH0

1 ⊗ Im) + y12K+(j−1)D1 + y12K+j(D0 − βIm) = 0

y2K+j(ϵH0
2 ⊗ Im) + y22K+(j−1)D1 + y22K+j(D0 − βIm) = 0

...
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yKK+j(ϵH0
K ⊗ Im) + yK2K+(j−1)D1 + yK2K+j(D0 − βIm) = 0

After performing some computations, the criteria for stability yB+e < yB−e, that is inferred as

K∑
k=1

ykK(eS(k) ⊗D1em) +

K∑
k=1

yk2K(eS(k) ⊗ (1− c)D1em) +

K∑
k=1

yk3K(D1em) <

K∑
i=1

K∑
k=1

yki (H0
(k) ⊗ em)

+

2K∑
i=K+1

K∑
k=1

yki (ϵH0
(k) ⊗ em).

3.1. Stationary Probability vector

Let z be theQ ’s the steady-state probability vector, then it has the form z = (z0, z1, z2,, · · · ),where z0 is of dimension
2KS0m and z1, z2, z3, · · · are of dimension 2K

(
S(1) + S(2) + · · ·+ S(K)

)
m+K2m respectively. Then z satisfies

the condition zQ = 0 and ze = 1. From the stability of our system, the subvectors zj of z, for j ≥ 2 are derived from

zj = z1R
j−1, j ≥ 2

where R refers to the smallest non-negative solution of the matrix quadratic equation R2B− + RB0 + B+ = 0, as
described by Neuts in Neuts(1994). TheRmatrix is a square matrix with order 2K

(
S(1) +S(2) +· · ·+S(K)

)
m+K2m

is derived from the above quadratic equation and also fulfils RB−e = B+e.
From the below two equations

z0A00 + z1A10 = 0,

z0A01 + z1(B
0 +RB−) = 0,

and with the normalising state equation

z0e2KS(0)m + z1(1−R)−1e
2K m

(
S(1)+S(2)+···+S(K)

)
+K2m

= 1,

we can find the sub vectors z0 and z1. With the reference of Latouche and Ramaswami in
Latouche and Ramaswami(1993), by applying the required stages of the logarithmic reduction procedure for R, the
matrix R might theoretically be computed.

4. Performance Measures

• The mean count of blocks of customers, comprising the one being served
Mblock =

∑∞
k=1 kzke = z1(1−R)−2.

• The mean count of blocks of customers, not including the one who is being served
M̃block =

∑∞
k=1(k − 1)zke =Mblock − 1 + z0e0.

• The mean count of customers in the pool
Mpool =

∑K−1
j=0 jz0ẽ0j +

∑∞
k=1

∑K−1
j=0

∑K
n=1 jzkjne =

∑K−1
j=0 jz0ẽ0j +

∑K−1
j=0 jx1(1−R)−1ẽj .

where ẽ0j is the column vector of order 2KS(0)m with (j(S(0))m + 1)st to ((j + 1)S(0)m)th entries and
((K + j)(S(0))m + 1)st to ((K + (j + 1))S(0)m)th entries are 1 and all other entries are zeros; ẽj is the
column vector of order (2K(S(1) + · · · + S(K))m + K2m with (j(S(1) + · · · + S(K))m + 1)st to ((j +
1)(S(1)+· · ·+S(K))m)th entries, ((K+j)(S(1)+· · ·+S(K))m +1)st to ((K+(j+1))(S(1)+· · ·+S(K))m)th

entries and ((2K(S(1)+ · · ·+S(K))m) + jKm+1)st to ((2K(S(1)+ · · ·+S(K))m) +(j+1)Km)th entries
are 1 and all other entries are zeros.

• The mean count of customers getting the service
Mservice =

∑∞
k=1

∑K−1
j=0

∑K
n=1 nzkjne

=
∑K

n=1 n(z1(1−R)−1e0n + z1(1−R)−1e1n + · · ·+ z1(1−R)−1eK−1n)
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=
∑K

n=1 n
(∑K−1

j=0 z1(1−R)−1ejn
)

where ejn are all column vectors of order (2K(S(1) + · · ·+ S(K))m + K2m defined as
for n = 1, ej1 has (j

(∑K
k=1 S

(k)m
)
+1)st to (j

(∑K
k=1 S

(k)m
)
+S(1)m)th entries are 1 and all other elements

are zeros; for 2 ≤ n ≤ K − 1, ejn has (j
(∑K

k=1 S
(k)m

)
+

(∑n−1
l=1 S

(l)m
)
+ 1)st to (j

(∑K
k=1 S

(k)m
)
+(∑n

l=1 S
(l)m

)
)th entries are 1 and all other entries are zeros; and for n = K , ejK has (j

(∑K
k=1 S

km
)
+(∑K−1

l=1 Slm
)
+ 1)st to ((K)

(∑K
k=1 S

(k)m
)
)th entries are 1 and all other entries are zeros.

• The mean count of customers in the working breakdown
Mworking breakdown =

∑∞
k=1

∑K−1
j=0

∑K
n=1 nzkjne

=
∑K

n=1 n(z1(1−R)−1ê0n + z1(1−R)−1ê1n + · · ·+ z1(1−R)−1êK−1n)

=
∑K

n=1 n
(∑K−1

j=0 z1(1−R)−1êjn
)

where êjn are all column vectors of order (2K(S(1) + · · ·+ S(K))m + K2m defined as
for n = 1, êj1 has ((K + j)

(∑K
k=1 S

(k)m
)
+ 1)st to ((K + j)

(∑K
k=1 S

(k)m
)
+ S(1)m)th entries are 1 and

all other elements are zeros; for 2 ≤ n ≤ K − 1, êjn has ((K + j)
(∑K

k=1 S
(k)m

)
+

(∑n−1
l=1 S

(l)m
)
+ 1)st

to ((K + j)
(∑K

k=1 S
(k)m

)
+

(∑n
l=1 S

(l)m
)
)th entries are 1 and all other entries are zeros; and for n = K ,

êjK has ((K + j)
(∑K

k=1 S
km

)
+
(∑K−1

l=1 Sjm
)
+ 1)st to ((2K)

(∑K
k=1 S

km
)
)th entries are 1 and all other

entries are zeros.

• The mean count of customers in the repair
Mrepair =

∑∞
k=1

∑K−1
j=0

∑K
n=1 zkjnê where ê is column vector of order (2K(S(1) + · · ·+S(K))m + K2m

with first (2K(S(1) + · · ·+ S(K))m entries are zeros and the rest K2m entries are 1.

• The mean system size at some random time, comprising the customers getting service
Msystem =

∑∞
k=1

∑K−1
j=0

∑K
n=1(kK + j + n)zkjne+

∑K−1
j=0 jz0ẽ0j +

∑∞
k=1

∑K−1
j=0

∑K
n=1 zkjnê

= K(Mblock) +Mpool +Mservice+Mworking breakdown+Mrepair

• The mean system size at an arbitrary moment not including the customers getting service
M̃system =

∑∞
k=1

∑K−1
j=0

∑K
n=1((k − 1)K + j + n)zkjne+

∑K−1
j=0 jz0ẽ0j +

∑∞
k=1

∑K−1
j=0

∑K
n=1 zkjnê

= K(M̃block) +Mpool +Mservice+Mworking breakdown+Mrepair

• The probability of the server is not in use at an arbitrary moment
Pidle = z0e0

5. Numerical Results

In this section, we use graphical representations of the numerical values to investigate the model’s nature, where
the numerical values for arrival process, admission period and service process were referred by Chakravarthy in
Chakravarthy(2010).
Numerical values for Markovian arrival process are,

• (Exp-A)
D0 =

(
−1

)
, D1 =

(
1
)

• (Erl-A)

D0 =

(
−2 2
0 −2

)
, D1 =

(
0 0
2 0

)
• (Hyp-A)

D0 =

(
−1.90 0

0 −0.19

)
, D1 =

(
1.710 0.190
0.171 0.019

)
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• (Neg-A)

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258


• (Pos-A)

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539


where (Exp − A) is Exponential Arrival, (Erl − A) is Erlang Arrival, (Hyp − A) is Hyper-Exponential Arrival,
(Neg − A) is MAP-Negative Correlation Arrival and (Pos− A) is MAP-Positive Correlation Arrival and numerical
values for Phase type admission period are

• Exponential admission period (Exp-AP)

γ =
(
1
)
, G =

(
−1

)
• Erlang admission period (Erl-AP)

γ =
(
−1, 0

)
, G =

(
−2 2
0 −2

)
• Hyper-Exponential admission period (Hyp-AP)

γ =
(
0.8, 0.2

)
, G =

(
−2.80 0

0 −0.28

)

We assume that the numerical values for Phase type distributions (σk, H(k)) of service times to k customers for
1 ≤ k ≤ K where all either exponential distributions or Erlang distributions, regardless of size.

• Exponential service (E-S)
σk =

(
1
)
, H(k) =

(
−1

)
∀ 1 ≤ k ≤ K

• Erlang service (Erl-S)

σk =
(
−1, 0

)
, H(k) =

(
−2 2
0 −2

)

Illustration: 5.1 We have illustrated the effect of the rate of admission period in counter to the mean size of
the system, where service follows both exponential and Erlang distribution in the figure 3. We assume τ = 1, λ = 1,
δ = 6, α = 1, β = 2, c = 0.6 and ϵ = 0.4 and we increase the pace of admission so that the values does not affect the
stability of the system. We execute the example for batch size N = 2.

In figures 2(a) and 2(b) we fixed the arrival to follow exponential distribution and we assume the admission
period to follow exponential, Erlang and hyper-exponential distribution respectively. We observed that by accelerating
the admission period rate, the mean system size drops steadily both in exponential service and Erlang service, in all
three admission period distributions.

In figures 2(c) and 2(d) we fixed the arrival to follow Erlang distribution and we assume the admission period
to follow exponential, Erlang and hyper-exponential distribution respectively. We observed that by accelerating the
admission period rate in exponential service, the mean system size attains the higher values in hyper-exponential
admission period and lower values in exponential admission period. Also, we observed that in Erlang service, when
the admission period rate goes up, the mean system size attains the higher values in exponential admission period and
lower values in hyper-exponential admission period.

In figures 2(e) and 2(f) we fixed the arrival to follow hyper-exponential distribution and we assume the ad-
mission period to follow exponential, Erlang and hyper-exponential distribution respectively. We observed that by
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accelerating the admission period rate in both exponential and Erlang service, the mean system size attains the higher
values in Erlang admission period and lower values in exponential admission period.

In figures 2(g) we fixed the arrival to follow MAP-positive correlation distribution and we assume the ad-
mission period to follow exponential, Erlang and hyper-exponential distribution respectively. We observed that by
accelerating the admission period rate, the mean system size attains huge values for all admission periods and attains
its maximum values in exponential admission period distribution.

Illustration: 5.2. We assume τ = 1, λ = 1, δ = 6, α = 1, β = 2, c = 0.6 and ϵ = 0.4 and we execute the
example for batch size N = 2.

In Figure 3, we fixed the service to follow Erlang distribution and we have analysed the mean system size
against the repair rate and service rate, under various admission period rates and arrival rates. We increase the pace
of respective rates, so that the values does not affect the stability of the system. we have shown that the mean system
size decreases steadily for Erlang arrival with hyper-exponential admission period, exponential arrival with Erlang
admission period, hyper-exponential arrival with exponential admission period and MAP-negative correlation arrival
with exponential admission period.

In Figure 4, we fixed the service to follow exponential distribution and we have analysed the mean system size
against the repair rate and service rate, under various admission period rates and arrival rates. We increase the pace
of respective rates, so that the values does not affect the stability of the system. we have shown that the mean system
size decreases gradually for MAP-positive correlation arrival with Erlang admission period, MAP-negative correlation
arrival with hyper-exponential admission period, Erlang arrival with exponential admission period, hyper-exponential
arrival with exponential admission period and exponential arrival with exponential admission period.

In Figure 5, we fixed the service to follow exponential or Erlang distribution and we have analysed the mean
system size against the service rate and breakdown rate, under various admission period rates and arrival rates. We
increase the pace of respective rates, so that the values does not affect the stability of the system. we have shown that
the mean system size decreases steadily in all the cases.
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Figure 2: Admission Period Rate Exp−Ap, Erl −Ap, Hyp−Ap (vs) Msystem.
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Figure 3: Repair Rate and Service Rate (vs) Msystem with Erlang Service
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Figure 4: Repair Rate and Service Rate (vs) Msystem with Exponential Service
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Figure 5: Service Rate and Breakdown Rate (vs) Msystem with Exponential and Erlang Service

6. The conclusion

In this research, we examined a group service queueing model where arrivals follow a Markovian arrival process.
When a server breaks down, arrivals may balk the system. The service uses phase-type distributions, where the group
size might change. Depending on the group size, (that is, the total number of customers receiving service) different
Phase-type distribution representations for the service time exist. The server could break down at any time, in which
case it would not proceed to repair but would instead continue to serve the affected customer group at a slower pace.
After the service for that specific customer group is finished, the server will then promptly undergo repair to get it
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fixed. The rate of breakdown and the process of repair have an exponential distribution. We compared the mean size
of the system counter to service, admission period, balking, and repair rates, respectively, using the numerical values
of arrival and service periods of time. The results are shown through images. We are currently investigating how this
model might be expanded to retrial and bulk arrival queueing models with different server limitations.
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