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Abstract 

 

Quality is not simply a goal or a choice for organizations, it is also a need for success in the global market. 

Acceptance sampling is one of two key strategies for quality assurance in manufacturing industry, along with 

statistical process control. After inspection the lot is either accepted or rejected based on the acceptance criteria. If 

historical information about the product is available, then the most effective approach for making the appropriate 

judgement is the Bayesian approach. To estimate quality regions, this work presents a Bayesian double group 

sampling plan (BDGSP). Based on acceptance criteria, the binomial distribution is used to build a likelihood 

function for defective and non-defective items. The beta distribution is utilized as the prior distribution to determine 

the average probability of acceptance. For some stated values of producer’s and consumer’s risks, four different 

quality regions are estimated. The suggested plan estimates variation point values based on various design 

parameter combinations. Producer's and consumer's risks correlate with acceptable quality levels and limiting 

quality levels of regions, respectively. Operating characteristic curves are used to monitor the effects of change in 

the values of specified parameters and for comparison with existing sampling plan. Application based on real data 

set proves that the proposed plan is applicable for existing manufacturing industry policies. 
 

Key Words: Acceptance sampling; Binomial; Beta distribution; Bayesian; Consumer’s risk. 
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1. Introduction 

There is fierce competition between businesses nowadays to establish a solid reputation in the industry. Therefore, a 

well-known corporation is judged on its quality. A high-grade product on the market is necessary to uphold the 

company's excellent reputation. The entire process from the raw materials to the finished product should be inspected 

to assure the product's excellent quality (Thomas & Kumar 2024a; 2024b). One option for evaluating the lot of a 

product is to perform a complete inspection; the alternative is acceptance sampling. Acceptance sampling is a method 

used for product inspection because it might not be possible to conduct a 100% inspection. In acceptance sampling, 

we choose a sample from the lot that is being inspected in order to decide whether to accept or reject the lot. Since 

there are not many items needed for acceptance sampling, the inspection's time and costs can be kept to a minimum 

(Thomas & Kumar 2022; 2023). Various acceptance sampling processes have been reported in the literature over the 

years. Epstein (1954) published the first single sampling plan (SSP) that used an exponential distribution to represent 

the lifetime distribution of a lot. Two approaches, one for a replacement scenario and the other for a non-replacement 
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situation were examined in order to identify the design parameters. Based on the mean lifetime, the mathematical 

work was completed for the estimated number of observations, acceptance probability, and testing period. 

 

SSP was later replaced by Dodge (1955) with chain sampling plan-1 (ChSP-1) by carrying into consideration the 

previous sample in SSP. After that, an attribute single sample plan was proposed to lower average cost (Hald, 1965). 

If the product life is based on the specified distribution, the required design parameters can be determined by using 

any acceptance sampling plan. Various distributions are considered in different techniques for various types of data 

(Chukhrova & Johannssen, 2018). Such techniques are legitimate if they meet the requirements according to pre-

specified parameters such as consumer’s risk, producer’s risk, acceptance number and appropriate testing (Lio, Tsai, 

& Wu, 2010). 

 

Only sample data is precisely employed in conventional statistics, however older data are frequently relevant to the 

sample data as well, that effects the choice as well. It is considered prior information known as prior distribution and 

comes from the similar circumstances as previous lots. It is significant because it represents the data distribution of an 

unknown parameter, maintaining estimation accuracy while evaluating the chance of a defect. The Bayesian 

acceptance sampling approach is based on the combination of current lot information and the prior information. The 

quality that will be examined is expected to be distributed according to the earlier distribution. This distribution is 

known as prior since it is created before the sample is collected. Sample distribution, sometimes referred to as data 

distribution, is the empirical information based on a sample that is being studied. A choice is made based on a 

combination of previous knowledge and empirical data. Bayesian sampling plans require a smaller sample size than a 

conventional sampling plan with the same producer’s and consumer’s risks (Suresh & Sangeetha, 2011). Suresh and 

Latha (2001) proposed a Bayesian single sampling plan (BSSP) with gamma prior for the Poisson distribution. The 

variation points and tangent at variation point were calculated, and tables for selecting the plan's parameters were 

provided. They expand their Bayesian chain sampling plan (BChSP-1) for construction and performance 

measurements by utilizing quality regions (Suresh & Sangeetha, 2011). They use quality regions to enhance their 

BChSP-1 for construction and performance measures (Suresh & Latha, 2001; Suresh & Sangeetha, 2011). A SSP for 

Poisson distribution by (Subramani & Haridoss, 2013; Subbiah & Latha, 2017) and Poisson distribution was changed 

to a BSSP utilizing AQL and LQL by (Raju & Vidya, 2017). 

 

When there are numerous testers available for inspection, Aslam and Jun (2009) developed a group acceptance 

sampling plan (GASP) to evaluate several items at the identical time. The sample size 𝑛 is divided into 𝑔 groups based 

on the number of testers available. Risk-based sampling plans are described by the operating characteristic (OC) curve, 

drawing upon the producer and consumer type of risks (Fayomi & Khan, 2024). Hafeez, Aziz and Du (2023), recently 

presented a Bayesian new two-sided group chain sampling plan (BNTSGChSP) and Hafeez and Aziz (2023), 

presented a Bayesian two-sided group chain sampling plan (BTSGChSP) to estimated quality regions using different 

consumer's and producer's risk values. Hafeez, Aziz, Zain, and Kamarudin (2022), consider preceding lots to make a 

decision about the current lot of one-sided sampling plans and consider preceding with succeeding lots to decide the 

current lot for two-sided sampling plans by Hafeez, Aziz and Du (2023). 

 

If preceding and succeeding lots are not available or include only current lot for inspection, then the proposed plans 

by (Hafeez, Aziz, & Du, 2023; Hafeez, Aziz, Zain, & Kamarudin, 2022) cannot be used. In this situation BDGSP can 

be used for inspection and make a decision about the current lot, this is the main objective of this study. A good plan 

must use small values of producer’s and consumer’s risks. This study focuses on the attribute sampling plan and 

proposes a BDGSP for the inspection of attributes of a product. During inspection BDGSP is sufficient to consider all 

attributes of a product. In the proposed plan, the producer’s risk (𝛼) is associated with an acceptable quality level 

(AQL), and the consumer’s risk (𝛽) is associated with a limiting quality level (LQL). Using AQL and LQL inflection 

points four different quality regions are estimated for BDGSP.  For all quality regions, AQL and LQL are estimated 

for the specified values design parameters; consider the number of testers (𝑟1, 𝑟2), and the number of groups (𝑔1, 𝑔2). 

Also, for the prior distribution shape parameter (𝑠) numerical illustration is provided for all quality regions. As 

opposed to the current plans, which base their sampling strategies on a single point-wise description of quality, the 

new plans base their sample strategies on quality regions, which provide greater coverage and better protection for 

customers as well as manufacturers. 

 

The next section outlines the design structures of the proposed BDGSP (a, b), incorporating mathematical 

formulations, simulations, and the estimation of quality regions. Section 3 presents the results, including graphical 

representations and a comparative analysis with existing sampling plans. In Section 4, we demonstrate the application 
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of our methodology using a real dataset. The final section offers a comprehensive discussion of the key findings and 

concluding observations from this study. 

 

2. Methodology 

2.1 Bayesian Double Group Sampling Plan BDGSP (a, b) 

The steps below are the foundation for the BDGSP (a, b) operating procedure. 

• Select a random sample of size 𝑛1, and divide into 𝑔1 groups such as 𝑟1 items are assigned to each group, therefore 

sample size required (𝑛1 = 𝑔1 ∗ 𝑟1). 

• Count the number of defectives 𝑑1, that is the sum of defectives in the first stage. 

• If 𝑑1 ≤ 𝑎 accept the lot; if 𝑑1 > 𝑏 reject the lot; if 𝑎 < 𝑑1 ≤ 𝑏, go for a second random sample. 

• Select a random sample of size 𝑛2, and divide into 𝑔2 groups such as 𝑟2 items are assigned to each group, therefore 

sample size required (𝑛2 = 𝑔2 ∗ 𝑟2). 

• Count the number of defectives 𝑑2, that is the sum of defectives in the second stage. 

• If 𝑑1 + 𝑑2 ≤ 𝑏 accept the lot, if 𝑑1 + 𝑑2 > 𝑏 reject the lot. 

The above steps in the operating procedure can summarize in a flow chart shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow chart for double group sampling plan. 

 

The probabilities of both a defective and non-defective product can be calculated by using binomial distribution. Due 

to the lot's independent and identical trials, it can be used based on the properties of a binomial experiment. The 

inspection's findings can be classified as either defective or non-defective, two outcomes that are mutually exclusive. 

Also, when population size 𝑁 is large, and the sample fraction is less than 0.10, binomial distribution can be applied 

(Appaia, Krishnan, & Kalaiselvi, 2014). Hence the probability of the number of defective products 𝑑 can be estimated 

by the binomial probability distribution function (PDF). 

Inspect a sample of size 𝑛1 = 𝑟1 ∗ 𝑔1, from lot. 

Count number of defectives, 𝑑1 

𝑑1 ≤ 𝑎 𝑎 < 𝑑1 ≤ 𝑏 𝑑1 > 𝑏 

Accept Reject 

Inspect a second sample of size 𝑛2 = 𝑟2 ∗ 𝑔2, from lot. 

𝑑1 + 𝑑2 > 𝑏 𝑑1 + 𝑑2 ≤ 𝑏 

Count number of defectives, 𝑑2 
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𝑝(𝑑) = (
𝑟𝑔
𝑑

) 𝑝𝑑(1 − 𝑝)𝑟𝑔−𝑑                                                                              (1) 

where 𝑝, is a parameter represents an unknown probability of defective. 

 

Now we consider a special case for this study, where BDGSP (𝑎 = 0, 𝑏 = 1) and the mathematical work will be done 

for zero and one defective product. After replacing zero and one defective in equation (1), Figure 1 and the operating 

procedure of BDGSP can be summarized as in the mathematical equation: 

 

𝐿(𝑝) = (
𝑟1𝑔1

0
) 𝑝0(1 − 𝑝)𝑟1𝑔1−0 + (

𝑟1𝑔1

1
) 𝑝1(1 − 𝑝)𝑟1𝑔1−1 [(

𝑟2𝑔2

0
) 𝑝0(1 − 𝑝)𝑟2𝑔2−0]                  (2) 

𝐿(𝑝) = (1 − 𝑝)𝑟1𝑔1 + 𝑟1𝑔1𝑝(1 − 𝑝)𝑟1𝑔1−1(1 − 𝑝)𝑟2𝑔2                                                (3) 

𝐿(𝑝) = (1 − 𝑝)𝑟1𝑔1 + 𝑟1𝑔1𝑝(1 − 𝑝)𝑟1𝑔1+𝑟2𝑔2−1                                                       (4) 

In Bayesian beta distribution is an appropriate prior distribution for the binomial distribution (Latha & Arivazhagan, 

2015). This means that in a binomial PDF 𝑝 unknown parameter has the beta distribution with PDF. 

𝑓(𝑝) =
1

𝛽(𝑠, 𝑡)
𝑝𝑠−1(1 − 𝑝)𝑡−1                                                                     (5) 

where 𝜇 =
𝑠

𝑠+𝑡
 is the beta distribution's mean and 𝑠, 𝑡 > 0 both serve as shape parameters. 

In Bayesian, the general equation for the average probability of acceptance is. 

𝑃 = ∫ 𝐿(𝑝)𝑓(𝑝)

1

0

𝑑𝑝                                                                              (6) 

After replacing Equation (4) and Equation (5) in Equation (6), we get the equation of the average probability of 

acceptance for BDGSP based on beta and binomial distributions. 

 

𝑃 = ∫((1 − 𝑝)𝑟1𝑔1 + 𝑟1𝑔1𝑝(1 − 𝑝)𝑟1𝑔1+𝑟2𝑔2−1)
1

𝛽(𝑠, 𝑡)
𝑝𝑠−1(1 − 𝑝)𝑡−1

1

0

𝑑𝑝                              (7) 

𝑃 =
1

𝛽(𝑠, 𝑡)
[𝛽(𝑠, 𝑟1𝑔1 + 𝑡) + 𝑟1𝑔1𝛽(𝑠 + 1, 𝑟1𝑔1 + 𝑟2𝑔2 + 𝑡 − 1)]                                         (8) 

𝑃 =
Γ(𝑠 + 𝑡)Γ(𝑟1𝑔1 + 𝑡)

Γ(𝑡)Γ(𝑠 + 𝑟1𝑔1 + 𝑡)
+ 𝑟1𝑔1𝑠

 Γ(𝑠 + 𝑡)Γ(𝑟1𝑔1 + 𝑟2𝑔2 + 𝑡 − 1)

Γ(𝑡) Γ(𝑠 + 𝑟1𝑔1 + 𝑟2𝑔2 + 𝑡)
                                       (9) 

Equation (9) is a mixed distribution of beta and binomial distributions. As the beta distribution has mean 𝜇 =
𝑠

𝑠+𝑡
 that 

gives 𝑠 + 𝑡 =
𝑠

𝜇
 , and 𝑡 =

𝑠

𝜇
− 𝑠; by replacing these terms in Equation (9) and solving it, 

for 𝑠 = 1: 

𝑃 =
1 − 𝜇

𝑟1𝑔1𝜇 + 1 − 𝜇
+

𝑟1𝑔1𝜇(1 − 𝜇)

(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 1 − 𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 1 − 2𝜇)
                          (10) 

for 𝑠 = 2: 

𝑃 =
(2 − 𝜇)(2 − 2𝜇)

(𝑟1𝑔1𝜇 + 2 − 𝜇)(𝑟1𝑔1𝜇 + 2 − 2𝜇)

+
2𝑟1𝑔1𝜇(2 − 𝜇)(2 − 2𝜇)

(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 2 − 𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 2 − 2𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 2 − 3𝜇)
                    (11) 

for 𝑠 = 3: 

𝑃 =
(3 − 𝜇)(3 − 2𝜇)(3 − 3𝜇)

(𝑟1𝑔1𝜇 + 3 − 𝜇)(𝑟1𝑔1𝜇 + 3 − 2𝜇)(𝑟1𝑔1𝜇 + 3 − 3𝜇)
 

+
3𝑟1𝑔1𝜇(3 − 𝜇)(3 − 2𝜇)(3 − 3𝜇)

(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 3 − 𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 3 − 2𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 3 − 3𝜇)(𝑟1𝑔1𝜇 + 𝑟2𝑔2𝜇 + 3 − 4𝜇)
 

(12) 
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By using Newton’s approximation, Equations. (10, 11 & 12) are used to find the quality regions for BDGSP, where 𝜇 

is used as the point of control by reducing 𝑃. When five testers are used (𝑟1 = 𝑟2 = 5), Table 1 represents the average 

proportion of defectives that are generated for all prespecified design parameters. 

 

Table 1: Certain 𝜇 values in BDGSP for specified values of 𝑃, 𝑔1 and 𝑔2, when 𝑟1 = 𝑟2 = 5. 

𝒔 𝒈𝟏 𝒈𝟐 0.99 0.95 0.90 0.75 0.5 0.25 0.1 0.05 0.01 

1 5 5 0.0026 0.0068 0.0108 0.0234 0.0557 0.1381 0.3159 0.4908 0.8328 

10 0.0020 0.0053 0.0087 0.0194 0.0477 0.1222 0.2889 0.4599 0.8152 

15 0.0017 0.0046 0.0077 0.0175 0.0443 0.1161 0.2787 0.4480 0.8082 

20 0.0015 0.0042 0.0070 0.0164 0.0425 0.1131 0.2738 0.4423 0.8048 

10 5 0.0016 0.0041 0.0066 0.0141 0.0336 0.0855 0.2112 0.3582 0.7422 

10 0.0013 0.0034 0.0054 0.0118 0.0286 0.0740 0.1873 0.3248 0.7131 

15 0.0011 0.0029 0.0048 0.0106 0.026 0.0684 0.1754 0.3080 0.6973 

20 0.0010 0.0027 0.0044 0.0098 0.0244 0.0650 0.1688 0.2984 0.6879 

15 5 0.0011 0.003 0.0048 0.0103 0.0246 0.0632 0.1619 0.2869 0.6748 

10 0.0009 0.0025 0.0041 0.0088 0.0212 0.0551 0.1435 0.2589 0.6433 

15 0.0008 0.0022 0.0036 0.0079 0.0192 0.0506 0.1330 0.2427 0.6234 

20 0.0008 0.002 0.0033 0.0073 0.0179 0.0477 0.1265 0.2325 0.6104 

20 5 0.0009 0.0023 0.0038 0.0081 0.0194 0.0505 0.1319 0.2404 0.6202 

10 0.0008 0.002 0.0033 0.0071 0.017 0.0445 0.1179 0.2178 0.5896 

15 0.0007 0.0018 0.003 0.0064 0.0155 0.0408 0.1091 0.2034 0.5686 

20 0.0006 0.0017 0.0028 0.0059 0.0145 0.0384 0.1032 0.1937 0.5538 

2 5 5 0.0029 0.0073 0.0114 0.0228 0.0470 0.0952 0.1792 0.2605 0.5012 

10 0.0023 0.0058 0.0091 0.0186 0.0398 0.0839 0.1628 0.2404 0.4752 

15 0.0019 0.005 0.0079 0.0166 0.0368 0.0798 0.1576 0.2344 0.4680 

20 0.0017 0.0045 0.0072 0.0155 0.0353 0.078 0.1555 0.2320 0.4653 

10 5 0.0018 0.0045 0.0069 0.0138 0.0282 0.0571 0.1095 0.1630 0.3437 

10 0.0015 0.0037 0.0057 0.0114 0.0238 0.0493 0.096 0.1445 0.3121 

15 0.0012 0.0032 0.005 0.0102 0.0216 0.0455 0.0899 0.1364 0.2988 

20 0.0011 0.0029 0.0046 0.0094 0.0202 0.0433 0.0867 0.1324 0.2923 

15 5 0.0013 0.0032 0.005 0.01 0.0205 0.0418 0.0807 0.1215 0.2669 

10 0.0011 0.0027 0.0043 0.0086 0.0177 0.0363 0.0708 0.1074 0.2401 

15 0.0010 0.0024 0.0038 0.0076 0.016 0.0333 0.0655 0.0999 0.2262 

20 0.0009 0.0022 0.0035 0.007 0.0149 0.0313 0.0624 0.0957 0.2184 

20 5 0.0010 0.0026 0.004 0.0079 0.0162 0.0331 0.0643 0.0975 0.2193 

10 0.0009 0.0022 0.0034 0.0069 0.0142 0.0291 0.057 0.0867 0.1978 

15 0.0008 0.002 0.0031 0.0062 0.0129 0.0267 0.0526 0.0804 0.1852 

20 0.0007 0.0019 0.0029 0.0057 0.012 0.0251 0.0498 0.0764 0.1773 

3 5 5 0.0031 0.0076 0.0117 0.0226 0.0444 0.0838 0.1455 0.2010 0.3597 

10 0.0024 0.006 0.0093 0.0184 0.0375 0.0739 0.1328 0.1865 0.3420 

15 0.0020 0.0051 0.008 0.0164 0.0346 0.0704 0.1292 0.1828 0.3382 

20 0.0018 0.0046 0.0073 0.0152 0.0331 0.0689 0.1279 0.1816 0.3371 

10 5 0.0019 0.0046 0.0071 0.0136 0.0266 0.0500 0.0871 0.1215 0.2269 

10 0.0015 0.0038 0.0058 0.0113 0.0225 0.0430 0.0764 0.1077 0.2054 

15 0.0013 0.0033 0.0051 0.0101 0.0203 0.0396 0.0718 0.1021 0.1975 

20 0.0012 0.0030 0.0046 0.0092 0.0190 0.0378 0.0695 0.0995 0.1941 

15 5 0.0014 0.0034 0.0051 0.0099 0.0194 0.0364 0.0637 0.0893 0.1700 

10 0.0012 0.0028 0.0044 0.0085 0.0167 0.0316 0.0559 0.0788 0.1522 

15 0.0010 0.0025 0.0039 0.0076 0.0151 0.0289 0.0518 0.0736 0.1436 

20 0.0009 0.0023 0.0035 0.007 0.014 0.0273 0.0494 0.0706 0.1392 

20 5 0.0011 0.0027 0.0041 0.0079 0.0153 0.0288 0.0506 0.0711 0.1369 

10 0.0009 0.0023 0.0035 0.0069 0.0134 0.0254 0.0448 0.0632 0.1228 

15 0.0008 0.002 0.0032 0.0062 0.0122 0.0232 0.0413 0.0587 0.1150 

20 0.0008 0.0019 0.0029 0.0057 0.0113 0.02180 0.0392 0.0558 0.1104 

 

It can be observed in Table 1, that the average proportion of defectives decreased as the value of 𝑠, 𝑔1 and 𝑔2 increased. 

 

2.2 Designing of Quality Regions for BDGSP 

i. Probabilistic Quality Region (PQR) 
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In this quality region, the product is accepted with a maximum probability of 0.95 and the minimum probability of 

0.05, where 0.95 corresponds to AQL (1 − 𝛼) and 0.05 corresponds to LQL (𝛽). In other words, PQR (𝑅1) is exactly 

the conventional setting of  AQL = 𝜇1 and LQL = 𝜇2. In Figure 2, it is showed that the PQR lies between 𝜇1 ≤ 𝜇 ≤
𝜇2. 

 
Figure 2: OC curve with pair of coordinates for PQR (Hafeez, Aziz, & Shabbir, 2024). 

 

This region considers the same values for consumer’s and producer’s risk, that is  𝛼 = 𝛽 = 0.05 and the range of PQR 

is 𝑅1 = 𝜇2 − 𝜇1 as given in Table 2. 

 

ii. Quality Decision Region (QDR) 

The product is accepted with a maximum probability of 0.95 and a minimum probability of 0.25 in this quality region, 

where 0.95 equates to AQL (1 − 𝛼) and 0.25 equates to LQL (𝛽). In other words, QDR (𝑅2) exactly matches the 

standard setup of AQL = 𝜇1 and LQL = 𝜇β, and it can be shown that the QDR is located between these two positions: 

𝜇1 ≤ 𝜇 ≤ 𝜇β. The levels for consumer’s and producer’s risk in this area are 𝛼 = 0.05 and 𝛽 = 0.25 respectively. 

𝑅2 = 𝜇β − 𝜇1 is the QDR range, as seen in Table 2. 

 

iii. Limiting Quality Region (LQR) 

The product is accepted with a maximum probability of 0.75 and a minimum probability of 0.05 in this quality region, 

where 0.75 equates to AQL (1 − 𝛼) and 0.05 equates to LQL (𝛽). In other words, LQR (𝑅3) exactly matches the 

standard setup of AQL = 𝜇α and LQL = 𝜇2, and it can be shown that the LQR is located between these two positions: 

𝜇α ≤ 𝜇 ≤ 𝜇2. The levels for consumer’s and producer’s risk in this area are 𝛼 = 0.25 and 𝛽 = 0.05 respectively. 

𝑅3 = 𝜇2 − 𝜇α is the LQR range, as seen in Table 2. 

 

iv. Indifference Quality Region (IQR) 

The product is accepted with a maximum probability of 0.5 and a minimum probability of 0.05 in this quality region, 

where 0.5 equates to AQL (1 − 𝛼) and 0.05 equates to LQL (𝛽). In other words, IQR (𝑅4) exactly matches the 

standard setup of AQL = 𝜇∗ and LQL = 𝜇2, and it can be shown that the IQR is located between these two positions: 

𝜇∗ ≤ 𝜇 ≤ 𝜇2. The levels for consumer’s and producer’s risk in this area are 𝛼 = 0.5 and 𝛽 = 0.05 respectively. 𝑅4 =
𝜇2 − 𝜇∗ is the IQR range, as seen in Table 2. 

 

2.3 Selection of Sampling Plan 

When 𝑟1 = 𝑟2 = 5, Table 2 lists the quality regions PQR (𝑅1), QDR (𝑅2), LQR (𝑅3), and IQR (𝑅4) together with the 

related design parameters 𝑠, 𝑔1 and 𝑔2. We can determine the operating ratios 𝑇 =
𝑅1

𝑅2
, 𝑇1 =

𝑅1

𝑅3
 and 𝑇2 =

𝑅1

𝑅4
 for any 
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given quality region value (Hafeez et al., 2024). Columns 𝑇, 𝑇1 and 𝑇2 in Table 2 can be used to determine the value 

for the design parameters 𝑠, 𝑔1 and 𝑔2 that is equal to or less than the given ratio. The parameters for the BDGSP can 

be calculated from this ratio. 

 

Table 2: Certain values of QDR, PQR, LQR, IQR and operating characteristic ratio under BDGSP for specified 

values of 𝑔1 and 𝑔2, when 𝑟1 = 𝑟2 = 5. 

𝒔 𝒈𝟏 𝒈𝟐 𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑻 𝑻𝟏 𝑻𝟐 

1 5 5 0.484 0.1313 0.4674 0.4351 3.686 1.0357 1.1125 

10 0.4545 0.1169 0.4405 0.4122 3.8885 1.0319 1.1027 

15 0.4434 0.1115 0.4305 0.4037 3.9773 1.0299 1.0983 

20 0.4381 0.1089 0.4259 0.3998 4.0241 1.0286 1.0958 

10 5 0.354 0.0814 0.344 0.3246 4.3512 1.0291 1.0908 

10 0.3214 0.0707 0.3129 0.2962 4.549 1.0271 1.0851 

15 0.305 0.0654 0.2974 0.282 4.6633 1.0257 1.0817 

20 0.2958 0.0624 0.2887 0.274 4.7426 1.0247 1.0794 

15 5 0.2839 0.0602 0.2766 0.2623 4.714 1.0265 1.0824 

10 0.2564 0.0526 0.2501 0.2377 4.8709 1.0253 1.0786 

15 0.2404 0.0483 0.2347 0.2234 4.975 1.0242 1.0761 

20 0.2304 0.0456 0.2252 0.2145 5.0488 1.0234 1.0742 

20 5 0.2381 0.0481 0.2323 0.221 4.9479 1.025 1.0774 

10 0.2157 0.0425 0.2107 0.2007 5.0727 1.0241 1.0747 

15 0.2015 0.039 0.197 0.1879 5.166 1.0233 1.0728 

20 0.192 0.0367 0.1877 0.1792 5.2262 1.0227 1.0715 

2 5 5 0.2532 0.0879 0.2377 0.2135 2.8812 1.0651 1.1858 

10 0.2346 0.0781 0.2218 0.2005 3.0031 1.0579 1.1698 

15 0.2294 0.0749 0.2178 0.1976 3.0644 1.0536 1.1613 

20 0.2276 0.0736 0.2165 0.1968 3.0933 1.051 1.1565 

10 5 0.1586 0.0527 0.1493 0.1349 3.0109 1.0622 1.1757 

10 0.1408 0.0456 0.1331 0.1207 3.0886 1.0585 1.1672 

15 0.1332 0.0422 0.1262 0.1148 3.1531 1.0553 1.1599 

20 0.1295 0.0404 0.123 0.1122 3.2032 1.0527 1.1544 

15 5 0.1183 0.0385 0.1115 0.101 3.0704 1.0604 1.1711 

10 0.1046 0.0336 0.0988 0.0897 3.1176 1.0588 1.1661 

15 0.0975 0.0308 0.0923 0.0839 3.1624 1.0566 1.1615 

20 0.0935 0.0291 0.0886 0.0808 3.211 1.0546 1.157 

20 5 0.0949 0.0306 0.0896 0.0812 3.1043 1.0598 1.1684 

10 0.0845 0.0269 0.0798 0.0725 3.1392 1.0586 1.1658 

15 0.0784 0.0247 0.0742 0.0675 3.1712 1.0574 1.1623 

20 0.0745 0.0232 0.0706 0.0643 3.2107 1.0551 1.1582 

3 5 5 0.1934 0.0762 0.1783 0.1566 2.5381 1.0844 1.2352 

10 0.1805 0.0679 0.168 0.149 2.6593 1.0741 1.2115 

15 0.1777 0.0653 0.1664 0.1482 2.7231 1.0677 1.1986 

20 0.177 0.0643 0.1664 0.1485 2.751 1.0638 1.192 

10 5 0.1168 0.0453 0.1078 0.0949 2.5771 1.0835 1.2318 

10 0.104 0.0393 0.0964 0.0853 2.6477 1.0787 1.2195 

15 0.0988 0.0363 0.092 0.0818 2.7186 1.0739 1.2077 

20 0.0965 0.0348 0.0903 0.0806 2.7717 1.0689 1.198 

15 5 0.086 0.0331 0.0794 0.0699 2.5981 1.083 1.2291 

10 0.076 0.0288 0.0703 0.0622 2.6427 1.0806 1.2223 

15 0.0711 0.0264 0.066 0.0585 2.6909 1.0764 1.2141 

20 0.0684 0.025 0.0637 0.0567 2.7358 1.0737 1.2059 

20 5 0.0685 0.0262 0.0632 0.0558 2.6174 1.0826 1.2268 

10 0.0609 0.0231 0.0563 0.0498 2.6405 1.0812 1.223 

15 0.0566 0.0212 0.0525 0.0465 2.6741 1.0787 1.2179 

20 0.0539 0.0199 0.0501 0.0446 2.7122 1.0753 1.2102 
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All AQL and LQL values for limited available number of testers  𝑟1 = 𝑟2 = 5 are shown in Table 3, with the specified 

values of other design parameters 𝑠, 𝛼, 𝛽, 𝑔1 and  𝑔2. 

 

Table 3: AQL and LQL for some specified values of 𝑠, 𝛼, 𝛽, 𝑔1 and 𝑔2, when 𝑟1 = 𝑟2 = 5. 

𝒔 𝛂 𝒈𝟏, 𝒈𝟐 𝜷 = 𝟎. 𝟎𝟏 𝜷 = 𝟎. 𝟎𝟓 𝜷 = 𝟎. 𝟏𝟎 𝜷 = 𝟎. 𝟐𝟓 

1 0.01 5 0.0026-0.8328 0.0026-0.4908 0.0026-0.3159 0.0026-0.1381 

10 0.0013-0.7131 0.0013-0.3248 0.0013-0.1873 0.0013-0.0740 

15 0.0008-0.6234 0.0008-0.2427 0.0008-0.1330 0.0008-0.0506 

20 0.0006-0.5538 0.0006-0.1937 0.0006-0.1032 0.0006-0.0384 

0.05 5 0.0068-0.8328 0.0068-0.4908 0.0068-0.3159 0.0068-0.1381 

10 0.0034-0.7131 0.0034-0.3248 0.0034-0.1873 0.0034-0.0740 

15 0.0022-0.6234 0.0022-0.2427 0.0022-0.1330 0.0022-0.0506 

20 0.0017-0.5538 0.0017-0.1937 0.0017-0.1032 0.0017-0.0384 

0.10 5 0.0108-0.8328 0.0108-0.4908 0.0108-0.3159 0.0108-0.1381 

10 0.0054-0.7131 0.0054-0.3248 0.0054-0.1873 0.0054-0.0740 

15 0.0036-0.6234 0.0036-0.2427 0.0036-0.1330 0.0036-0.0506 

20 0.0028-0.5538 0.0028-0.1937 0.0028-0.1032 0.0028-0.0384 

0.25 5 0.0234-0.8328 0.0234-0.4908 0.0234-0.3159 0.0234-0.1381 

10 0.0118-0.7131 0.0118-0.3248 0.0118-0.1873 0.0118-0.0740 

15 0.0079-0.6234 0.0079-0.2427 0.0079-0.1330 0.0079-0.0506 

20 0.0059-0.5538 0.0059-0.1937 0.0059-0.1032 0.0059-0.0384 

2 0.01 5 0.0029-0.5012 0.0029-0.2605 0.0029-0.1792 0.0029-0.0952 

10 0.0015-0.3121 0.0015-0.1445 0.0015-0.0960 0.0015-0.0493 

15 0.0010-0.2262 0.0010-0.0999 0.0010-0.0655 0.0010-0.0333 

20 0.0007-0.1773 0.0007-0.0764 0.0007-0.0498 0.0007-0.0251 

0.05 5 0.0073-0.5012 0.0073-0.2605 0.0073-0.1792 0.0073-0.0952 

10 0.0037-0.3121 0.0037-0.1445 0.0037-0.0960 0.0037-0.0493 

15 0.0024-0.2262 0.0024-0.0999 0.0024-0.0655 0.0024-0.0333 

20 0.0019-0.1773 0.0019-0.0764 0.0019-0.0498 0.0019-0.0251 

0.10 5 0.0114-0.5012 0.0114-0.2605 0.0114-0.1792 0.0114-0.0952 

10 0.0057-0.3121 0.0057-0.1445 0.0057-0.0960 0.0057-0.0493 

15 0.0038-0.2262 0.0038-0.0999 0.0038-0.0655 0.0038-0.0333 

20 0.0029-0.1773 0.0029-0.0764 0.0029-0.0498 0.0029-0.0251 

0.25 5 0.0228-0.5012 0.0228-0.2605 0.0228-0.1792 0.0228-0.0952 

10 0.0114-0.3121 0.0114-0.1445 0.0114-0.0960 0.0114-0.0493 

15 0.0076-0.2262 0.0076-0.0999 0.0076-0.0655 0.0076-0.0333 

20 0.0057-0.1773 0.0057-0.0764 0.0057-0.0498 0.0057-0.0251 

3 0.01 5 0.0031-0.3597 0.0031-0.2010 0.0031-0.1455 0.0031-0.0838 

10 0.0015-0.2054 0.0015-0.1077 0.0015-0.0764 0.0015-0.0430 

15 0.0010-0.1436 0.0010-0.0736 0.0010-0.0518 0.0010-0.0289 

20 0.0008-0.1104 0.0008-0.0558 0.0008-0.0392 0.0008-0.0218 

0.05 5 0.0076-0.3597 0.0076-0.2010 0.0076-0.1455 0.0076-0.0838 

10 0.0038-0.2054 0.0038-0.1077 0.0038-0.0764 0.0038-0.0430 

15 0.0025-0.1436 0.0025-0.0736 0.0025-0.0518 0.0025-0.0289 

20 0.0019-0.1104 0.0019-0.0558 0.0019-0.0392 0.0019-0.0218 

0.10 5 0.0117-0.3597 0.0117-0.2010 0.0117-0.1455 0.0117-0.0838 

10 0.0058-0.2054 0.0058-0.1077 0.0058-0.0764 0.0058-0.0430 

15 0.0039-0.1436 0.0039-0.0736 0.0039-0.0518 0.0039-0.0289 

20 0.0029-0.1104 0.0029-0.0558 0.0029-0.0392 0.0029-0.0218 

0.25 5 0.0226-0.3597 0.0226-0.2010 0.0226-0.1455 0.0226-0.0838 

10 0.0113-0.2054 0.0113-0.1077 0.0113-0.0764 0.0113-0.0430 

15 0.0076-0.1436 0.0076-0.0736 0.0076-0.0518 0.0076-0.0289 

20 0.0057-0.1104 0.0057-0.0558 0.0057-0.0392 0.0057-0.0218 
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Table 3 shows that the values of AQL and LQL for the given parameters 𝑠 = 1, 𝑔1 = 𝑔2 = 10 are 0.0013 and 0.7131, 

respectively, for 𝛼 = 0.01 and 𝛽 = 0.01. That results in the range of quality region being 0.7118, which implies that 

with a 1% risk for the consumer’s and producer’s, 71.18% of the products will fulfill the requirements for quality. If 

we merely modify 𝛼 = 0.10 and 𝛽 = 0.10 for the identical values of the other design parameters, the AQL and LQL 

values are 0.0054 and 0.1873, respectively. This results in a range of quality region of 0.1819, which implies that with 

a 10% risk for the consumer’s and producer’s, only 18.19% of items will meet requirements for quality. 

 

Table 3 also present that the value of AQL rises as the value of 𝛼 rises, but LQL is unaffected because LQL is 

independent of 𝛼. Since AQL is the left-hand boundary of the quality area, a rise in AQL value actually represents a 

decline in the quality region range. LQL value decreases as the value of 𝛽 rises, but this has no effect on AQL value 

because AQL is independent of 𝛽. 

 

3. Results and discussion 

In Figures 3, 4, and 5, for 𝑠 = 1,2, and 3, respectively, the average proportion of defectives is plotted for a range of 

group size values to track the impact of design parameters. In this case, 𝑟 = 5 testers are taken into account, with 𝛼 =
0.05 and 𝛽 = 0.05, risks. 

 
Figure 3: Range of quality region with proportion of defective at 𝑠 = 1. 

 
Figure 4: Range of quality region with proportion of defective at 𝑠 = 2. 
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Figure 5: Range of quality region with proportion of defective at 𝑠 = 3. 

 

It is visible in Figures 3, 4, and 5 that the average proportion of defective decreases as the values of  𝑔1, 𝑔2 and 𝑠 

increase. This also means that the lot will be accepted with a greater probability of acceptance and a lower proportion 

of defects that are acceptable to both the consumer and the producer. 

 

In Figure 6, BDGSP and BGChSP proposed by Hafeez and Aziz (2019) are compared for the sake of comparison. OC 

curves of both plans are shown with the same values of the design parameters 𝑠 = 1, 𝑟1 = 𝑟2 = 5, and 𝑔1 = 𝑔2 = 5. 

 

 
Figure 6: OC curves of BDGSP and BGChSP for 𝑠 = 1, 𝑟1 = 𝑟2 = 5, and 𝑔1 = 𝑔2 = 5. 

 

It is clear from Figure 6 that the suggested BDGSP will result in fewer defects than the current BGChSP if we employ 

both sampling plans under the same circumstances. Hence, we can conclude that BDGSP is more efficient plan to 

reduce the cost and time of inspection. By having a lower probability of acceptance, BDGSP manage to reduce the 

consumer risk from receiving defective items compare to BGChSP. 
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4. Application of BDGSP 

This section details how the suggested idea was put into practice using information from Montgomery (2009), where 

rubber belts are produces in lots. Inspection records on the last 20 lots each of size 2500 and the number of defective 

items in each lot are as follows: 230, 435, 221, 346, 230, 327, 285, 311, 342, 308, 456, 394, 285, 331, 198, 414, 131, 

269, 221 and 407. 

 

Here, for the beta distribution the estimated mean square error (MSE) and Bayesian information criterion (BIC) values 

are 0.000039 and −469.4965, respectively. The shape parameters are predicted to have values of 𝑠 = 1 and 𝑡 = 10 

using the maximum likelihood estimate (MLE). The BDGSP is applied by taking into account the following values 

for the design parameters based on the number of testers available: 𝑟1 = 𝑟2 = 10. As a result, the entire sample will 

be divided into 𝑔1 = 250 groups for the first sample and 𝑔2 = 250 groups for the second sample, or  𝑛1 = 𝑟1 ∗ 𝑔1 

and 𝑛2 = 𝑟2 ∗ 𝑔2. 

 

When the experimenter sets up the BDGSP plan, they do it in accordance with the aforementioned specifications. 

Assume that the producer and consumer risks for PQR are both equal to 0.05. The process will now be repeated using 

Equation (10), just as it was for Table 1. Then the estimated values for PQR are, AQL (𝜇1 = 0.000061), LQL (𝜇2 =
0.0095), and the range 𝑅1 = 𝜇2 − 𝜇1 = 0.00944. 

 

The same procedure will be repeated for QDR, then values are estimated as: 𝜇1 = 0.000061, 𝜇𝛽 = 0.00160, 𝑅2 =

0.00154 and 𝑇 = 6.1432. 

 

Similarly identical procedure will be repeated for LQR, then values are estimated as: 𝜇𝛼 = 0.00026, 𝜇2 = 0.0095, 

𝑅3 = 0.00924 and 𝑇1 = 1.0216. 

 

Equally same process will be repeated for IQR, then values are estimated as: 𝜇∗ = 0.00056, 𝜇2 = 0.0095, 𝑅4 =
0.00894 and 𝑇2 = 1.0561. 

 

5. Conclusion 

There are several ways to set up an acceptance sampling plan. Some sampling plans consider the risks to the producer’s 

and the consumer’s, while others focus on non-economic criteria. The proposed BDGSP can be utilised to decide 

regarding the lot under inspection based on present lot and prior information about the product. BDGSP is 

recommended in this study to estimate quality regions for the average probability to accept a lot. To convince both 

the consumer and the industrialist, this study can take into account both customer and producer risks. Four quality 

regions are accessed for all possible combinations of design parameters 𝑠, 𝑔1, 𝑔2, 𝑟1, 𝑟2 and different values of 

consumer’s risk and producer’s risk. Based on tables and OC curves, we can conclude that if the value of pre-specified 

design parameters 𝑠, 𝑔1, 𝑔2, 𝑟1 and 𝑟2 increase, then proportion of defective decreases. This means that, by increasing 

the value of any design parameter the probability of acceptance of a defective item can be reduced. As the values of 

𝛼 and 𝛽 increase, AQL and LQL become close to each other, and the range of quality region decrease. For future 

research, incorporating lifetime distributions such as Weibull, lognormal, exponential, and other variants could 

significantly enhance the robustness of the proposed plan. Additionally, tailoring the selection of prior distributions 

to specific contexts could further refine the methodology. For instance, using a Poisson distribution with a gamma 

prior to estimate the average number of nonconformities may provide valuable insights into the quality assessment 

process. Based on the manufacturer's option, quality regions will be calculated for various consumer's and 

producer's risks values. The proposed BDGSP is distinguished by its capacity to effectively manage risks for both 

producers and consumers, thereby ensuring comprehensive quality control. Its flexible design parameters 

accommodate a range of quality standards and manufacturing needs, while the incorporation of historical data 

significantly enhances the accuracy of quality assessments. Also suggested plan can be utilized to build the design 

parameters utilizing AQL and LQL, using the minimum angle or relative slope methods. 
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