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Abstract 

This paper investigates the queuing system with multiple vacation, correlated servers, feedback and 

catastrophes. Inter arrival times follow an exponential distribution with parameters λ and service times 

follow Bivariate exponential distribution BVE (μ, μ, ν) where μ is the service time parameter and ν is the 

correlation parameter. Both the servers go on vacation with probability one when there are no units in the 

system. Laplace transform approach has been used to find the time-dependent solution. The model 

estimates the total expected cost, total expected profit and obtained the optimal values by varying time for 

cost and profit. The best optimal value at t=5 when service rate=2.75 and t=2 when feedback 

probability=0.55 for minimum cost and maximum profit respectively.  These important key measures 

give a greater understanding of the model behaviour. Numerical analysis and graphical representations 

have been done by using Maple software. 
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1. Introduction 

This present research aims to study the use of correlated servers in day to day life. From the literature, we 

found that very little work has been done on correlated servers. Most previous studies focused on 

correlated servers Markovian queues with finite waiting space capacity. Our study takes a different 

approach by considering correlated servers with infinite waiting space capacity and additional parameters. 

This makes the model more realistic and better suited to practical applications. 

Various studies have been conducted to evaluate different performance measures and to verify the 

robustness of the system in which a server takes a break for a random period of time called vacation. 

When the server returns from a vacation and finds the empty queue, it immediately goes on another 

vacation and continuing likewise until it finds at least one unit waiting in the system for receiving service. 

if server finds at least one waiting unit, then it will commence service according to the prevailing service 

policy i.e. multiple vacation policy. Different queuing systems with multiple vacation have been 

extensively investigated and effectively used in several fields including industries, computer & 

communication systems, telecommunication systems etc. Different types of vacation policies are 

available in literature such as single vacation, multiple vacation and working vacations. Researches on 

multiple vacation systems have grown tremendously in the last several years. Cooper(1970) was the first 

to study the vacation model and obtained the mean waiting time for a unit arriving at a queue served in 
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cyclic order for the exhaustive service. Sharda and Indra (1996) obtained explicit time-dependent 

probabilities for a queuing system where the server takes multiple vacation and also serves the units 

intermittently. The vacation and the intermittently time are having the general distribution where as 

service time is exponentially distributed. Tian et al., 1999) considered the conditional stochastic 

decompositions of the stationary queue length and waiting time in multi-server queuing models with 

server vacations by using the matrix geometric approach. Ke and Pearn(2004) developed closed-form 

solutions for analysing the management policyof an M/M/1 queuing system with server breakdowns and 

multiple vacation by using the probability generating function approach. Ke et al., (2009) obtained the 

optimal values of the number of spares and the number of servers while maintaining a minimum specified 

level of system availability by using the Markov process and the matrix geometric approach. Indra and 

Bansal(2010) used the supplementary variable and Laplace transform techniques to derive explicit 

probabilities of the exact number of arrivals and departures by a given time as well as reliability and 

availability of the server. Ammar(2015) analysed transient solution of an M/M/1 queue with impatient 

behavior and multiple vacations and obtained time-dependent probabilities, mean and variance of the 

system size in terms of the modified Bessel function by using the probability-generating function along 

with continued fractions. Niranjan et al., (2019) analysed bulk arrival and batch service retrial queuing 

system with server failure and multiple vacation and also obtained optimum cost by using the 

Supplementary variable technique. Panta et al., (2021) carried out a brief survey of the research on 

vacation queuing systems with different techniques. 

A system of queues in series or in parallel should ordinarily be studied taking into account the 

interdependence of servers, but this leads to very complicated mathematics even in very simple case of 

systems. So to reduce such complications of analysis the servers are considered to be independent. But 

this independence of servers cause impact in time bound operations such as vehicle inspection counters, 

toll booths, large bars and cafeterias etc. where for efficient system functioning the correlation between 

the servers contributes significantly. Nishida et al., (1974) investigated a two-server Markovian queue 

assuming the correlation between the servers and obtained steady-state results for a limited waiting space 

capacity of two units. Sharma (1990) investigated the transient solution to this problem again using only 

two units waiting spaces capacity. Sharma and Maheswar(1994) developed a computable matrix approach 

to study a correlated two-server Markovian queue with finite waiting space. They also derived waiting 

time distribution for steady-state and obtained the transient probabilities through steady-state by using a 

matrix approach and Laplace transform approach. Kumar and Indra(2023) obtained cost and profit of 

two-dimensional state M/M/2 queuing model with correlated servers, multiple vacation, balking and 

catastrophes with infinite waiting space.   

Feedback in queuing literature represents customer’s dissatisfaction because of inappropriate service. In 

the case of feedback, after receiving the service customers either leave the system or rejoin the queue with 

a certain probability, called queues with feedback. For example, we order a pair of shoes from the 

Amazon store, but upon receiving the package, we find out that the shoes are of wrong size. We 

immediately contacted Amazon's customer service and explained the situation. They offered to either 

refund our money or send us a replacement pair in the correct size. We chose to receive a replacement 

pair, which arrived within a few days and we are satisfied with the service. Many researchers have been 

attracted to the study of queues with feedback as large number of applications have been found in many 

areas including production systems, post offices, supermarkets, hospital management, financial sectors, 

ticket offices, grocery stores, ATMs and so forth. The concept of feedback was first introduced by 

Finch(1959) in his paper “Cyclic queues”. Takacs(1963) determined the distribution of the queue size and 

the first two moments of the distribution for a queue with feedback. D’Avignon and Disney(1976) studied 

the non-Markovian single server queue with state-dependent feedback. Sharda et al., (1986) considered a 

continuous time M/M/1 queuing system with feedback and obtained explicit probabilities and the 

marginal probabilities of exactly i arrivals and j departures.  

Queuing systems with catastrophes are also getting a lot of attention nowadays and may be used to solve 

a wide range of real-world problems. Catastrophes may occur at any time, resulting in the loss of units 

and the deactivation of the service centre, because they are totally unpredictable in nature. Such type of 

queues with catastrophes plays an important role in computer programs, telecommunication and ticket 

counters etc. For example, virus or hacker attacking a computer system or program causing the system 

fail or become idle. Kumar and Arivudainambi(2000) derived transient solution of an M/M/1 queuing 

model with catastrophes by using the Laplace transform approach. Kumar and Madheswari(2005) 

analysed transient solution of an M/M/1 queuing system with the possibility of catastrophes and server 

failures by using the Laplace transform approach. Tarabia(2011) carried out an analysis of infinite-buffer 

queuing system with single server, balking and catastrophes. Giorno et al., (2014) considered non-

stationary queuing system with catastrophes and analysed the transient probabilities, the related moments 

and the first visit time density to zero state. Kumar (2017) considered Markovian multi-server queuing 
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system with balking and catastrophes and obtained transient solution by using the probability generating 

function along with Bessel function properties. Sampath (2020) considered an M/M/1 queue with balking, 

catastrophes, server failure and repairs and obtained an explicit expression for the time-dependent system 

size probabilities in terms of the modified Bessel function of first kind. Ammar et al.,(2022) investigated 

a stationary fluid queue operated by a state-dependent birth-death process with catastrophes by using the 

Laplace transform approach. 

With above concepts in mind, we analyse a two-dimensional state M/M/2 queuing model with correlated 

servers, multiple vacation, feedback and catastrophes.  

A two-dimensional state model has been used to deal with complicated transient analysis of some 

queuing problem. This model is used to examine the queuing system for exact number of arrivals and 

departures by given time t. In case of a one-dimensional state model, it is difficult to determine how many 

units have entered, left or waiting units in the system, while the two-dimensional state model exactly 

identifies the numbers of units that have entered, left, or waiting in the system. The idea of two-

dimensional state model for the M/M/1 queue was first given by Pegden andRosenshine(1982). After that, 

the two-dimensional state model has attracted the attention of a lot of researchers. Sharda and Indra(1999) 

studied a two-state queuing model by utilizing the intermittently available time and the vacation time. 

Indra and Sharda(2004) analysed a first-come, first-served, single channel queuing system in which 

probabilities of arrivals in batches of different sizes at a transition mark depend upon the latest arrival run 

and obtained the Laplace transforms of probabilities of (i) number of units in the system (ii) exact number 

of arrivals and (iii) exact number of departures. Gahlawat et al., (2021) studied a two state time-

dependent bulk queue model with intermittently available server. They obtained transient probabilities for 

an exact number of bulk arrivals and bulk departures. Sharma & Indra (2022) looked at how the impatient 

behaviour of the customer affects the time-dependent probabilities of a two-dimensional state queueing 

model with multiple vacations.    

Let's consider correlated servers in the context of library book processing. There are two counters: one for 

book issuance and the other for book return process; both are related to each other. When there is no 

student in the queue for book issue or book return, the server goes on vacation, i.e., vacation and repeats 

until there is at least one student find in the queue, which can be considered multiple vacation. Some 

students are not satisfied with the service due to various reasons like wrong book issue, wrong author 

book issue, wrong edition book issue etc., they can join again at the end of the queue to get satisfactory 

service, which is called feedback. Due to any failure in the system, such as technical failure, power cut 

and system breakdown etc. all the students in the queue for book issues and book returns immediately 

leave the system, which is called catastrophes. 

The present work has been organised in the following manner. In section 1 introduction and in section 2 

presents the model assumptions, notations and description. Section 3 contains recursive solution by using 

the differential-difference equations to find out the time-dependent solution and section 4 describes 

important performance measures. Section 5 investigates the total expected cost function and total 

expected profit function for the given queuing system. In section 6, we present the numerical results in 

the form of tables and graphs to illustrate the impact of various factors on performance measures. The last 

section contains discussion on the findings and suggestions for further work. 

 

2. Model Assumptions, Notations and Description 

• Arrivals follow Poisson distribution with parameter λ. 

• There are two servers and the service times follow Bivariate exponential distribution BVE* (μ, 

μ, ν) where μ is the service time parameter and ν is the correlation parameter.  

• The vacation time of the server follow an exponential distribution with parameter w.  

• After completion of the service, the units rejoin at the early end of the queue to receive service 

with probability q. 

• Occurrence of catastrophes follows Poisson distribution with parameter ξ.  

• Various stochastic processes involved in the system are statistically independent of each other. 

            *introduced by Marshall and Olkin(1967) 

 

Initially, the system starts with zero units and the server is on vacation, that is. 
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The Two-Dimensional StateModel 

𝑃𝑖,𝑗,𝑉(𝑡)= “The probability that there are exactlyi arrivals and j departures by time t and the server is on 

vacation”. 

𝑃𝑖,𝑗,𝐵(𝑡)= “The probability that there are exactly i arrivals and j departures by time t and the server is busy 

in relation to the queue”. 

𝑃𝑖,𝑗(𝑡)= “The probability that there are exactly i arrivals and j departures by time t”. 

 

3. The Differential-Difference Equations for the Queuing Model under Study 
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Clearly, 
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i≥ j≥ 0 (7) 

 

The preceding equations (3) to (6) are solved by taking the Laplace transforms together with initial 
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( )
( )



++

+
=

ss

s
sP V

)(
,0,0

                                                                                                                         

(8) 

( )
( )( )i

i

Vi

wsss

s
sP





+++++

+
=

)()(
,0,

                                                                                    

i>0  (9) 

 

( ) ( ) ( )sP
s

sP
s

q
sP BjjBjjVii ,2-,,1-,,, 









++
+









++

+
=









                                                           

i>0 (10) 

( )
( )( )( )( )

( )
( )( ) ( )


=

+
+++++++++

+
+

+++++++++++++

+
=

1-

1
m-1

1-
,0,

2
)(

2

)()(

i

m
im

i

i

i

Bi

qswsss

s
w

qsqswsss

sw
sP










              

i≥1 (11) 

 

( ) ( ) ( )

( )( )( )
( )sP

qswss

wq

sP
qs

sP
qs

q
sP

Bii

BiiBiiBii

,1-,1-

,2-,1,1-,1,,1

)(

2










+++++++++

+

+








++++
+









++++
= +++













           

i>0  (12) 

 

( ) ( ) ( )sP
sws

sP
wss

q
sP Bjj

ji

Bjj

ji

Vji ,2-,

-

1,-,

-

,, 








++








+++
+









+++








++

+
=

















        

i>j≥0(13)

 

( ) ( ) ( ) ( )

( ) ( ) sPsP
wsqs

w

s

q

sP
qs

sP
qs

q
sP

qs
sP

BjjBjj

ji

BjiBjiBjiBji

2,-,1,-,

-

,2-,,1-,,,1-,,

2

22

2

2

+








+++








++++








++

+
+










++++
+









++++
+









++++
=





















 



Pak.j.stat.oper.res.  Vol.16  No. 1 2020  DOI: http://dx.doi.org/10.18187/pjsor.v16i1.1111 

 

5 
Transient analysis of two-dimensional state Markovian queuing model with multiple vacation 

                                                                                                                                                  i>j+1, j>0 (14) 
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4. Performance Measures 

(1) The Laplace transform of ( )tPi. of the probability that exactly i units arrive by time t; when 

initially there are no unit in the system is given by 

              

( ) ( ) ( )( )  ( )
( ) 1

0

,

0

,,,,,.

)(
-1

+
== +

==+=  i

ii

j

ji

i

j

jiBjiVjii

s
sPsPsPsP






                    

(17)

 

          And its inverse Laplace transform is  𝑃𝑖.(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
                                                          (18)  

The arrivals follow a Poisson distribution as the probability of the total number of arrivals is not 

affected by vacation time of the server.  

(2) ( )tP j.  is the probability that exactly j units have been served by time t. In terms of ( )tP ji,  we 

have 
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(3) The probability of exactly n units in the system at time t, denoted by ( )tPn , can be expressed in 

terms ( )tPij  as per  
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(4) The Laplace transform of mean number of arrivals by time t is 
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    And inverse of the mean number of arrivals by time tis 
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(5) The mean number of units in the queue is calculated as follows 
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5. Cost Function and Profit Function 

For the given queuing system, the following notations have been used to represent various costs to find 

out the total expected cost and total expected profit per unit time 

Let  

CH: Cost per unit time for unit in the queue. 

CB: Cost per unit time for a busy server. 

Cμ: Cost per service per unit time. 

CV: Cost per unit time when the server is on vacation. 

Cμ-q: Cost per unit time when a unit rejoins at the early end of the queue as a feedback unit. 

If I is the total expected amount of income generated by delivering a service per unit time then 

(1) Total expected cost per unit at time t is given by 

              
( ) ( ) ( ) )(****)( -qVVBBLH CCtPCtPCtQCtTC  ++++=

                                   
(24) 

(2) Total expected income per unit at time t is given by 
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(3) Total expected profit per unit at time t is given by 
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                                                                                                         (26) 

6.  Numerical Results (Numerical Validity Check) 

(1) For the state when the server is on vacation i.e., ( )tPV  

(2) For the state when the server is busy in relation to the queue i.e., ( )tPB  

(3) The probability ( )tPi.  that exactly i units arrive by time t is 
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(4) A numerical validity check of inversion of )(, sP ji  is based on the relationship 
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The probabilities of this model shown in last column of Table 1 given below are consistent to the last column 

of Pegden and Rosenshine(1982) by keeping constant values of w=1, q=0.7, ξ=0 and ν=0.25 shown in table 

Table 1: Numerical validity check of inversion of )(, sP ji  

λ 

 

μ t i ( )
!

*-

i

te
it 

 ∑𝑃𝑖,𝑗,𝑉(𝑡)

𝑖

𝑗=0

 ∑𝑃𝑖,𝑗,𝐵(𝑡)

𝑖−1

𝑗=1

 ∑𝑃𝑖,𝑗(𝑡)

𝑖

𝑗=0

 

1 2 3 1 0.149361 0.129196 0.020165 0.149361 

1 2 3 3 0.224043 0.158077 0.065966 0.224043 

1 2 3 5 0.100819 0.057803 0.043016 0.100819 

2 2 3 1 0.014873 0.012865 0.002008 0.014873 

2 2 3 3 0.089235 0.062961 0.026274 0.089235 

2 2 3 5 0.160623 0.092090 0.068533 0.160623 

1 2 4 1 0.073263 0.065390 0.007873 0.073263 

1 2 4 3 0.195367 0.148001 0.047366 0.195367 

1 2 4 5 0.156294 0.100998 0.055296 0.156294 

2 2 4 1 0.002684 0.002395 0.000289 0.002684 

2 2 4 3 0.028626 0.021686 0.006940 0.028626 

2 2 4 5 0.091604 0.059195 0.032409 0.091604 

2 4 4 5 0.091604 0.073396 0.018208 0.091604 

1 2 4 4 0.195366 0.136809 0.058557 0.195366 

1 2 3 6 0.050409 0.025824 0.024585 0.050409 

 

Table 2: Probabilities of exactly j departures by time t 

λ=2, μ=4, w=1, ν=0.25, q=1, ξ=0.0001 

j t=1 t=3 t=5 t=7 t=10 

0 0.67646638 0.09903097 0.007014800 0.000419236 0.0001612628 

1 0.17630720 0.08098461 0.009064655 0.000579955 0.0000501230 

2 0.09471300 0.11769094 0.018081886 0.001387817 0.0000594874 

3 0.03728300 0.14047426 0.031349826 0.003003293 0.0000837339 

4 0.01147400 0.14077174 0.047312824 0.005789865 0.0001424326 

5 0.00284300 0.11936402 0.061673383 0.009784188 0.0002632795 

6 0.00057450 0.08499410 0.068129303 0.014139328 0.0004652902 

 

Table 3: Probabilities of exactly n units in the system at time t 

λ=2, μ=3, w=2, ν=0.25, q=1, ξ=0.0001 

n t=1 t=2 t=3 t=4 t=5 

0 0.3188454 0.2900015 0.2288654 0.1358815 0.0632150 

1 0.3464042 0.3056086 0.2150051 0.1110816 0.0450873 

2 0.1894659 0.1582662 0.0971954 0.0435875 0.0154702 
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3 0.0895022 0.0778208 0.0409972 0.0157945 0.0048669 

4 0.0358991 0.0362664 0.0162732 0.0052550 0.0013771 

5 0.0120816 0.0155898 0.0060336 0.0015651 0.0003341 

6 0.0032706 0.0057902 0.0020221 0.0004001 0.0004001 

7. Sensitivity Analysis 

This part focuses on the impact of the arrival rate (λ), service rate (μ), vacation rate (w), correlation 

parameter (ν), feedback probability (q) and catastrophes rate (ξ) on the probability when the server is on 

vacation (PV(t)), probability when the server is busy (PB(t)), expected queue length (QL(t)), total expected 

cost (TC(t)), total expected income (TEI(t)) and total expected profit (TEP(t)) at time t. To determine the 

numerical results for the sensitivity of the queuing system one parameter varied while keeping all the 

other parameters fixed and taking cost per unit time for unit in the queue=10, cost per unit time for a busy 

server=8, cost per unit time when the server is on vacation=5, cost per service per unit time=4, cost per 

unit time when a unit rejoins at the early end of the queue=2, total expected amount of income=100 and 

number of units in the system=8. 

 

Impact of Arrival Rate (λ):We examine the behaviour of the queuing system by evaluating the 

effectiveness measures along with cost and profit analysis by varying λwith time, while keeping all other 

parameters fixed; μ=5, w=2, ν=0.25, ξ=0.0001 and q=0.7. In Table 4, we observe that as the value of λ 

increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

 

Table 4: Effectiveness Measures, Cost and Profit versus λ 

t   λ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 1.00 0.8347313 0.1652675 0.1616589 37.1123855 82.63375 45.521364 

2  0.8000355 0.1997270 0.2189383 37.7873765 99.86350 62.076123 

3  0.7955690 0.2006289 0.2218137 37.8010132 100.3144 62.513436 

4  0.7845911 0.1940526 0.2088204 37.5635803 97.02630 59.462719 

5  0.7528634 0.1790715 0.1836370 37.0332590 89.53575 52.502491 

        

1 1.50 0.7690664 0.2309058 0.3268278 38.9608564 115.4529 76.492043 

2  0.7225512 0.2736464 0.4194996 39.9969232 136.8232 96.826276 

3  0.7006089 0.2591439 0.3835761 39.4119567 129.5719 90.159993 

4  0.6316455 0.2156423 0.2945631 37.8289969 107.8211 69.992153 

5  0.5063340 0.1557671 0.1929856 35.7076628 77.88355 42.175887 

        

1 2.00 0.7109100 0.2888525 0.5269526 41.1348960 144.4262 103.29135 

2  0.6480270 0.3306131 0.6246558 42.1315978 165.3065 123.17495 

3  0.5775704 0.2697048 0.4658952 39.7044424 134.8524 95.147957 

4  0.4226231 0.1700517 0.2594028 36.0675571 85.02585 48.958292 

5  0.2475614 0.0855021 0.1148547 33.0703708 42.75105 9.6806792 

 

 
Figure 1: shows the variation of cost with time by varying arrival rate while keeping the other parameters 

fixed. (As per Table 4)  
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Figure 2: shows the variation ofprofitwith time by varying arrival rate while keeping the other 

parameters fixed. (As per Table 4) 

 

 

 

Impact of Service Rate(μ): The behaviour of the queuing system by evaluating the effectiveness 

measures along with cost and profit analysis by varying μwith time t, while keeping all other parameters 

fixed; λ=2, w=2, ν=0.25, ξ=0.0001 and  q=0.7. In Table 5, we observe that as the value of μ increases 

with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

 

Table 5: Effectiveness Measures, Cost and Profit versus μ 

t   μ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 2.75 0.633823 0.365839 0.655763 29.153461 100.6057 71.452318 

2  0.478135 0.500454 0.890493 31.799249 137.6249 105.82571 

3  0.421990 0.425284 0.678277 28.795002 116.9533 88.158317 

4  0.321445 0.271229 0.370668 23.983750 74.58816 50.604416 

5  0.195946 0.137116 0.161348 20.190154 37.70712 17.516965 

        

1 3.75 0.660181 0.339581 0.585514 34.372699 127.3429 92.970250 

2  0.567704 0.410935 0.728436 35.910375 154.1008 118.19051 

3  0.507801 0.339473 0.541753 33.172326 127.3024 94.130161 

4  0.378094 0.214580 0.298746 29.094579 80.46757 51.372995 

5  0.224942 0.108121 0.131500 25.804685 40.54548 14.740801 

        

1 4.75 0.701664 0.298097 0.536690 39.760009 141.5964 101.83639 

2  0.634294 0.344345 0.640039 40.826633 163.5641 122.73747 

3  0.565979 0.281295 0.476727 38.347538 133.6154 95.267871 

4  0.415259 0.177415 0.265063 34.646253 84.27212 49.625872 

5  0.243826 0.089237 0.117271 31.605747 42.38762 10.78187 

 

 
Figure3:shows the variation of cost with time by varying service rate while keeping the other parameters 

fixed. (As per Table 5) 

Figure 4:shows the variation of profit with time by varying service rate while keeping the other 

parameters fixed. (As per Table 5) 

 

Impact of Vacation Rate (w):We observe that the behaviour of the queuing system by evaluating the 

effectiveness measures along with cost and profit by varying w with time t, while keeping all other 

parameters fixed; λ=2, μ=5, ν=0.25, ξ=0.0001 and q=0.7. In  Table 6, we observe that as the value of w increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) 

increases but PV(t) decreases. 
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Table 6: Effectiveness Measures, Cost and Profit versus w 

t   w PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 1.50 0.747197 0.252565 0.618685 41.943364 126.2826 84.339235 

2  0.667490 0.311149 0.821146 44.038116 155.5749 111.53683 

3  0.588268 0.259006 0.642533 41.438729 129.5034 88.064670 

4  0.428717 0.163957 0.365994 37.115190 81.97865 44.863459 

5  0.250554 0.082509 0.164417 33.557016 41.25450 7.6974840 

        

1 1.75 0.727340 0.272422 0.569572 41.511807 136.2111 94.699292 

2  0.656302 0.322337 0.710825 42.968469 161.1686 118.20018 

3  0.582253 0.265022 0.540910 40.440542 132.5111 92.070557 

4  0.425372 0.167302 0.304010 36.505382 83.65120 47.145817 

5  0.248921 0.084141 0.135451 33.272253 42.07090 8.7986466 

        

1 2.00 0.710910 0.288852 0.526952 41.134896 144.4262 103.29135 

2  0.648027 0.330613 0.624655 42.131597 165.3065 123.17495 

3  0.577570 0.269704 0.465895 39.704442 134.8524 95.147957 

4  0.422623 0.170051 0.259402 36.067557 85.02585 48.958292 

5  0.247561 0.085502 0.114854 33.070370 42.75105 9.6806792 

 

 
Figure 5:shows the variation of cost with time by varying vacation rate while keeping the other 

parameters fixed. (As per Table 6) 

Figure 6:shows the variation of profit with time by varying vacation rate while keeping the other 

parameters fixed. (As per Table 6) 

 

Impact of Correlation Parameter (ν): We see that the behaviour of the queuing system by evaluating 

the effectiveness measures along with cost and profit analysis by varying ν with timet, while keeping all 

other parameters fixed; λ=2, μ=5, w=2, ξ=0.0001 and q=0.7. InTable 7, we observe that as the value of ν 

increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

 

Table 7: Effectiveness Measures, Cost and Profit versus ν 

t   ν PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.25 0.7109100 0.2888525 0.5269526 41.1348960 144.42625 103.291354 

2  0.6480270 0.3306131 0.6246558 42.1315978 165.30655 123.174952 

3  0.5775704 0.2697048 0.4658952 39.7044424 134.85240 95.1479576 

4  0.4226231 0.1700517 0.2594028 36.0675571 85.025850 48.9582929 

5  0.2475614 0.0855021 0.1148547 33.0703708 42.751050 9.68067920 

        

1 0.50 0.7258735 0.2738889 0.5178700 40.9991787 136.94445 95.9452713 

2  0.6684990 0.3101411 0.6123460 41.9470838 155.07055 113.123466 
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3  0.5944386 0.2528366 0.4579073 39.5739588 126.41830 86.8443412 

4  0.4332878 0.1593869 0.2552740 35.9942742 79.693450 43.6991758 

5  0.2529434 0.0801201 0.1130798 33.0364758 40.060050 7.02357420 

        

1 0.75 0.7395276 0.2602349 0.5096593 40.8761102 130.11745 89.2413398 

2  0.6866056 0.2920345 0.6016307 41.7856110 146.01725 104.231639 

3  0.6093087 0.2379665 0.4508847 39.4591225 118.98325 79.5241275 

4  0.4426921 0.1499827 0.2516100 35.9294221 74.991350 39.0619279 

5  0.2576882 0.0753753 0.1114999 33.0064424 37.687650 4.68120760 

 
Figure 7:shows the variation of cost with time by varying correlation parameter while keeping the other 

parameters fixed. (As per Table 7) 

Figure 8:shows the variation of profit with time by varying correlation parameter while keeping the other 

parameters fixed. (As per Table 7) 

 

Impact of Feedback Probability (q): We see that the behaviour of the queuing system by evaluating the 

effectiveness measures along with cost and profit analysis by varying q with time t. While keeping all 

other parameters fixed; λ=2, μ=5, w=2, ν=0.25and ξ=0.0001. InTable 8, we observe that as the value of β 

increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

 

Table 8: Effectiveness Measures, Cost and Profit versus q 

t   q PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.55 0.668139 0.331623 0.575463 41.748312 165.8116 124.06333 

2  0.581127 0.397513 0.708652 43.172260 198.7565 155.58423 

3  0.519844 0.327430 0.526709 40.485765 163.7153 123.22958 

4  0.385831 0.206843 0.290973 36.493637 103.4216 66.927962 

5  0.206843 0.104185 0.128238 33.150081 52.09270 18.942618 

        

1 0.65 0.697569 0.302192 0.541130 41.316696 151.0963 109.77960 

2  0.628087 0.350552 0.647293 42.417794 175.2763 132.85855 

3  0.560703 0.286572 0.481874 39.914839 143.2860 103.37121 

4  0.411905 0.180769 0.267745 36.183136 90.38475 54.201614 

5  0.242124 0.090939 0.118414 33.122277 45.46970 12.347422 

        

1 0.75 0.723392 0.276370 0.514419 40.972114 138.1850 97.212930 

2  0.665968 0.312671 0.605884 41.890055 156.3356 114.44554 

3  0.592567 0.254707 0.452802 39.528526 127.3538 87.825323 

4  0.432141 0.160533 0.252526 35.970240 80.26660 44.296359 

5  0.252386 0.080677 0.111907 33.026419 40.33855 7.3121302 
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Figure 9: shows the variation of cost with time by varying feedback probability while keeping the other 

parameters fixed. (As per Table 8) 

Figure 10: shows the variation of profit with time by varying feedback probability while keeping the 

other parameters fixed. (As per Table 8) 

 

Impact of Catastrophes Rate (ξ):We see that the behaviour of the queuing system by evaluating the 

effectiveness measures along with cost and profit analysis by varying ξ with timet, while keeping all other 

parameters fixed; λ=2, μ=5, w=2, ν=0.25 and q=0.7. InTable 9, we observe that as the value of ξ increases 

with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

 

Table 9: Effectiveness Measures, Cost and Profit versus ξ 

t   ξ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.0001 0.710910 0.288852 0.526952 41.134896 144.4262 103.29135 

2  0.648027 0.330613 0.624655 42.131597 165.3065 123.17495 

3  0.577570 0.269704 0.465895 39.704442 134.8524 95.147957 

4  0.422623 0.170051 0.259402 36.067557 85.02585 48.958292 

5  0.247561 0.085502 0.114854 33.070370 42.75105 9.6806792 

        

1 0.0002 0.710923 0.288839 0.526925 41.134589 144.4196 103.28501 

2  0.648049 0.330594 0.624617 42.131181 165.2974 123.16621 

3  0.577610 0.269702 0.465898 39.704651 134.8511 95.146498 

4  0.422718 0.170084 0.259477 36.069039 85.04205 48.973010 

5  0.247735 0.085572 0.114993 33.073192 42.78615 9.7129576 

        

1 0.0003 0.710936 0.288825 0.526899 41.134280 144.4129 103.27861 

2  0.648070 0.330576 0.624579 42.130764 165.2882 123.15748 

3  0.576509 0.269699 0.465900 39.699153 134.8499 95.150746 

4  0.422813 0.170116 0.259552 36.070521 85.05825 48.987728 

5  0.247908 0.085642 0.115133 33.076011 42.82120 9.7451883 
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Figure 11:shows the variation of cost with time by varying catastrophes rate while keeping the other 

parameters fixed. (As per Table 9) 

Figure 12:shows the variation of profit with time by varying catastrophes rate while keeping the other 

parameters fixed. (As per Table 9) 

 

7.Discussion 

Figure 1& Figure 2 show the variation of cost and profit with time t by varying λ(=1.00, 1.50, 2.00). The 

value of both cost and profit increases with increase in t upto t(=3.00) when λ=1.00 and t(=2.00) when 

λ=1.50 and 2.00 respectively then decreases. Hence we get the optimal value at t=5 when λ=2.00 and t=2 

when λ=2.00 for minimum cost and maximum profit respectively. 

Figure 3& Figure 4 show the variation of cost and profit with time t by varying μ(=2.75, 3.75, 4.75). The 

value of both cost and profit increases with increase in t upto t(=2.00) when μ=2.75, 3.75 and 4.75 

respectively then decreases. Hence we get the optimal value at t=5 when μ=2.75 and t=2 when μ=4.75 for 

minimum cost and maximum profit respectively. 

Figure 5& Figure 6 show the variation of cost and profit with time t by varying w(=1.50, 1.75, 2.00). The 

value of both cost and profit increases with increase in t upto t(=2.00) when w=1.50, 1.75 and 2.00 

respectively then decreases. Hence we get the optimal value at t=5 when w=2.00 and t=2 when w=2.00 

for minimum cost and maximum profit respectively. 

Figure 7& Figure 8 show the variation of cost and profit with time t by varying ν(=0.25, 0.50, 0.75). The 

value of both cost and profit increases with increase in t upto t(=2.00) when ν=0.25, 0.50 and 0.75 

respectively then decreases. Hence we get the optimal value at t=5 when ν=0.75 and t=2 when ν=0.25 for 

minimum cost and maximum profit respectively. 

Figure 9& Figure 10 show the variation of cost and profit with time t by varying q(=0.55, 0.65, 0.75). The 

value of both cost and profit increases with increase in t upto t(=2.00) when q=0.55, 0.65 and 0.75 

respectively then decreases. Hence we get the optimal value at t=5 when q=0.75 and t=2 when q=0.55 for 

minimum cost and maximum profit respectively. 

Figure 11 & Figure 12 show the variation of cost and profit with time t by varying ξ(=0.0001, 0.0002, 

0.0003). The value of both cost and profit increases with increase in t upto t(=2.00) when ξ=0.0001, 

0.0002 and 0.0003 then decreases. Hence we get the optimal value at t=5 when ξ=0.0001 and t=2 when 

ξ=0.0001 for minimum cost and maximum profit respectively. Finally, the variation in rate of 

catastrophes shows the minor effect on cost and profit. 

 

Conclusions 

The time-dependent solution, for the two-dimensional state M/M/2 queuing model with multiple vacation, 

correlated servers, feedback and catastrophes has been obtained. The numerical analysis clearly 

demonstrates the meaningful impact of arrival rate, service rate, vacations rate, correlation parameters, 

feedback probability and catastrophes rate on the system performances. Finally, the model estimates the 

total expected cost and total expected profit and obtained the best optimal value at t=5 when service 

rate=2.75 and t=2 when feedback probability=0.55 for minimum cost and maximum profit respectively. 

These key measures give a greater understanding of model behaviour. Finally, the numerical analysis 

clearly demonstrates the meaningful impact of the correlated servers and multiple vacation on the system 

performances. This model finds its applications in communication networks, computer networks, 

supermarkets, hospital administrations, financial sector and many others.  
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