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Abstract 

 

A new type of continuous distribution that extends the skew distribution developed by Azzalini (1985) is 

presented in this paper. This new distribution is designed to effectively model real-life data that may have up to 

three modes. The primary objective of this study is to provide a comprehensive understanding of the structural 

properties of this distribution, including moments, moments generating function, Fisher's information matrix, 

characterization, and parameter estimation through the method of maximum likelihood. Additionally, the 

distribution's flexibility and usefulness are evaluated by analyzing two real-life datasets. The analysis findings 

suggest that, as measured by AIC and BIC values, the new distribution demonstrates superior performance in 

fitting the datasets compared to other distributions. The lower values of AIC and BIC suggest that the new 

distribution better fits the datasets compared to other alternatives.  
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1. Introduction 

Many researchers have proposed different distributions to accurately model real-life data that exhibit skewness. 

These distributions are built upon the pioneering work of Azzalini (1985). One well-known distribution in this 

context is Azzalini's skew-normal distribution, which offers a probability density function (pdf) defined as 

follows: 

( ; ) 2 ( ) ( ) ; ,Xf x x x x R R   =     (1) 

where the parameter   represents the degree of asymmetry, while (.) and (.) correspond to the pdf and 

cumulative density function (cdf) of the standard normal distribution, respectively, while this distribution 

exhibits a broad spectrum of skewness and kurtosis, it does not possess the capability to model datasets with 

multiple modes. 

In many complex modeling situations, datasets often exhibit two or more distinct patterns or clusters, 

referred to as modes. To address this, researchers have recently introduced extensions to the skew-normal 

distribution, which deviate from the traditional unimodal model. Some of these extensions include the flexible 

skew-symmetric distribution, two-piece skew-normal distributions, bimodal exponential power distribution, 

bimodal skew-elliptical distribution, skew-flexible normal distribution, alpha skew Laplace distribution, and 

more  (Kim, (2005); Hassan and Hijazi (2005,2010); Elal-Olivero et al.(2009); Gomez et al. (2011); Harandi 

and Alamatsaz, (2013); Shah et al., (2020a, 2021b, 2022); Shah and Hazarika (2021); Das et al., (2023)). 

Recently, Elal-Olivero (2010) introduced a new type of bimodal distribution called the alpha skew-normal 

distribution and its density is given by 
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The parameter   in this distribution controls the shape and number of modes present. Hazarika et al. (2020) 

developed Balakrishnan alpha skew normal distribution which is more flexible than Equation (2). After that, 

Hazarika and Chakraborty (2014) and Shah et al. (2020b) extended this concept by introducing the alpha skew 

logistic distribution and Balakrishnan alpha skew logistic distribution respectively and investigating their 

properties.Furthermore, Sharafei et al. (2017), Shah et al. (2021a)and Shah et al. (2024) proposed a 

generalization of the alpha skew-normal distribution, alpha beta skew-normal distribution and Balakrishnan 

alpha skew-normal distribution respectively by adding an additional parameter(s) to capture further asymmetry. 

In a related study, Elal-Olivero et al. (2020) introduced the bimodal skew-normal distribution, focusing on its 

properties and conducting inferential analysis. The density function of this distribution is represented by a 

specific mathematical expression as 

21
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X
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f x x x x R R
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 (3) 

Das et al. (2024) introduced a class of skew distributions known as the Bimodal Tanh Skew Normal (BTSN) 

distributions. These distributions incorporate a novel skewing mechanism utilizing the hyperbolic tangent 

function. Subsequently, Das et al. (2025) introduced the Generalized Alpha Skew Laplace distribution, 

specifically designed to effectively model datasets exhibiting both unimodal and bimodal characteristics. 

The distributions mentioned earlier provide an alternative approach to address the computational challenges 

associated with the mixer distribution. When dealing with tri-modal data containing three distinct groups or 

patterns, it is necessary to estimate the mixing proportions ( 1w , 2w and 3 1 21w w w= − − ) for each group. For 

example, in a tri-modal normal distribution, it is necessary to estimate parameters such as means ( 1 , 2 , 3 ) 

standard deviations ( 1 , 2 , 3 ) and the mixing proportions ( 1w , 2w ). This involves estimating a total of 

eight parameters. However, estimating these parameters becomes complicated due to the large number involved, 

making optimization of the likelihood function challenging. Moreover, the presence of numerous parameters can 

lead to numerical errors during optimization. Consequently, there is a need to develop effective methods for 

fitting tri-modal behaviour in real-life data. Unfortunately, there is limited research in the statistical field 

focusing on distributions capable of accurately capturing tri-modal patterns. Recently, Martinez-Florez et al. 

(2022) addressed this issue by introducing a distribution that can handle symmetric data with three modes. They 

initially introduced the tri-modal normal distribution, denoted as ~X TN , and provided a mathematical 

expression to describe its density function as 

( )
( )
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 (4) 

Furthermore, Shah et al.(2023) introduced a new multimodal extension of alpha skew normal distribution using 

Balakrishnan mechanism. Subsequently, Pathak et al. (2023) and Das et al. (2023) introduced a tri-modal 

extension of the Skew Logistic Distribution and the Flexible Alpha Skew Normal Distribution. They further 

developed and proposed the characterization theory for these distributions. 

The main objective of this research paper is to introduce a model that exhibits the necessary flexibility to 

accurately capture both symmetric and asymmetric behaviours observed in tri-modal datasets. To achieve this, 

the paper is structured as follows: Section 2 introduces the tri-modal skew-normal distribution and thoroughly 

explores its shape and the particular cases of the same. Section 3 presents several structural properties related to 

the tri-modal skew-normal distribution, offering valuable insights into its characteristics. Section 4 presents the 

characterization of the study distribution. Section 5 focuses on parameter estimation for the newly introduced 

distribution, utilizing the maximum likelihood estimation approach along with the Fisher information matrix and 

Monte Carlo Simulation techniques. Section 6involves the application of the studied model to two real-life 

datasets, followed by a comparative analysis with specific rival models. Finally, the concluding remarks are 

presented in the final section, summarizing the findings and highlighting noteworthy aspects of the studied 

distribution. 

 

2. Trimodal Skew Normal Distribution 

This section introduced a novel skew-normal distribution and examined its fundamental properties. The 

proposed distribution provides a unique framework for modeling skewed data and demonstrates unique 

characteristics that set it apart from conventional distributions. Various properties and features of this new 

distribution were discussed, providing an understanding of its behavior and potential applications across 

different fields of study. 
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Definition: A random variable X follows tri-modal skew normal distribution, denoted by ( )TSN  , if it has the 

pdf 
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 (5) 

The pdf of the proposed distribution takes the form ( ) ( ) ( )w x x x  , where ( )w x represents a fourth-order 

polynomial that allows for the presence of at least three modes (refer to Martinez-Florez et al. (2022)). The term 

( )x corresponds to the pdf of the normal distribution, while ( )x  represents the cdf of the standard normal 

distribution with real-valued parameter  . 

2.1. Special cases of ( )TSN   distribution: 

• If 0 = , then one get the trimodal normal distribution of Martinez-Florez et al. (2022) given by 
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• If→  then ( )
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• If ( )~X TSN  , then ( )~ NX TS − −  

2.2. Plot of the Probability density function of ( )TSN   distribution: 

Figure 1 displays the density plot of the tri-modal skew-normal distribution for various values of . The figure 

reveals that the distribution can have up to three modes, and the skewness of the distribution depends on the   

value. Specifically, when   is positive, the distribution exhibits positive skewness; when   is negative, the 

skewness becomes negative. Analyzing Figure 1, it is evident that the tri-modal pattern emerges when   falls 

within the range of -0.5 and 0.5. Notably, when   equals zero, the distribution transforms into a tri-modal 

normal distribution. 

 

3. Distribution Properties 

This section presents an analysis of the properties of the studied distribution, focusing on the examination of its 

defining characteristics and features. 

 

3.1. Cumulative distribution function (cdf) 

Theorem 1: The cdf of ( )TSN  distribution is given by 

( ) ( ) ( ) ( )
( )

( )( )  ( )2 2 2 2

2

1
1 2 1 1 1

4 4 1
X Y Y

b
F x F x x x f x x x


  


= − + − + + + +

+
 (6) 

where ( )YF x  and ( )Yf x  are the cdf and pdf of skew normal distribution respectively and
2

b


= . 

Proof: 

( ) ( ) ( ) ( ) ( )4 21
2 3

2

x

XF x P X x t t t t dt 
−

=  = − +   

 

( ) ( ) ( ) ( ) ( ) ( )4 21 3

2 2

x x x

t t t dt t t t dt t t dt     
− − −

=  −  +     

 
1 2 3

1 3

2 2
I I I= − +          (7)

 
The integral 2I  represents the cdf of the bimodal skew normal distribution (Elal-Olivero et al., 2020) while 3I  

corresponds to the cdf of the skew-normal distribution (Azzalini, 1985). The remaining term was calculated 

using the method of integration by parts. As a result, the cumulative distribution function of the tri-modal skew 

normal distribution can be expressed as follows: 
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Figure 2 illustrates the cdf of the ( )TSN   distribution. This graph facilitates the analysis of how the shape of 

the distribution varies with changes in the parameter . Examining the plot provides a deeper understanding of 

the behavior of the TSN distribution and the influence of the   on its shape. 

  

  

Figure 1: Plots of the pdf of ( )TSN  for different choices of  

 

 

Figure 2: Plot of the cdf of ( )TSN  for different choice of . 
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3.2. Moment Generating Function (mgf) and Moments 

Theorem 2: The moment generating function of the ( )TSN  distribution is expressed as follows 
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Equation (9) indicates that the terms 5I  and 6I  represent the mgf of the one parameter bimodal skew normal 

distribution (Elal-Olivero et al., 2020)and the skew-normal distribution (Azzalini, 1985), respectively. The 

remaining term was computed using the integration by parts method. By combining these components, the mgf 

of the studied distribution was derived as follows: 
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Remark 1: The 𝑛𝑡ℎ moment of ( )TSN   distribution is of the form 
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where, ( )4kE Z
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+ and ( )kE Z
 are the (𝑘 + 4)𝑡ℎ, (𝑘 + 2)𝑡ℎand 𝑘𝑡ℎ moments of standard ( )SN 

distribution (Azzalini, 1985). One have, 
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By considering the moments of the skew-normal distribution (Henze, 1986), one can derive the first four raw 

moments of the ( )TSN   distribution as follows: 
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variance is given by ( ) ( ) 
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Through numerical optimization methods, the bounds of the mean ( ( )E X ) and variance ( ( )Var X ) were 

computed. The analysis indicated that the mean of the distribution ranged from -1.3963 to 1.3963, while the 

variance was estimated to be between 1.05 and 3.00. To provide a visual representation of these findings, the 

( )E X
 
and ( )Var X were plotted in Figure 3, clearly illustrating the estimated bounds of the distribution. 

  
Figure 3: Plot of the mean and variance of ( )TSN  distribution 

 

3.3. Skewness and Kurtosis 

The skewness and kurtosis of the respective distribution is given by 
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where, ( )2 4 6

1 84 164 133 38d   = + + + , ( )2 4

2 12 16 7d  = + +  and ( )2 4 6

3 60 76 59 13d   = + + +
 

Using numerical optimization methods, the bounds for the parameters 1 and 2 were identified. The 

analysis indicates that the value of 1  falls within the range of 0 to 0.029, while 2  was estimated to be 

between 0.262 and 2.333. To provide a clear understanding of the shape of the skewness and kurtosis, these 

characteristics were represented graphically in Figure 4, which visually illustrates how the skewness and 

kurtosis values vary within their respective ranges. 

3.4. Order Statistics of ( )TSN  distribution 

This section is responsible for the results of order statistics of ( )TSN  distribution. 

 

Theorem 4: The cdf of 
thk order statistics for )(TSN distribution is given as  
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Hence, final expression for the cdf order statistic is given as  
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Again, pdf of the same can be obtained as  
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Where,  

 mpmmlk
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d
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1

2
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𝜋
1

2
(−𝑘−𝑙+𝑝)

(
𝑏ⅇ−

1

2
𝑥2(1+𝜆2)𝜆(2 + (1 + 𝑥2)(1 + 𝜆2))

1 + 𝜆2
)

𝑘+𝑙−𝑚

(ⅇ−
𝑥2

2 𝑥(1 + 𝑥2)Erfc [−
𝑥𝜆

√2
])

𝑚−𝑝

 

×(− )(3 xA + )(4 xA + )(5 xA ) (Erfc[−
𝑥

√2
] − 4OwenT[𝑥, 𝜆]𝑘+𝑙−𝑚) 
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Where, )(3 xA =
(𝑘+𝑙−𝑚)(𝑥+𝑥3)(1+𝜆2)2

3+𝜆2+𝑥2(1+𝜆2)
, )(4 xA =

ⅇ
−

1
2

𝑥2𝜆2
(𝑚−𝑝)(√

2

𝜋
𝑥(1+𝑥2)𝜆−ⅇ

𝑥2𝜆2

2 (−1−2𝑥2+𝑥4)Erfc[−
𝑥𝜆

√2
])

𝑥(1+𝑥2)Erfc[−
𝑥𝜆

√2
]

 

and )(4 xA =
ⅇ

−
𝑥2

2 (𝑘+𝑙−𝑚)√
2

𝜋
(1+Erf[

𝑥𝜆

√2
])

Erfc[−
𝑥

√2
]−4OwenT[𝑥,𝜆]

.  

 
Here, 𝐸𝑟𝑓𝑐[. ]gives the complementary error function while 𝑂𝑤ⅇ𝑛𝑇[𝑥, 𝜆] is the Owen T function 

which is defined as. ( ) dtttxxT

a

 ++−=

0

222 ))1/((2/)1(exp
2

1
),(




 

  

Figure 4: Plot of Skewness( 1 ) and Kurtosis ( 2 ) with different choices of parameter   

3.5. Mode of ( )TSN  Distribution: 

In this section, the mode of the TSN distribution has been obtained through graphical methods, following the 

approach introduced by Behboodian (1970). 

 

Theorem 4:The tri-modal skew normal distribution has atmost three modes. 

Proof: 

From (4) and (5) one can obtain ( )TSN  distribution as 

( ) ( ) ( ); 2Xf x f x x =   (10) 

Differentiation (10) with respet to x, one get 

( ) ( ) ( ) ( ) ( ); 2Xf x f x x f x x     =  +  
 

(11) 

If equation (11) has five roots, equation (10) can exhibit a maximum of three modes. The application of a 

graphical method has been utilized for the computation of this relationship. As a result, 

( ) ( ) ( )1 2;Xf x F x F x = −
 

(12) 

where,   

( ) ( ) ( )1 2F x f x x=   (13) 

and 

( ) ( ) ( )2 2F x f x x  =  (14) 

Now, if one take  

( ); 0Xf x  = , (15) 

then one get  

( ) ( )1 2F x F x=  
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Figure 5 illustrates the graphical representation of the preceding analysis. The figure reveals that the model 

displays a range of four to five real zeros, occurring at the points where the x-axis intersects. The distribution 

exhibits two modes when the function (15) possesses four roots. Conversely, the distribution shows three modes 

if the equation (15) has five roots. 

  
Figure 5: (a) The plot of C1 and C2 for 0.22 = ( b) The plot of C1 and C2 for 1.1 =  

 

4. Characterization Results 

This section is based on the characterization of the TSN distribution by employing two truncated moments. 

Notably, a closed-form expression for the cumulative distribution function (cdf) is not a prerequisite for this 

characterization. 

 

4.1. Characterizations based on two truncated moments 

This subsection presents a comprehensive characterization of the TSN distribution based on the concept of two 

truncated moments. This characterization is derived from Theorem 4, as proposed by Glänzel (1987), and 

remains valid even if the interval HHH is not closed. Furthermore, the characterization remains stable under 

weak convergence (see Glänzel, 1990). 

 

Theorem 5: Consider a given probability space, denoted as ),,( PF , and let H represent an interval within the 

range of [d, e], where =−= ed , are allowable values and ed  . Further, let HX →:  be a 

continuous random variable characterized by the distribution function F. Additionally, k and h are two real 

functions defined on the interval Hsuch that 

 

    ,),()()( HxxxXXhExXXkE = 
 

is defined with some real function  . Assuming )(),(, 21 HCHChk    and F is twice continuously 

differentiable and strictly monotone functions defined on the interval H, and further assuming that the equation 

kh = has no real solution within the interior of H, then it can be concluded that F is uniquely determined by 

the functions k, hand , particularly, 

,)))((exp(
)()()(

)(
)( duus

ukuhu

u
CxF

x

d

−
−


=  


 

where, the function s  is a solution of the differential equation 
kh

h
s

−


=



 and C is the normalizing constant, 

such that  =

H

dF .1

 

Proposition 1: Let the random variable RX →: be continuous, and let ( ) ( ) ( )
1

4 22 3h x x x x
−

 = − + 
 

and ( ) ( ) ( )k x h x x=  for x R . Then, the density of X is given in (5) if and only if the function   defined in 

Theorem 4 is 

  .,)(1
2

1
)( Rxxx +=

 
Proof: If X has a probability density function given by (5), then 
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( )( ) ( ) ( ) ( ) 
1 1

1 1 ,
2 2

x

F x E h X X x u du x


 −  = = −   x R , 

and ( )( ) ( ) ( ) ( ) ( )( ) 21 1
1 1 ,

2 4
x

F x E k X X x u u du x


 −  =  = −    x R , 

and hence  ( )
( )

( )
( ) 

1
1 ,

2

E k X X x
x x

E h X X x


  = = +
  

x R , 

and finally,    ( ) ( ) ( ) ( ) ( ) 
1

1 0 .
2

x h x k x h x x for x R − = −    

On the other hand, if  exhibits the above form, then 

( )
( ) ( )

( ) ( ) ( )

( )

( )
s ,

1

x h x x
x

x h x k x x

 




 = =

− −
 

( ) ( ) s log 1 ,x x x R= − −   

Considering Theorem 5, it can be concluded that X possesses the probability density function described by (5). 

4.2. Related characterization  

A characterization based on a first-order differential equation in terms of the function ( )x  is stated here. 

Corollary 1: Suppose RX →:  is a continuous random variable and ( )h X  conforms to Proposition 1. In 

that case, X exhibits the probability density function described by (5) if and only if there exist functions k and 
, as defined in Theorem 5, that satisfy the following first-order differential equation. 

( ) ( )

( ) ( ) ( )

( )

( )1

x h x x

x h x k x x

 




=

− −
 

Proof: The process is straightforward and is therefore omitted. 

Corollary 2: The general solution of the above differential equation in Corollary 1 is 

( ) ( )  ( ) ( )( ) ( )
1 1

1x x x h x k x D 
− − = − − +
  , 

Here, D is treated as a constant. A set of functions that satisfy this differential equation is introduced in 

Proposition 1 with 1
D

2
= . It is evident that other sets of triplets ( ), ,h k   meet the conditions outlined in 

Theorem 5. 

 

5. Parameter Estimation of ( )TSN  Distribution 

5.1. Location and Scale Extension:  

Location and scale extension of trimodal skew normal distribution is succeeding as. If 𝑋~ ( )TSN  then 

Z X = +  is the location ( )  and scale ( )  extension of trimodal skew normal distribution and has the 

density function is given as 

( )

2
2

1
z; , , 1 2

2

i i iz z z
f

  
    

  

  − − −      
= − +                 

; Z R , R , R , 0  

 

(16) 

It is denoted as 𝑍~ ( , , )TSN    .  
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5.2. Maximum Likelihood Estimation 

If 1 2, ,..., znz z  was random sample drawn from the trimodal skew normal distribution, then log-likelihood 

function for ( ), ,   = was obtained as 

( ) ( )

2
2

2

2
1 1 1

1
log 1 2 log 2 log(2 ) log log

2 2

n n n
i i

i

i i i

z zn
l n pi n z

 
   

  = = =

  − −    = − + − − − − − +            

    (17) 

Differentiate equation (17) with respect to the parameters ( ), ,   = , the likelihood equation becomes 

( ) ( )

( ) 

2 2 2

2 22
2 2 4

1 1

4 1 1

2

n n
i i i

i

i i
i

u ul u
u

u


 

     = =

−  
= − + −  

  − +
   

( ) ( )

( ) 

2 2 2

2

3 22
2 2 4

1 1

4 1 1

2

n n
i i i

i i

i i
i

u ul un
u u

u


 

      = =

−  
= − + −  

  − +
   

( )

1

1 n
i

i

i

l u
u


 

  =

  
=  

  
  

where, i iu z = −  and ( )
( )

( )

.
.

.


 =


. Numerical optimization routines were used to achieve a simultaneous 

solution for estimating the desired parameters. These routines employed computational algorithms to identify 

the optimal values that best fit the given data and model. By applying these methods, the parameters of interest 

were efficiently estimated, providing a solution that satisfied the desired criteria. 

5.3. Fisher’s Information Matrix 

The following section presented the Fisher information matrix for the random variable 𝑍~ ( )TSN  which could 

be expressed as 

2 log
, , j 1,2,3

i j

L
I E i

 

  
= − =       

 

The elements of the Fisher information matrix were calculated from the model using the set of parameters 

( ) ( )1 2 3, , , ,     = , as 

 

( )

( )
( )( )

( )
( )

2
2 2 2 2 222 2 2

22 2 2 2
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16 48log 1
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i i ii i i
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u u uu u uL
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   
   

          =

 − −     = − − + − +   
     
 

  

( )
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3 4
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 

   
   
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where, i iu z = −  and ( ) ( )( )
2

2 2 4, 2ia z     
= − − + 
   

Since obtaining the closed-form expression for the elements of I was not tractable, these elements were 

approximated using numerical methods. 

 
2 2

2 2

ˆˆ ˆ, ,

log logL L
E

     
 

= = =

    
− = −   

    

, 

2 2

ˆˆ ˆ, ,

log logL L
E

     
   

= = =

    
− = −   
      

 

 

5.4. Simulation Study of the ( )TSN 
 

To evaluate the performance of the maximum-likelihood estimates for the parameters of the ( )TSN   model, a 

simulation study was conducted using the Markov Chain Monte Carlo (MCMC) method. Specifically, the 

Metropolis-Hastings (M-H) algorithm, a widely used MCMC approach, was applied. Ten combinations of 

parameters were considered, and the process was repeated 1000 times for three different sample sizes, including 

100,300n = and 500. For each generated sample, the likelihood function was optimized using the 

GenSApackage (Version 4.2.0) in the R software, allowing the estimation of the model parameters.To assess the 

accuracy of these estimates, two statistical measures were calculated: biases and mean square errors (MSEs). 

These measures provided information on how closely the estimates approximated the true values and the degree 

of variability in the estimates. The formulas for calculating the biases and MSEs of the estimates are presented 

below
 

 

where, ( )ˆ ˆˆ ˆ, ,   = .The obtained results of the estimates were seen in Tables 1-2. 

An examination of the data presented in Tables 1 and 2 indicated that the maximum likelihood estimators 

(MLEs) performed effectively in accurately estimating the model parameters. Furthermore, as the sample size 

increased, both the bias and mean square error of the MLEs decreased, as expected. These findings suggested 

that the MLEs provided consistent and reliable estimates for moderate and large sample sizes. 

6. Real-Life Application 

This section evaluated the performance of the tri-modal skew-normal distribution in fitting two real-life datasets. 

Its performance was compared with other distributions, including the normal, skew-normal, and alpha skew-

normal distributions. The maximum likelihood estimation (MLE) method, implemented using the GenSA 

package in the R software, was applied to estimate the parameters of each distribution. To compare model 

performance, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were used 

as analytical measures. These criteria enabled the identification of the distribution that provided the best fit for 

the given datasets. This analysis assessed the ability of the tri-modal skew-normal distribution to capture the 

characteristics of real-life data relative to the other considered distributions. 

 

6.1. Illustration I 

Initially, the Environmental Performance Index (EPI) dataset was examined to assess the suitability of the 

proposed distribution. This dataset, which provided information on the environmental performance index of 163 

countries in 2010, was obtained from the website http://epi.yale.edu/. 

Table 3 presents the maximum likelihood estimates (MLEs), log-likelihood values, and AIC and BIC 

values for the different distributions considered. These measures were used to evaluate how closely each 

distribution fit the EPI dataset. Additionally, graphical representations of the results were provided in Figure 5, 

offering a visual comparison of how well the distributions captured the characteristics of the data. 

http://epi.yale.edu/
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Table 1: Results of simulation 

0, 1 = =   

          

 

 
 

 
 

 
 

 

-1 

100 0.1056 0.0991 0.091 0.0752 -0.0789 0.0665 

300 -0.0921 0.0730 -0.0904 0.0453 -0.0653 0.0590 

500 0.0873 0.0640 0.0673 0.0399 0.0421 0.0323 

-0.5 

100 -0.0994 0.0546 0.1000 0.0733 0.0993 0.0756 

300 -0.0853 0.0621 -0.0906 0.0696 -0.0858 0.0743 

500 -0.0721 0.0432 -0.0434 0.0527 -0.0601 0.0693 

0 

100 0.0821 0.0521 0.0661 0.0396 0.0656 0.0552 

300 0.0354 0.0126 -0.0404 0.0421 -0.0444 0.0368 

500 -0.0296 0.0096 0.0301 0.0169 0.0134 0.0276 

0.5 

100 -0.1300 0.0941 0.1401 0.0934 0.0856 0.0953 

300 -0.0956 0.0521 -0.0921 0.0773 0.0621 0.0808 

500 0.0721 0.0421 -0.0667 0.0421 -0.0476 0.0757 

1 

100 0.0920 0.0556 0.1050 0.0867 -0.0993 0.0866 

300 0.0873 0.0421 0.0903 0.0725 0.0721 0.0727 

500 -0.0521 0.0301 -0.0672 0.0610 0.0560 0.0370 

 

Table 2: Results of simulation 

1, 2 = =   

          

 

 
 

 
 

 
 

 

-1 

100 0.1730 0.1312 -0.2192 0.1598 -0.1933 0.1461 

300 -0.9560 0.0993 0.1319 0.1212 -0.1651 0.1090 

500 -0.0922 0.0896 -0.1003 0.0901 -0.1131 0.0981 

-0.5 

100 0.1251 0.1310 -0.1250 0.1111 0.2152 0.1753 

300 -0.1191 0.0999 0.0970 0.0921 -0.1330 0.0956 

500 0.0943 0.0901 0.0921 0.0807 -0.1096 0.0881 

0 

100 -0.1010 0.1210 0.2050 0.1993 0.1051 0.1651 

300 0.0954 0.0903 -0.1531 0.1521 -0.0931 0.1059 

500 -0.0723 0.0665 -0.0940 0.1346 0.0931 0.1003 

0.5 

100 0.1636 0.1219 -0.1616 0.1331 0.1999 0.2133 

300 -0.1521 0.1310 0.1259 0.0953 -0.2051 0.1096 

500 0.0990 0.0413 -0.1032 0.0888 0.1010 0.1101 

1 

100 0.2126 0.1139 -0.3301 0.2152 0.2031 0.1994 

300 -0.1053 0.1410 -0.1682 0.1659 -0.1940 0.1531 

500 0.1064 0.9290 0.1093 0.0893 -0.1216 0.0949 

 

Based on the results presented in Table 3, onehas determined that the studied distribution best fits the 

dataset when considering the AIC and BIC. Additionally, the density plots in Figure 6 visually supported our 

findings, showing that the studied distribution closely captured the patterns and characteristics observed in the 

dataset.Overall, this indicates that the studied distribution was the most suitable choice among the compared 

options for accurately representing the dataset. 
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Table 3:MLE’s, log likelihood, AIC and BIC for EPI data 

Distribution 
Parameters      

𝜶   µ λ 𝒍𝒐𝒈𝑳 AIC BIC 

𝑁(𝜇, 𝜎), -- 12.371 58.371 -- -641.284 1286.569 1292.756 

𝑆𝑁(𝜇, 𝜎, 𝜆), -- 14.086 51.633 0.749 - 641.217 1288.435 1297.716 

𝐴𝑆𝑁(𝜇, 𝜎, 𝛼) 0.243 12.360 61.292 -- -641.275 1288.551 1297.832 

𝑇𝑆𝑁(𝜇, 𝜎, 𝜆) -- 9.298 67.633 -0.643 -637.394 1280.78 1290.06 

 

6.2. Illustration II 

In the second example, a dataset originally presented by Frost (2002) and Bro et al. (2008) was examined. This 

dataset focused on nine different types of cream cheese and aimed to analyze various aspects related to sensory 

properties. The study investigated how changes in fat levels affected sensory attributes, compared two types of 

fat mimetics (protein-based and carbohydrate-based), and explored the impact of adding cream aroma on 

sensory properties beyond aroma and flavor. For this analysis, the E-shiny variable, consisting of 240 

observations, was considered. The dataset is available at http://www.models.kvl.dk/Cream. 

Table 4 presents the maximum likelihood estimates (MLEs), log-likelihood values, and AIC and BIC 

values for the studied distribution. These statistical measures were used to evaluate how well the distribution fit 

the cream cheese dataset. Additionally, Figure 7 provides visual representations of the results, offering a clearer 

understanding of the distribution's performance in capturing the characteristics of the dataset. 

 

 
Figure 6: Plot of the fitted densities for EIP data of 163 observations 

 

The results presented in Table 4 indicated that the studied distribution provided a better fit for the data 

compared to the other three distributions considered in this study. This conclusion was further supported by the 

findings in Figure 7, which visually demonstrated the superior performance of the studied distribution in 

capturing the characteristics of the dataset. Overall, these results provided strong evidence that the studied 

distribution accurately represented the data and outperformed the other distributions in terms of goodness-of-fit. 

 

Table 4: MLE’s, log likelihood, AIC and BIC for E- shiny data 

Distribution 
Parameters      

𝜶 σ µ λ 𝒍𝒐𝒈𝑳 AIC BIC 

𝑁(𝜇, 𝜎) -- 2.411 8.129 -- -549.46 1102.94 1109.90 

𝑆𝑁(𝜇, 𝜎, 𝜆) -- 3.143 10.142 -1.346 -548.678 1103.36 1113.80 

𝐴𝑆𝑁(𝜇, 𝜎, 𝛼) -0.428 2.393 7.193 -- -549.305 1104.61 1115.05 

𝑇𝑆𝑁(𝜇, 𝜎, 𝜆) -- 1.765 6.217 0.639 -543.015 1092.03 1102.47 

 

http://www.models.kvl.dk/Cream
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Figure 7: Plot of the fitted densities for E-shiny data of 240 observations 

7. Conclusion 

Here, we introduced a new type of distribution, referred to as the tri-modal skew-normal distribution. The 

estimation of this distribution was thoroughly investigated using the maximum likelihood method. Additionally, 

key characteristics and properties of the distribution were explored. The characterization of the proposed 

distribution was also discussed using the two truncated moment’s method. The tri-modal skew-normal 

distribution exhibited greater flexibility and was capable of accommodating varying numbers of modes, as 

illustrated in Figure 1. To evaluate its performance, the distribution was applied to two real-life datasets and 

compared against other competing models. The results indicated that the tri-modal skew-normal distribution 

provided a superior fit to the data. Model comparison was conducted using two statistical criteria; the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC), both of consistently supportedthe tri-

modal skew-normal distribution. Overall, this research highlighted the versatility of the tri-modal skew-normal 

distribution, examined its properties, and demonstrated its superior performance in modeling real-world data 

compared to alternative models. 

The TSN distribution exhibited strong empirical and theoretical properties, providing a flexible framework 

for statistical modeling, especially when addressing skewed or multimodal data. This study examined the 

properties and applications of a newly proposed probability distribution. However, its inferential aspects were 

not addressed, providing an opportunity for future research to explore these features. Additionally, there is 

potential to investigate the logarithmic extension of this distribution, along with a detailed analysis of its 

properties and applications. 

 

 

Appendix A 

Data Set I: Environmental Performance Index 

 

Data Set I provide the Environmental Performance Index (EPI) data for 163 countries, which serves as the basis 

for the analysis presented in Illustration I. 

93.5, 89.1, 86.4, 86.0, 81.1, 80.6, 78.2, 78.1, 78.1, 76.8, 76.3, 74.7, 74.5, 74.2,73.4, 73.3, 73.2, 73.1, 73.0, 72.5, 

72.5, 71.6, 71.4, 71.4, 70.6, 69.9, 69.8, 69.6, 69.4, 69.3, 69.3, 69.2, 69.1, 69.1, 68.7, 68.4, 68.3, 68.2, 68.2, 68.0, 

67.8, 67.4,67.3, 67.1, 67.0, 66.4, 66.4, 65.9, 65.9, 65.7, 65.7, 65.6, 65.4, 65.0, 65.0, 64.6, 63.8, 63.7, 63.6, 63.5, 

63.5, 63.4, 63.1, 62.9, 62.5, 62.4, 62.2, 62.0, 61.2, 61.0, 60.9, 60.8, 60.6, 60.6, 60.5, 60.4, 60.4, 60.0, 59.7, 59.6, 

59.3, 59.2, 59.1, 59.1, 59.0, 58.8, 58.2, 58.1, 58.0, 57.9, 57.3, 57.3, 57.1, 57.0, 56.4, 56.3, 56.1, 55.9,55.3, 54.6, 

54.4, 54.3, 54.2, 54.0, 54.0, 51.6, 51.4, 51.4, 51.3, 51.3, 51.3, 51.2,51.1, 51.1, 50.8, 50.3, 50.1, 49.9, 49.8, 49.2, 

49.0, 48.9, 48.3, 48.3, 48.0, 47.9, 47.8, 47.3, 47.1, 47.0, 45.9, 44.7, 44.6, 44.6, 44.6, 44.4, 44.3, 44.3, 44.0, 43.9, 

43.1, 42.8, 42.3, 42.3, 42.0, 41.9, 41.8, 41.7, 41.3, 41.0, 40.8, 40.7, 40.2, 39.6, 39.5, 39.4, 38.4, 37.6, 36.4, 36.3, 

33.7, 33.3, 32.1 

Appendix B 

Data Set II: E-Shiny Data 

The E-shiny dataset comprising 240 observations, which forms the basis for the analysis presented in Illustration 

II. 

12.75, 12.9, 9, 10.35, 11.1, 12.3, 9.15, 5.85, 13.65, 10.5, 11.4, 10.95, 10.5, 10.95, 9.9, 6, 13.05, 12.3, 11.4, 

12.6,10.95, 11.85, 10.5, 6.75, 10.05, 10.95, 10.8, 10.2, 8.1, 7.95, 7.5, 4.95, 7.95, 10.8, 8.4, 9.3, 5.7, 10.8, 6.15, 

7.35, 6.6, 6, 7.2,8.55,7.05, 9.75, 8.1, 6, 6.45,6.6, 3.63, 5.25, 4.05, 5.25, 3.3, 6.9, 7.05, 4.95, 1.8, 4.5 , 5.85, 4.8, 

4.35, 2.85, 5.85, 5.4, 5.55, 4.65, 5.25, 4.05, 4.8, 6.45, 8.4, 6.6, 9.45, 6.9, 6.75, 6.3, 3.75, 7.95, 7.8, 5.85, 9.15, 

6.15, 9.15,  5.1, 5.1, 6, 9.15, 6.3, 6.45, 6.9, 8.55, 7.2, 5.55, 7.2, 9.9, 7.35, 9.3, 6.3, 7.2, 5.85, 8.7, 8.25, 7.35, 7.2, 
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8.1, 6.6, 9.3, 6.45, 7.35, 6.9, 7.95, 7.0, 9.45, 7.5, 7.2, 7.05, 6.75, 10.5, 10.35, 7.2, 9, 8.7, 10.65, 6.6, 5.25, 9.3, 

9.45, 8.85, 8.4, 8.55, 9.6, 7.2, 5.7, 11.1, 7.35, 8.85, 7.95, 7.2, 9.9, 8.25, 7.35, 10.95, 11.1, 9, 10.35, 9.3, 10.2, 8.1, 

6.3, 10.2, 11.85, 8.4, 10.2, 7.65, 10.35, 7.95, 6.1, 9.45, 10.5, 10.2, 9.75, 11.25, 10.5, 7.05, 6.15, 6.9, 8.7, 5.85, 

1.65, 4.5, 7.05, 4.8, 1.95, 6.15, 8.7, 6.15, 2.4, 3.9, 6.15, 7.2, 5.1, 5.7, 6.75, 5.85, 3.15, 5.4, 5.7, 5.85, 3,  10.95, 

11.85, 9.15, 11.1, 9.3, 11.4, 8.7, 7.2, 12, 11.7, 8.55, 10.5, 10.5, 11.85, 9.45, 9.9, 11.1, 11.55, 9.6, 8.85, 9.75, 12, 

6.6, 9.15, 12.15, 11.85,7.8, 11.25, 9.6, 9.6, 8.4, 7.5, 10.5, 11.55, 8.7, 9.9, 9.9, 9.6, 7.8, 9.45, 10.8, 9.9, 10.05, 

8.85, 9.45, 10.05, 8.4, 7.5 
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