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Abstract

The Topp-Leone heavy-tailed type II exponentiated half logistic-G (TL-HT-TIIEHL-G) is the newly proposed family
of distributions (FoDs) introduced in this research. The study thoroughly investigates the statistical properties of
this FoDs, as well as its relevance in actuarial risk assessment. The estimation of the unknown model parameters is
done using the method of maximum likelihood estimation, and the consistency of these estimates is assessed through
the implementation of Monte Carlo simulations. Additionally, numerical simulations are conducted to analyze the
risk measures associated with the TL-HT-TIIEHL-G FoDs. The Topp-Leone heavy-tailed type II exponentiated half
logistic-Weibull (TL-HT-TIIEHL-W) distribution, a particular case of the TL-HT-TIIEHL-G FoDs is compared with
other contending distributions including heavy-tailed distributions to evaluate its performance. The model’s capacity,
adaptability, and practicality are convincingly showcased through its application to real data.

Key Words: Topp-Leone-G; Heavy-tailed-G; Exponentiated half logistic distribution; Estimation; Censoring; Mo-
ments; Risk measures.
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1. Introduction

In many fields of applied research, the final part of a study frequently consists of a thorough examination of the ac-
quired data. Lifespan data are well-known for conveying a large amount of information that must be captured in order
to identify some significant occurrences. Most prominent classical distributions often fail to match and anticipate data
from a range of practical disciplines, including finance, medical sciences and environmental sciences, engineering,
and economics. As a result, certain generalized FoDs are believed to constitute a step forward in establishing and
broadening the standard classical distributions. The newly developed FoDs have undergone extensive research across
various disciplines, demonstrating their remarkable versatility and broad applicability. Due to their inherent adapt-
ability, these generalized families have garnered substantial utilization for the purpose of data modeling across a wide
array of domains.
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In recent times, several authors have made significant contributions to the development of an extensive range of
extended families of distributions. These extended families of distributions include, the type II general inverse expo-
nential by Jamal et al. (2020), Topp-Leone odd exponential half logistic-G by Chipepa and Oluyede (2021), type II
Quasi-Lambert-G by Hamedani et al. (2020), Topp-Leone Harris-G by Oluyede et al. (2023), the type I heavy-tailed
by Zhao et al. (2020), type II exponentiated half logistic by Al-Mofleh et al. (2020), new generalized logarithmic–X
by Shah et al. (2023), generalised odd Fréchet by Marganpoor et al. (2020), Topp-Leone Gompertz-G by Oluyede et
al. (2022), and the gamma Topp-Leone type II exponetiated half logistic-G by Oluyede and Moakofi (2023) among
others.

In their study, Al-Shomrani et al. (2016) pioneered the Topp-Leone-G (TL-G) FoDs. This family has its cumulative
distribution function (cdf) and corresponding probability density function (pdf), defined as follows:

F(x;b,Ω) =
[
1− Ḡ2(x;Ω)

]b
(1)

and
f (x;b,Ω) = 2bg(x;Ω)Ḡ(x;Ω)

[
1− Ḡ2(x;Ω)

]b−1
, (2)

respectively, where b,x > 0 and Ω is a parameter vector from the baseline distribution G(.). Note that 1−G(x;Ω) =
Ḡ(x;Ω). Zhao et al. (2020) proposed the type I heavy-tailed (HT-G) FoDs with the cdf

F(x;α,Γ ) = 1−
(

Ḡ(x;Γ )

1− (1−α)G(x;Γ )

)α

(3)

and pdf

f (x;α,Γ ) =
α2g(x;Γ )

[
Ḡ(x;Γ )

]α−1

[1− (1−α)G(x;Γ )]α+1 , (4)

respectively, for α,x > 0, where Γ is a parameter vector from the baseline distribution G(.). Replacing the baseline
cdf in Equation (1) with the HT-G distribution yields the Topp-Leone-heavy-tailed-G (TL-HT-G) FoDs with cdf

F(x;b,α,Γ ) =

[
1−
(

Ḡ(x;Γ )

1− (1−α)G(x;Γ )

)2α
]b

, (5)

and pdf

f (x;b,α,Γ ) = 2bα
2g(x;Γ )

[
Ḡ(x;Γ )

]2α−1

[
1−
(

Ḡ(x;Γ )
1−(1−α)G(x;Γ )

)2α
]b−1

[1− (1−α)G(x;Γ )]2α+1 , (6)

respectively, for b,α,x > 0 and Γ is a parameter vector from the baseline distribution G(.)

In this study, we introduce a novel FoDs named Topp-Leone-heavy-tailed type II exponentiated half-logistic-G (TL-
HT-TIIEHL-G). The TL-HT-TIIEHL-G FoDs have demonstrated exceptional data fitting versatility, as evidenced by
their ability to accommodate diverse density and hazard rate geometries in the special models. Several motivations led
to the development of this paradigm, including:

(i) utilizing the TL-HT-G and the TIIEHL-G FoDs to increase the capabilities of the current families of distribu-
tions;

(ii) expanding the range of potential parental density functions and hazard rate functions (hrf);

(iii) developing heavy-tailed distributions to model real data from a variety of domains;

(iv) exploring how the TL-HT-TIIEHL-G FoDs can be effectively used to model censored data, enabling more
reliable analysis and prediction in situations where complete information is lacking;
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(v) evaluating the ability of the TL-HT-TIIEHL-G FoDs to accurately represent risk measures thereby facilitating
informed decision-making and risk management strategies.

The following describes how the paper is structured. We develop the new FoDs, its sub-families, statistical proper-
ties and special cases for specified baseline distributions in Section 2. In Section 3, we conduct the estimation of
parameters. We discuss risk measures in Section 4. Section 5 of the study is dedicated to presenting the results of
the simulations conducted. In Section 6, various data examples are provided, and the concluding observations of the
research are presented in Section 7.

2. The New FoDs and its Properties

The authors Al-Mofleh et al. (2020) proposed the type II exponentiated half-logistic-G (TIIEHL-G) FoDs with cdf

F(x;ω,δ ,ϖ) = 1−
[

1− [G(x;ϖ)]ω

1+[G(x;ϖ)]ω

]δ

(7)

and pdf

f (x;ω,δ ,ϖ) = 2δωg(x;ϖ)
(1− [G(x;ϖ)]ω)δ−1[G(x;ϖ)]ω−1

(1+[G(x;ϖ)]ω)δ+1 , (8)

where x, ω , and δ are all positive. Note that the function g(x;ϖ) represents the pdf of the baseline distribution, while
G(x;ϖ) represents the cdf of the baseline distribution, with the parameter vector ϖ . We shall set ω = 1 to circumvent

over-parametrization. We shall also set DG(x;δ ,ϖ) =
[

1−G(x;ϖ)
1+G(x;ϖ)

]δ

in this paper.

Replacing the baseline cdf in Equation (5) with the TIIEHL-G cdf yields a new FoDs called Topp-Leone heavy-
tailed type II exponentiated half-logistic-G (TL-HT-TIIEHL-G) FoDs. The cdf, survival function and pdf are given
by

F(x;α,δ ,b,ϖ) =

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b

, (9)

S(x;α,δ ,b,ϖ) = 1−

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b

(10)

and

f (x;α,δ ,b,ϖ) = 4bδα
2g(x;ϖ)

[Ḡ(x;ϖ)]δ−1

[1+G(x;ϖ)]δ+1

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b−1

×

(
[DG(x;δ ,ϖ)]2α−1

[1− (1−α) [1−DG(x;δ ,ϖ)]]2α+1

)
, (11)

respectively, where x,α,δ ,b > 0. The hazard rate function (hrf) of the TL-HT-TIIEHL-G FoDs is
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h(x;α,δ ,b,ϖ) = 4bδα
2g(x;ϖ)

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b−1(

[DG(x;δ ,ϖ)]2α−1

[1− (1−α) [1−DG(x;δ ,ϖ)]]2α+1

)

× [Ḡ(x;ϖ)]δ−1

[1+G(x;ϖ)]δ+1

1−

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b
−1

. (12)

2.1. Density Function Series Expansion

The pdf of the new TL-HT-TIIEHL-G FoDs can be written as

f (x;α,δ ,b,ϖ) =
∞

∑
r=0

Φr+1gr+1(x;ϖ), (13)

where gr+1(x;ϖ) = (r+1)g(x;ϖ)Gr(x;ϖ) represents the exponentiated-G (Expo-G) distribution with power param-
eter (r+1) and

Φr+1 = 4bδα
2

∞

∑
l,m,n,p,q=0

(−1)l+m+n+q+r(1−α)m
(

b−1
l

)(
1+2α(l +1)

m

)(
m
n

)(
p+δ [n+2α(l +1)+2]

p

)(
p
q

)
×

(
q+δ [n+2α(l +1)+2]−1

r

)(
1

r+1

)
, (14)

is the linear component. Consequently, the TL-HT-TIIEHL-G FoDs is can be expressed as an infinite linear combi-
nation of Expo-G densities, allowing for the direct derivation of various statistical properties. See web appendix for
details.

2.2. Quantile Function

The quantile function of the TL-HT-TIIEHL-G FoDs is

QX (u) = G−1


1+
(

(1−u
1
b )

1
2α −(1−α)(1−u

1
b )

1
2α

1−(1−α)(1−u
1
b )

1
2α

)δ

1−
(

(1−u
1
b )

1
2α −(1−α)(1−u

1
b )

1
2α

1−(1−α)(1−u
1
b )

1
2α

)δ

 ,

where u ∈ [0,1] for α,δ ,b > 0. Consequently, the quantile values can be obtained by utilizing R software to solve the
non-linear equation based on a given baseline cdf G(.). See web appendix for derivations.

2.3. Moments and Incomplete Moments

If Yr+1 is an Expo-G distributed random variable with power parameter (r+1), then the pth moment of the new FoDs
is

E(X p) =
∞

∑
r=0

Φr+1E(Y p
r+1),

where Φr+1 is specified in Equation (14) and E(Y p
r+1) is the pth moment of Yr+1. The pth incomplete moment is

The New Topp-Leone Heavy-Tailed type II Exponentiated Half Logistic-G Family of Distributions: Properties, Actuarial Measures, with Applications
to Censored Data

216



PPak.j.stat.oper.res. Vol.21 No. 2 2025 pp 213-236 DOI: https://doi.org/10.18187/pjsor.v21i2.4640

IX (t) =
∫ t

0
xp f (x)dx =

∞

∑
r=0

Φr+1Ir+1(t; p,ϖ),

where Ir+1(t; p,ϖ) =
∫ t

0 xpgr+1(x;ϖ)dx represents the pth incomplete moment of Yr+1. The moment generating func-
tion (MGF) of X is

MX (t) =
∞

∑
r=0

Φr+1E(etYr+1),

where E(etYr+1) is the MGF of Yr+1 and Φr+1 is specified in Equation (14).

Incomplete moments are crucial in the construction of Bonferroni and Lorenz curves for the TL-HT-TIIEHL-G FoDs,
while complete moments are valuable in the computation of coefficients of variation, skewness, kurtosis, and other
related characteristics.

2.4. Order Statistics

The pdf of the hth order statistics derived from the TL-HT-TIIEHL-G FoDs is

fh:n(x) =
1

B(h,n−h+1)

∞

∑
z=0

n−h

∑
j=0

(
n−h

j

)
Φ

∗
z+1gz+1(x;ϖ), (15)

where B(., .) is the beta function, gz+1(x;ϖ) = g(x;ϖ)(z+1)Gz(x;ϖ) represents the Expo-G distribution with power
parameter (z+1) and

Φ
∗
z+1 = 4bδα

2
∞

∑
q,r,s,t,u,v,w=0

(−1)s+t+u+v+w+z(1−α)r
(

b+( j+h)−1
q

)(
2α +(q+1)+ r

r

)(
r+2α −1

s

)
×

(
s+δ −1

t

)(
s+δ −1

u

)(
u
v

)(
v− (s+δ −1)

w

)(
w
z

)(
1

z+1

)
.

In light of this, the pdf of the hth order statistics from the TL-HT-TIIEHL-G FoDs is expressible as an infinite linear
combination of the Expo-G densities. Refer to the web appendix section for detailed derivations.

2.5. Probability Weighted Moments

The probability weighted moments (PWMs) for the TL-HT-TIIEHL-G FoDs can be written as

M(q,r,v) =
∞

∑
i=0

α
∗
i+1

∫
∞

−∞

xqgi+1(x;ϖ)dx, (16)

where gi+1(x;ϖ) = (i+1)g(x;ϖ)Gi(x;ϖ) is the Expo-G distribution with power parameter (i+1) and

α
∗
i+1 = 4bδα

2
∞

∑
a,c,d,e, f ,g,h=0

(−1)a+c+e+ f+g+h+i(1−α)d
(

v
a

)(
a+b(r−1)−1

c

)(
2α(c+1)+d

d

)(
d
e

)
×

(
e+δ + f

f

)(
f
g

)(
g+δ −1

h

)(
g+h

i

)(
1

i+1

)
.

Consequently, we can obtain the (q,r,v)th PMWs of the TL-HT-TIIEHL-G FoDs from the moments of the Expo-G
FoDs. See web appendix for derivations.
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2.6. Stochastic Ordering

Stochastic (st) ordering possesses applications within the realm of probability and statistics. They serve practical
purposes in probability theory by enabling the deduction of probability inequalities and facilitating the comparison of
lifetime distributions based on specific characteristics.

Consider two random variables, U and V , which have distribution functions denoted as FU (t) and FV (t), respectively
and F̄U (t) = 1−FU (t) denotes the survival function. Note that U is stochastically smaller than V if F̄U (t)≤ F̄V (t) ∀t or
FU (t)≥ FV (t) ∀t. This is denoted by U <st V . The hazard rate order (hr) and likelihood ratio (lr) order possess greater
strength compared to the stochastic and is given by U <hr V if hU (t)⩾ hV (t) ∀t, and U <lr V if hU (t)

hV (t)
is decreasing in

t (see Shaked and Shanthikumar (2007) for further details). We know that U <lr V ⇒U <hr V ⇒U <st V .

Theorem: Let X1 and X2 be independent random variables with X1 ∼ T L−HT −T IIEHL−G(α,δ ,b1,ϖ) and X2 ∼
T L−HT −T IIEHL−G(α,δ ,b2,ϖ), respectively. If b2 > b1, then the random variables X1 and X2 are stochastically
ordered.

Proof: Note that,

f1(x;α,δ ,b1,ϖ) =
4b1δα2g(x;ϖ)[1−G(x;ϖ)]δ−1

[1+G(x;ϖ)]δ+1

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b1−1

×

(
[DG(x;δ ,ϖ)]2α−1

[1− (1−α)(1−DG(x;δ ,ϖ))]2α+1

)
, (17)

and

f2(x;α,δ ,b2,ϖ) =
4b2δα2g(x;ϖ)[1−G(x;ϖ)]δ−1

[1+G(x;ϖ)]δ+1

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b2−1

×

(
[DG(x;δ ,ϖ)]2α−1

[1− (1−α)(1−DG(x;δ ,ϖ))]2α+1

)
, (18)

so that

f1(x)
f2(x)

=
f1(x;α,δ ,b1,ϖ)

f2(x;α,δ ,b2,ϖ)
=

b1

b2

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b1−b2

. (19)

Differentiating Equation (19) with respect to x, yields

∂

∂x

(
f1(x)
f2(x)

)
=

b1

b2
(b1 −b2)

[
1−
(

DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]b1−b2−1

× ∂

∂x

[(
DG(x;δ ,ϖ)

1− (1−α) [1−DG(x;δ ,ϖ)]

)2α
]
.

Now, if b1 < b2, then ∂

∂x

(
f1(x)
f2(x)

)
< 0 . Therefore, likelihood ratio exists between X1 and X2. As a result, the random

variables X1 and X2 are stochastically ordered.

2.7. Entropy

Entropy measures the degree of uncertainty present in a probability distribution. The two widely used measures of
entropy are the Rényi entropy introduced by Rényi (1960), and the Shannon entropy proposed by Shannon (1950).
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The Rényi entropy for the TL-HT-TIIEHL-G FoDs can be expressed as

IR(ω) =
log
[
∑

∞
m=0 εme[(1−ω)IREG]

]
1−ω

,ω ̸= 1,ω > 0, (20)

where

εm =
∞

∑
i, j,k,l=0

(−1)i+k+l+m(4bδ )ω
α

2ω(1−α) j
(

ω(b−1)
i

)(
2α(i+ω)+ω)+ j−1

j

)(
2α(i+ω)−ωδ + k

k

)
×

(
k
l

)(
l +2α(i+ω)+ω(δ +1)

m

)(
l
ω

+1
)
,

and IREG =
[∫

∞

0
( l

ω
+1
)
[g(x;ϖ)G

m
ω (x;ϕ)]dx

]ω

is the Rényi entropy of the Expo-G distribution with parameter ( l
ω
+1).

As a result, Rényi entropy of the TL-HT-TIIEHL-G FoDs stem directly from Rényi entropy of the Expo-G distribution.
See web appendix for derivations.

2.8. TL-HT-TIIEHL-G Sub-Families

Table [1] presents various sub-families associated with the TL-HT-TIIEHL-G FoDs, accompanied by their correspond-
ing nomenclature. The sub-families are also new families of distributions.

Table 1: Sub-families of TL-HT-TIIEHL-G FoDs

α δ b Resultant Distribution Distribution Nomenclature

1 - - F(x;δ ,b,ϖ) =

[
1−
(

1−G(x;ϖ)
1+G(x;ϖ)

)2δ
]b

Topp-Leone type II exponentiated half logistic-G FoDs

- 1 - F(x;α,b,ϖ) =

1−

( [
1−G(x;ϖ)
1+G(x;ϖ)

]
1−(1−α)

[
1−
[

1−G(x;ϖ)
1+G(x;ϖ)

]]
)2α

b

Topp-Leone-heavy-tail type II half logistic-G FoDs

- - 1 F(x;α,δ ,ϖ) = 1−

 [
1−G(x;ϖ)
1+G(x;ϖ)

]δ

1−(1−α)

[
1−
[

1−G(x;ϖ)
1+G(x;ϖ)

]δ
]
2α

Heavy-tailed type II exponentiated half logistic-G FoDs

1 1 - F(x;b,ϖ) =

[
1−
(

1−G(x;ϖ)
1+G(x;ϖ)

)2
]b

Topp-Leone type II half logistic-G FoDs

1 - 1 F(x;δ ,ϖ) = 1−
(

1−G(x;ϖ)
1+G(x;ϖ)

)2δ

A new FoDs

- 1 1 F(x;α,ϖ) = 1−

( (
1−G(x;ϖ)
1+G(x;ϖ)

)
1−(1−α)

[
1−
(

1−G(x;ϖ)
1+G(x;ϖ)

)]
)2α

Heavy-tailed type II half logistic-G FoDs

1 1 1 F(x;ϖ) = 1−
(

1−G(x;ϖ)
1+G(x;ϖ)

)2
A new FoDs

2.9. Particular Cases

This subsection presents some special cases of TL-HT-TIIEHL-G FoDs by specifying the baseline cdf and pdf in
Equations (9) and (11). The log-logistic, uniform, and Weibull distributions are considered as baseline cdf in this
section.
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2.9.1. Topp-Leone-Heavy-Tailed-Type II Exponentiated Half Logistic-Log-Logistic (TL-HT-TIIEHL-LLoG)
Distribution

Considering the log-logistic distribution with the cdf and pdf given by G(x;β ) = 1− 1
1+xβ

and g(x;β ) = βxβ−1

(1+xβ )2 as
baseline distribution, for x,β > 0, we have the TL-HT-TIIEHL-LLoG distribution with cdf

F(x;α,δ ,b,β ) =

1−

 [A1(x;β )]δ

1− (1−α)
(

1− [A1(x;β )]δ
)
2α


b

and pdf

f (x;α,δ ,b,β ) = 4bδα
2

1−

 [A1(x;β )]δ

1− (1−α)
(

1− [A1(x;β )]δ
)
2α


b−1

βxβ−1(1+ xβ )−(δ+1)

[2− (1+ xβ )−1]δ+1

×

 [A1(x;β )]δ (2α−1)[
1− (1−α)

(
1− [A1(x;β )]δ

)]2α+1

 ,

where A1(x;β ) = (1+xβ )−1

2−(1+xβ )−1 for α,δ ,b,β ,x > 0. The hrf is

h(x;α,δ ,b,β ) = 4bδα
2

1−

 [A1(x;β )]δ

1− (1−α)
(

1− [A1(x;β )]δ
)
2α


b−1

βxβ−1(1+ xβ )−(δ+1)

[2− (1+ xβ )−1]δ+1

×

 [A1(x;β )]δ (2α−1)[
1− (1−α)

(
1− [A1(x;β )]δ

)]2α+1


1−

1−

 [A1(x;β )]δ

1− (1−α)
(

1− [A1(x;β )]δ
)
2α


b

−1

.

Figure 1: Density and hrf plots for the TL-HT-TIIEHL-LLoG distribution

Figure [1] presents density and hrf plots of the TL-HT-TIIEHL-LLoG distribution. The density plot demonstrates the
distribution’s ability to accommodate positively skewed, negatively skewed, near symmetric, J and reversed-J shaped
data. Additionally, the hrf plot can effectively handle both monotonic and non-monotonic shapes. It is worth noting
that non-monotonic shapes are commonly encountered in real-life scenarios.
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Figure 2: Some 3D plots of the TL-HT-TIIEHL-LLOG distribution’s skewness and kurtosis

After controlling for δ and b, Figure [2] demonstrates that both kurtosis and skewness increase with increasing α and
λ for the TL-HT-TIIEHL-LLOG distribution.

2.9.2. Topp-Leone-Heavy-Tailed-Type II Exponentiated Half Logistic Uniform (TL-HT-TIIEHL-U) Distribu-
tion

The uniform distribution has cdf G(x;θ) = x
θ

and g(x;θ) = 1
θ

for 0 < x < θ . The TL-HT-TIIEHL-U distribution is
derived by using the uniform distribution as the baseline. The TL-HT-TIIEHL-U cdf is

F(x;α,δ ,b,θ) =

1−

 (θ − x)δ

(θ + x)δ

[
1− (1−α)

(
1− [A2(x;θ)]δ

)]
2α


b

and pdf is

f (x;α,δ ,b,θ) =
4bδα2

θ

1−

 (θ − x)δ

(θ + x)δ

[
1− (1−α)

(
1− [A2(x;θ)]δ

)]
2α


b−1

×
( θ−x

θ
)δ−1

( θ+x
θ

)δ+1

 [θ − x]δ (2α−1)

(θ + x)δ (2α−1)
[
1− (1−α)

(
1− [A2(x;θ)]δ

)]2α+1


for α,δ ,b,θ ,x > 0, where A2(x;θ) = θ−x

θ+x . The hrf is

h(x;α,δ ,b,θ) =
4bδα2

θ

1−

 (θ − x)δ

(θ + x)δ

[
1− (1−α)

(
1− [A2(x;θ)]δ

)]
2α


b−1

×
( θ−x

θ
)δ−1

( θ+x
θ

)δ+1

 [θ − x]δ (2α−1)

(θ + x)δ (2α−1)
[
1− (1−α)

(
1− [A2(x;θ)]δ

)]2α+1



×

1−


1−

 (θ − x)δ

(θ + x)δ

[
1− (1−α)

(
1− [A2(x;θ)]δ

)]
2α


b


−1

.
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Figure 3: Some density and hrf plots for the TL-HT-TIIEHL-U distribution

Figure [3] shows that the TL-HT-TIIEHL-U distribution can be positively-skewed, negatively-skewed, almost sym-
metric, J and reversed-J shaped data. The hrf depicted in the plot exhibits both monotonic and non-monotonic patterns
in its shape.

Figure 4: 3D Kurtosis and Skewness for the TL-HT-TIIEHL-U distribution

When the values of the parameters δ and θ are fixed, Figure [4] reveals that as δ and θ increase, the kurtosis and
skewness of the TL-HT-TIIEHL-U distribution also increase.

2.9.3. Topp-Leone-Heavy-Tailed-Type II Exponentiated Half Logistic Weibull (TL-HT-TIIEHL-W) Distribu-
tion

The TL-HT-TIIEHL-W distribution is based on the Weibull distribution chosen as the baseline. Considering the one
parameter Weibull distribution with cdf and pdf given by G(x;β ) = 1− exp(−xβ ) and g(x;β ) = βxβ−1 exp(−xβ ),
respectively, for β ,x > 0 as the baseline distribution, we have the TL-HT-TIIEHL-W distribution with cdf

F(x;α,δ ,b,β ) =

1−

 [A3(x;β )]δ

1− (1−α)
(

1− [A3(x;β )]δ
)
2α


b
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and pdf

f (x;α,δ ,b,β ) = 4bδα
2 βxβ−1[exp(−xβ )]δ

[2− exp(−xβ )]δ+1

1−

 [A3(x;β )]δ

1− (1−α)
(

1− [A3(x;β )]δ
)
2α


b−1

×

 [A3(x;β )]δ (2α−1)[
1− (1−α)

(
1− [A3(x;β )]δ

)]2α+1

 (21)

for α,δ ,b,β ,x > 0, where A3(x;β ) = exp(−xβ )

2−exp(−xβ )
. The hrf is

h(x;α,δ ,b,β ) = 4bδα
2 βxβ−1[exp(−xβ )]δ

[2− exp(−xβ )]δ+1

1−

 [A3(x;β )]δ

1− (1−α)
(

1− [A3(x;β )]δ
)
2α


b−1

×

 [A3(x;β )]δ (2α−1)[
1− (1−α)

(
1− [A3(x;β )]δ

)]2α+1


1−

1−

 [A3(x;β )]δ

1− (1−α)
(

1− [A3(x;β )]δ
)
2α


b

−1

.

Figure 5: Density and hrf plots for the TL-HT-TIIEHL-W distribution

The graphical depictions presented in Figure [5] showcase the density and hrf plots associated with the TL-HT-
TIIEHL-W distribution. The density of the TL-HT-TIIEHL-W can handle data that is positively skewed, negatively
skewed, near symmetric, J and reversed-J shapes. The hrf is also capable of handling monotonic and non-monotonic
geometries.
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Figure 6: Visualization of 3D Kurtosis and Skewness for the TL-HT-TIIEHL-W distribution

When the parameters δ and β are held constant, Figure [6] illustrates that as α and b increase, the kurtosis and
skewness of the TL-HT-TIIEHL-W distribution also increase.

3. Risk Measures

Risk measures are employed by actuaries to evaluate market risk. This section focuses on examining and analyzing
various risk measures, including value at risk (VaR), tail value at risk (TVaR), tail variance (TV), and tail variance
premium (TVP).

3.1. VaR

VaR provides an estimation of the potential downside risk associated with an investment or business activity. VaRq,
which is the qth quantile for the TL-HT-TIIEHL-G FoDs is calculated from

VaRq = G−1


1+
(

(1−q
1
b )

1
2α −(1−α)(1−q

1
b )

1
2α

1−(1−α)(1−q
1
b )

1
2α

)δ

1−
(

(1−q
1
b )

1
2α −(1−α)(1−q

1
b )

1
2α

1−(1−α)(1−q
1
b )

1
2α

)δ

 , (22)

for α,δ ,b > 0 and 0 ≤ q ≤ 1 is the probability level.

3.2. TVaR

TVaR is a risk metric that expresses the expected value of losses following the occurrence of an event that exceeds a
predefined probability threshold. For the TL-HT-TIIEHL-G distribution, TVaR can be calculated as follows:

TVaRq = E (X |X > xq) =
1

1−q

∫
∞

VaRq

x f (x;α,δ ,b,ϖ)dx

=
1

1−q

∞

∑
r=0

∫
∞

VaRq

xΦr+1gr+1(x;ϖ)dx, (23)

where Φr+1 is as given in Equation (14) and gr+1(x;ϖ) = (r+1)Gr(x;ϖ)g(x;ϖ) represents the exponentiated-G
(Expo-G) pdf with power parameter (r+1).
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3.3. TV

TV is a measure that quantifies the conditional variance of losses in situations where they exceed the VaR with a given
probability q. The TVq of the TL-HT-TIIEHL-G distribution is given by

TVq = E
(
X2 | X > xq

)
− (TVaRq)

2

=
1

1−q

∫
∞

VaRq

x2 f (x;α,δ ,b,ϖ)dx− (TVaRq)
2 , (24)

for α,δ ,b > 0, ϖ represents the parameter vector from the baseline distribution and 0 ≤ q ≤ 1.

3.4. TVP

Risk professionals often focus on risks that surpass specific thresholds, which is a common occurrence in insurance
policies involving deductibles and reinsurance contracts. To address such scenarios, the TVP is utilized as a risk
measure. The TVP of the TL-HT-TIIEHL-G distribution is expressed as

TV Pq = TVaRq +φ(TVq), (25)

where 0 < φ < 1 is the sensitivity parameter that adjusts the contribution of TV to the TVP. Equations (23) and (24)
are substituted into Equation (25) to find the TVP of the TL-HT-TIIEHL-G distribution.

3.5. Quantitative Analysis of the Risk Measures

The numerical simulations in this subsection provide results for various risk measures. These risk measures are
evaluated for the TL-HT-TIIEHL-W distribution and compared to its nested models (with α = 1, α = β = 1), the odd
power generalized Weibull-Weibull Poisson (OPGW-WP), type I heavy-tailed Weibull (TIHT-W) and the Weibull and
distributions. The simulation results are obtained using the following methodology:

(1) stochastic samples of size 100 are generated from each distribution, and the parameters are estimated using MLE
technique.

(2) a total of 1000 iterations are performed to calculate the risk measures for these distributions.

The results of the numerical analysis conducted on risk measures for a variety of nested and non-nested heavy-tailed
distributions are displayed in Table [2]. Higher values of the risk metrics indicate distributions characterized by heavier
tails. Among the analyzed distributions, the TL-HT-TIIEHL-W distribution shows a heavier tail. This suggests that
the TL-HT-TIIEHL-W distribution is a suitable choice for modeling datasets that display heavy-tailed characteristics.

Table 2: Results of Risk Metrics Simulations
Significance level Risk measure 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

TL-HT-TIIEHL-W(α = 1.2,δ = 0.35,b = 0.78,β = 1.1) VaR 2.0033 2.4442 2.9917 3.6907 4.6192 5.9289 7.9741 11.9430
TVaR 6.7821 7.4275 8.2043 9.1652 10.4005 12.0834 14.6137 19.3134

TV 33.8177 35.3126 36.9745 38.8382 40.9469 43.3443 46.0153 48.2969
TVP 27.0727 30.3807 34.0864 38.2939 43.1580 48.9261 56.0275 65.1956

TL-HT-TIIEHL-W(α = 1.0,δ = 0.35,b = 0.78,β = 1.1) VaR 1.3851 1.6866 2.0592 2.5326 3.1576 4.0324 5.3851 7.9751
TVaR 4.5578 4.9850 5.4975 6.1291 6.9373 8.0325 9.6678 12.6773

TV 14.1941 14.7633 15.3907 16.0882 16.8717 17.7601 18.7678 19.8074
TVP 13.0742 14.5812 16.2710 18.1953 20.4347 23.1285 26.5589 31.9443

TL-HT-TIIEHL-W(α = 1.0,δ = 0.35,b = 0.78,β = 1.0) VaR 0.2727 0.3669 0.4964 0.6800 0.9524 1.3859 2.1639 3.9743
TVaR 2.1283 2.3865 2.7121 3.1363 3.7153 4.5623 5.9560 8.9033

TV 11.2229 12.2517 13.4929 15.0227 16.9581 19.4835 22.8542 26.6332
TVP 8.8620 10.3502 12.1571 14.4033 17.2818 21.1233 26.5247 34.2048

OPGWWP(α = 1.2,λ = 0.5,θ = 2.3,β = 1.1) VaR 0.0000 0.0001 0.0007 0.0025 0.0069 0.0178 0.0497 0.2566
TVaR 0.0791 0.0905 0.1053 0.1256 0.1540 0.1949 0.2508 0.2000

TV 0.0109 0.0115 0.0118 0.0118 0.0107 0.0077 0.0043 0.0532
TVP 0.0857 0.0979 0.1136 0.1344 0.1625 0.2015 0.2547 0.2506

TIHT-W(α = 1.2,β = 1.1) VaR 0.3172 0.5214 0.6712 0.9871 0.9722 1.3412 1.9745 3.0548
TVaR 1.3246 1.4821 1.5614 2.0073 2.6701 2.9934 3.4218 4.3497

TV 2.1647 2.7132 3.1933 4.4554 4.4316 4.6784 6.1237 7.164
TVP 3.1023 4.2183 4.6187 5.2146 5.8724 6.8105 8.1647 8.4161

Weibull(β = 1.1) VaR 0.4806 0.5433 0.6147 0.6982 0.7989 0.9270 1.1046 1.4021
TVaR 0.9270 0.9863 1.0544 1.1342 1.2310 1.3547 1.5270 1.8171

TV 0.1891 0.1875 0.1857 0.1839 0.1818 0.1794 0.1765 0.1724
TVP 1.0404 1.1082 1.1844 1.2721 1.3765 1.5072 1.6858 1.9809

4. Estimation

Within this specific section, we employ the maximum likelihood estimation (MLE) technique to derive parameter
estimates for the TL-HT-TIIEHL-G distribution. We also consider estimation of the parameters of the new family of
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distributions for the censored case.

4.1. Maximum Likelihood Estimation

Suppose we have random variables Xi following a TL-HT-TIIEHL-G distribution, and let Λ = (α,δ ,b,ϖ)T represent
the model vector of parameters. In this context, the log-likelihood ℓ(Λ) for a sample of size n can be represented as

ℓ(Λ) = 2ln(α)+ ln(4bδ )+
n

∑
i=1

(δ −1) ln(1−G(xi;ϖ))+
n

∑
i=1

ln(g(xi;ϖ))+
n

∑
i=1

(δ +1) ln(1−G(xi;ϖ))

+
n

∑
i=1

(b−1) ln

1−


[

1−G(x;ϖ)
1+G(x;ϖ)

]δ

1− (1−α)

[
1−
[

1−G(x;ϖ)
1+G(x;ϖ)

]δ
]


2α+δ (2α −1)
n

∑
i=1

ln
[

1−G(x;ϖ)

1+G(x;ϖ)

]

− δ (2α +1)
n

∑
i=1

ln
[

1− (1−α)

(
1−
[

1−G(x;ϖ)

1+G(x;ϖ)

])]
. (26)

The system of nonlinear equations
(

∂ℓ
∂α

, ∂ℓ
∂δ

, ∂ℓ
∂b ,

∂ℓ
∂ϖk

)T
= 0 can be solved numerically using the Newton-Raphson

iteration method to estimate the parameters α , δ , b, and ϖk. The computation process can be facilitated by utilizing
statistical software such as R, or other appropriate tools. The web appendix provides partial derivatives of the log-
likelihood function with respect to each individual component of the score vector.

4.1.1. Estimation in the Presence of Censoring

Survival time studies often involve censored observations, where partial or interval censoring may occur, with right
censoring being a specific type commonly observed in medical studies and predominantly represented by type I cen-
soring in the field of survival analysis.
Consider a study comprising a random sample of n patients, with each patient having an independent censoring time
denoted by Yi; i = 1,2,3, ....,n, that is, the time interval between entry and the end of the study, and Xi; i = 1,2, ...,n,
be the failure time of the ith patient. The variables Xi and Yi are assumed to be independent and follow the TL-HT-
TIIEHL-G FoDs. For Ti = min(Xi,Yi),(Ti,ui), ui takes the value 0 if censoring occurs and 1 if failure is observed.
Consequently, the log-likelihood function (ℓ) can be formulated in the following manner:

ℓ =
n

∑
i=1

ui log( f (ti))+
n

∑
i=1

(1−ui) log(S(ti)) , (27)

where S(.) = 1−F(.) represents the survival function and f (.) is the pdf of TL-HT-TIIEHL-G FoDs. The MLEs can
be obtained by numerically maximizing the log-likelihood function specified in Equation (27).

5. Simulations

To evaluate the efficiency of the MLEs, a simulation study was carried out. The findings from the simulation are
presented in Table 3. We simulated for n= 25, 80, 160, 250, 500 and 1000 for N=3000 from the TL-HT-TIIEHL-W
distribution. The average bias (AvBIAS) and root mean square error (RMSEr) for an estimated parameter, say (δ̂ ), are
computed using the following formulae:

AvBIAS(δ̂ ) =
∑

N
j=1 δ̂ j

N
−δ , and RMSEr(δ̂ ) =

√
∑

N
j=1(δ̂ j −δ )2

N
,

respectively. Based on the findings presented in Table 3, it is apparent that the mean values exhibit a high degree of
proximity to the true parameter values as the sample size increases. Moreover, both the RTMSEr and the AvBIAS
tend to approach zero across all parameters. This shows that the TL-HT-TIIEHL-W distribution produces efficient
parameter estimates.
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Table 3: Results of Monte Carlo Simulations for the TL-HT-TIIEHL-W Distribution: Mean, RMSEr, and
AvBIAS

α = 0.9,δ = 0.01,b = 0.25,β = 2.5 α = 1.0,δ = 1.0,b = 1.0,β = 3.5
n Mean RMSEr AvBIAS Mean RMSEr AvBIAS

25 1.0826 0.6208 0.1826 1.3470 0.9088 0.3470
80 1.0027 0.3856 0.0927 1.2610 0.7149 0.2610

α 160 1.0015 0.2849 0.0715 1.1110 0.3562 0.1110
250 0.9903 0.2199 0.0597 1.0780 0.2723 0.0780
500 0.9863 0.1350 0.0237 1.0411 0.1698 0.0411
1000 0.9006 0.0849 0.0089 1.0178 0.1042 0.0178
25 0.0407 0.0979 0.0307 1.3991 1.2173 0.5991
80 0.0250 0.0922 0.0150 1.1858 0.9676 0.1858

δ 160 0.0162 0.0260 0.0062 1.1170 0.8690 0.1270
250 0.0136 0.0136 0.0036 1.1103 0.8037 0.1103
500 0.0122 0.0092 0.0022 1.0518 0.7001 0.0518
1000 0.0111 0.0039 0.0011 1.0451 0.6411 0.0451
25 0.4473 1.5490 0.1973 1.9546 1.6987 1.9546
80 0.2839 0.0924 0.0339 1.1925 0.8424 0.1925

b 160 0.2709 0.0550 0.0209 1.0612 0.4123 0.0612
250 0.2636 0.0384 0.0136 1.0471 0.3489 0.0471
500 0.2576 0.0249 0.0076 1.0061 0.2315 0.0061
1000 0.2502 0.0167 0.0049 1.0005 0.1783 0.0015
25 2.1988 0.8685 -0.3012 4.0870 2.7829 0.5870
80 2.3309 0.5006 -0.1691 3.7237 1.1308 0.2237

β 160 2.3766 0.3410 -0.1234 3.6326 0.7961 0.1326
250 2.4209 0.2665 -0.0791 3.5693 0.6284 0.0693
500 2.4459 0.1807 -0.0541 3.5645 0.5463 0.0645
1000 2.4639 0.1246 -0.0361 3.5454 0.4783 0.0454

α = 1.0,δ = 3.5,b = 0.2,β = 3.5 α = 1.2,δ = 0.02,b = 1.0,β = 3.5
n Mean RMSEr AvBIAS Mean RMSEr AvBIAS

25 1.3500 1.3316 0.3500 1.4870 1.4040 0.4870
80 1.1106 0.4608 0.1106 1.2704 0.6941 0.2804

α 160 1.0978 0.4155 0.0978 1.2719 0.5222 0.2719
250 1.0810 0.4003 0.0810 1.2389 0.4066 0.2389
500 1.0112 0.2505 0.0112 1.2373 0.3827 0.2373
1000 1.0150 0.1801 0.0150 1.2010 0.0127 -0.1910
25 3.9648 1.9495 1.3648 0.1043 0.7378 0.0843
80 3.7253 1.7770 0.1253 0.0331 0.0532 0.0131

δ 160 3.5947 1.3580 0.0953 0.0283 0.0265 0.0083
250 3.5401 1.2755 0.0699 0.0253 0.0174 0.0053
500 3.5111 0.7669 0.0311 0.0235 0.0137 0.0035
1000 3.5007 0.5487 0.0293 0.0218 0.0069 0.0018
25 0.4838 0.3970 0.7338 1.4167 0.6619 0.3067
80 0.3042 0.1386 0.0542 1.2109 0.5984 0.2109

b 160 0.2812 0.0847 0.0312 1.0843 0.2789 0.0843
250 0.2743 0.0722 0.0243 1.0581 0.1996 0.0581
500 0.2380 0.0467 0.0180 1.0315 0.1297 0.0315
1000 0.2101 0.0295 0.0101 1.0153 0.0767 0.0153
25 3.8499 1.3139 0.3499 3.1724 0.8122 -0.3276
80 3.7569 0.7833 0.2569 3.3468 0.4577 -0.1532

β 160 3.6503 0.5788 0.1503 3.4090 0.3084 -0.0910
250 3.6175 0.4816 0.1175 3.4275 0.2231 -0.0725
500 3.5435 0.3754 0.0435 3.4510 0.1602 -0.0490
1000 3.5110 0.0948 0.0090 3.4687 0.0969 -0.0313
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6. Applications

The TL-HT-TIIEHL-W distribution is applied to real-world data and compared with various non-nested models, in-
cluding established heavy-tailed distributions, in order to assess its performance. A comparison was made between
the TL-HT-TIIEHL-W model and six other non-nested models namely, the odd exponentiated half logistic Burr XII
(OEHLBXII) by Aldahlan and Afify (2018), the exponential Lindley odd log-logistic Weibull (ELOLLW) by Korkmaz
et al. (2018), the Weibull Lomax (WL) by Tahir et al. (2014), the type II exponentiated half-logistic Topp-Leone-
Weibull Poisson (TIIEHL-TL-WP) by Moakofiet al. (2021), the Burr III Topp-Leone-log-logistic (OBIII-TL-LLOG)
by Chipepa et al. (2021) and the type I heavy-tailed-Weibull (TIHT-W) distributions by Zhao et al. (2020). See the
web appendix for the pdfs of the distributions used in the comparisons.

The analysis incorporated a set of goodness-of-fit (GoF) statistics, encompassing the following measures: -2 log-
likelihood (−2log(L)), Akaike Information Criterion (AIC = 2p − 2log(L), Hannan-Quinn Information Criterion
(HQIC = −2log(L)+ 2p ln[ln(n)]), Consistent Akaike Information Criterion (CAIC = AIC+ 2 p(p+1)

n−p−1 ), Bayesian In-
formation Criterion (BIC = p logn− 2log(L) (where n is the number of observed parameters, while the number of
calculated parameters is p), Kolmogorov-Smirnov (K-S), Cramér-von Mises (W ∗) and Andersen-Darling (AD). These
statistics were used to verify the model that fits best for a given data set. The preferred model is determined by con-
sidering the one with the highest p-value for the K-S statistic and the lowest values for other statistical criteria. The
sum of squares (SS) from the probability plots is used to calculate closeness to the diagonal line and is given as

SS =
n

∑
i=1

[
FT L−HT−T IIEHL−W (x(i); α̂, δ̂ , b̂, β̂ )−

(
i−0.375
n+0.25

)]2

, i = 1,2,3, ....,n,

where x(i) is the ith ordered observed data value. The TL-HT-TIIEHL-W model parameters were computed with the
nonlinear minimization function (nlm) in R statistical software. Standard errors (SEs) (in parenthesis) accompany
these parameter estimates for each data example. Probability plots with SS from the probability plots were also used
to evaluate the fit. In addition, fitted densities, empirical cumulative distribution function (ECDF), Kaplan-Meier
(K-M) survival curve, total time on test (TTT) plots and hazard rate function (hrf) plots are presented.

6.1. Growth Hormone Data

The initial data set includes the estimated duration, documented in 2009, from the administration of growth hormone
medication to children until they reached the target age in the Programa Hormonal de Secretaria de Saude de Minas
Gerais. This information was reported by Aldahlan and Afify (2018). The data set is contained in the web appendix.

Figure 7: Violin and box plot for growth hormone medication

The descriptive statistics, visualized in the box plot and violin plot shown in Figure 7, indicate that the data exhibits
positive skewness, meaning that the distribution is skewed towards higher values.
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Table 4: Estimation and Statistical Analysis of Parameters for Growth Hormone Data
GoF Statistics

Distribution Estimates and SEs -2log(L) AIC CAIC BIC W ∗ A∗ HQIC K−S p−value
α δ b β

TL-HT-TIIEHL-W 0.0934 13.3720 301.7500 0.4567 155.2455 163.2455 164.5788 169.4668 0.0350 0.2532 165.3931 0.0865 0.9559
(6.53×10−3) (1.22×10−4) (1.35×10−5) (0.0558)

α λ a b
OEHLBXII 0.4337 0.0042 11.8416 0.2286 183.2828 191.2828 192.6162 197.5042 0.2654 1.6315 193.4305 0.1967 0.1333

(0.1740) (0.0088) (0.0012) (0.0687)
b λ θ γ

ELLOW 604.0800 3.4966 0.0312 1.3998 162.0604 170.0604 171.3938 176.2818 0.1253 0.7988 172.2080 0.1322 0.5732
(2.12×10−4) (9.4665) (0.1183) (0.1667)

a b α β

WL 66.4073 3.9403 0.1517 0.9619 161.4478 169.4478 170.7768 175.6648 0.1159 0.7433 171.5911 0.1284 0.6114
(5.12×10−3) (1.2092) (0.0384) (1.0907)

a b θ λ

TIIEHL-TL-WP 3.56×10−3 2.2118 131.0700 0.1054 158.5477 166.5477 167.8826 172.7706 0.0569 0.3928 168.6969 0.6077 0.2954
(8.27×10−4) (0.7228) (6.66×10−4) (0.0180)

α β b λ

OBIII-TL-LLOG 1.1066 0.0954 1.0656 3.81×10−9 173.6855 181.6855 183.0183 187.9064 0.2071 1.2918 183.8326 0.2333 0.0643
(0.4732) (0.0467) (0.1572) (0.0104)

α θ γ −
TIHT-W 2.2707 5.1903 3.56×10−4 − 163.2748 169.2748 170.0490 173.9409 0.1409 0.8847 170.8855 0.1441 0.4617

(0.2525) (0.0167) (3.58×10−4) −

Figure 8: Profile log-likelihood plots illustrating TL-HT-TIIEHL-W parameters on growth hormone data

The TL-HT-TIIEHL-W parameters on growth hormone data can be uniquely identified, as shown in Figure [8]. The
GoF statistics and MLEs for the models are shown in Table [4]. The estimated variance-covariance (vcov) matrix is
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
4.27×10−5 7.66×10−7 -8.01×10−8 -3.29×10−4

7.66×10−7 1.48×10−8 -1.62×10−9 -6.68×10−6

-8.01×10−8 -1.62×10−9 1.81×10−10 7.50×10−7

-3.29×10−4 -6.68×10−6 7.50×10−7 3.11×10−3

 .
The model parameters’ asymptotic confidence intervals at a 95% confidence level are as follows: α ∈ [0.0935±

0.0128], δ ∈ [13.3720±1.17×10−4], b ∈ [301.7500±2.64×10−5] and β ∈ [0.4567±0.1093], respectively.

The TL-HT-TIIEHL-W mode1 is superior to the several non-nested models that were taken into consideration, ac-
cording to the GoF statistics and K-S p-values obtained on growth hormone data.

Figure 9: Graphical representations of the fitted density functions and probability plots for the growth hormone data

Figure 10: Fitted ECDF curve and K-M plots for growth hormone data

The plots illustrated in Figure [9] indicate that the TL-HT-TIIEHL-W distribution demonstrates superior performance
compared to the non-nested models when applied to the growth hormone data. The graphical representation depicted
in Figure [10] illustrates the observed and fitted ECDF as well as the K-M survival curves for the growth hormone
data. The plots demonstrate that the TL-HT-TIIEHL-W distribution closely aligns with the observed ECDF and K-M
survival curves.
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Figure 11: Fitted TTT scaled and hrf plots for growth hormone data

Figure [11] exhibits the TTT scaled plot and hrf plots, which reveal an increasing hazard rate pattern for the growth
hormone data.

6.2. Head and Neck Data: Complete Case

The second set of data comprises survival times, measured in days, for a group of forty (40) patients who have been
diagnosed with head and neck cancer. The data was subjected to analysis using the methodology proposed by Efron
(1988) and was later analyzed by Salerno, S. and Li (2023). The data is presented in the web appendix.

Figure 12: Violin and box plot for head and neck data

The displayed violin plot and box plot for the survival times of head and neck cancer patients in Figure [12] suggest
positive skewness.
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Table 5: Estimation and Statistical Analysis of Parameters for Head and Neck Cancer Data
GoF Statistics

Distribution Estimates and SEs -2log(L) AIC CAIC BIC W ∗ A∗ HQIC K−S p−value
α δ b β

TL-HT-TIIEHL-W 3.1606 0.0033 4.4469 0.6619 525.5643 533.5643 534.7072 540.3198 0.1132 0.6212 536.0069 0.1252 0.5578
(4.58×10−4) (1.27×10−3) (3.48×10−3) (7.10×10−2)

α λ a b
OEHLBXII 0.3910 5.15×10−5 2.5547 0.6244 552.6971 560.6971 561.8399 567.4226 0.3963 2.2409 563.1397 0.2192 0.0428

(0.0404) (3.28×10−5) (8.84×10−3) (0.0362)
b λ θ γ

ELLOW 408.9700 1.2249 0.0269 0.7517 527.9122 535.9122 537.0551 542.6677 0.1749 0.9603 538.3548 0.1489 0.3375
(5.22×10−4) (10.8040) (0.1785) (0.0847)

a b α β

WL 100.9200 1.9149 0.0648 92.9160 526.7091 534.7091 534.8520 540.4646 0.1215 0.6628 536.1517 0.1261 0.4482
(7.22×10−5) (0.2105) (0.0154) (1.04×10−3)

a b θ λ

TIIEHL-TL-WP 11.1000 2.47×10−2 0.2005 5.13×10−9 592.4668 600.4468 601.6106 607.2233 0.1389 0.7727 602.9103 0.4854 0.0923
(9.1429) (2.03×10−2) (4.80×10−2) (8.66×10−3)

α β b λ

OBIII-TL-LLOG 8.7349 50.0587 0.8885 0.0808 534.2370 542.2370 543.3798 548.9925 0.1724 1.0493 544.6796 0.1569 0.2784
(5.01×10−5) (4.16×10−3) (0.2655) (5.43×10−3)

α θ γ −
TIHT-W 1.2407 2.9439 1.22×10−4 − 528.1106 534.1106 534.7773 540.7772 0.1810 0.9894 536.9425 0.1466 0.3566

(0.1434) (2.62×10−4) (1.05×10−4) −

Figure 13: Profile log-likelihood plots illustrating TL-HT-TIIEHL-W parameters on head and neck cancer data

The TL-HT-TIIEHL-W parameters on head and neck cancer data can be uniquely identified, as shown in Figure [13].
The GoF statistics and MLEs for the models are shown in Table [5]. The estimated vcov matrix is
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
2.10×10−7 -5.63×10−7 1.59×10−6 3.26×10−5

-5.63×10−7 1.61×10−6 -4.27×10−6 -8.73×10−5

1.59×10−6 -4.27×10−6 1.21×10−5 2.47×10−4

3.26×10−4 -8.73×10−5 2.47×10−4 5.05×10−3

 .
The model parameters’ asymptotic confidence intervals at a 95% confidence level are as follows: α ∈ [3.1606±8.98×10−4],
δ ∈ [0.0033±2.49×10−3], b ∈ [4.4469±6.82×10−3] and β ∈ [0.6619±0.1392], respectively.

The TL-HT-TIIEHL-W mode1 is superior to the several non-nested models that were taken into consideration, ac-
cording to the GoF statistics and K-S p-values obtained on head and neck cancer data.

Figure 14: Graphical representations of the fitted density functions and probability plots for the head and neck cancer
data

The results illustrated in Figure [14] indicate that the TL-HT-TIIEHL-W distribution demonstrates superior perfor-
mance compared to the non-nested models when applied to the head and neck cancer data.

Figure 15: Fitted ECDF curve and K-M plots for head and neck data

The graphical representation presented in Figure [15] displays both the observed and fitted ECDF as well as the K-M
survival curves for the head and neck cancer data. The plots indicate that the TL-HT-TIIEHL-W distribution closely
adheres to the observed ECDF and K-M survival curves.
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Figure 16: Fitted TTT scaled and hrf plots for head and neck cancer data

The TTT scaled plot and hrf plots in Figure [16] depict an inverted bathtub hazard rate shape for head and neck cancer
data.

6.2.1. Head and Neck Data: Censored Case

The second set of data gives the survival times (in days) of forty-nine (49) patients diagnosed with head and neck
cancer disease. The data includes nine (9) censored observations. The data is presented in the appendix.

Table 6: Parameter Estimates and Statistics for Head and Neck Data: Censored Case
GoF Statistics

Distribution Estimates and SEs -2log(L) AIC CAIC BIC SS
α δ b β

TL-HT-TIIEHL-W 17.4230 8.91×10−4 21.4180 0.3243 559.4459 567.4459 568.3550 566.2067 0.1032
(2.32×10−5) (1.45×10−4) (1.21×10−4) (0.0330)

α λ a b
OEHLBXII 0.5647 1.20×10−3 1.2497 0.8457 587.8382 595.8382 596.7473 594.5990 0.3756

(0.1172) (9.86×10−4) (0.2374) (0.1621)
b λ θ γ

ELLOW 293.9700 6.8300 0.0151 0.6235 563.7935 571.7935 572.7026 570.5543 0.1217
(5.22×10−4) (10.8040) (0.1785) (0.0847)

a b α β

WL 54.3940 1.7231 0.0545 82.8050 559.4890 567.4890 568.3981 566.2498 0.1204
(1.31×10−4) (0.1995) (0.0140) (1.03×10−3)

a b θ λ

TIIEHL-TL-WP 2.44×10−3 2.4577 131.0600 0.0670 640.3144 648.3144 649.2235 647.0752 0.1652
(5.59×10−4) (0.8170) (1.04×10−3) (0.0113)

α β b λ

OBIII-TL-LLOG 10.3660 27.7990 1.1994 0.0569 561.3835 569.3835 570.2926 568.1443 2.3156
(2.28×10−5) (0.0144) (0.3457) (4.16×10−3)

α θ γ −
TIHT-W 1.0230 2.6973 3.28×10−4 − 564.5581 572.5581 573.0914 569.6287 0.1392

(0.1236) (4.22×10−4) (2.52×10−4) −

Table [6] displays the MLEs of the unknown parameters for the TL-HT-TIIEHL-W distribution, which were obtained
using censored data. These estimates were obtained by maximizing the log-likelihood function, specified in Equation
(27), which serves as the objective function for the estimation process. The corresponding SEs of MLEs are presented
within the parentheses. The estimated vcov matrix is

5.40×10−10 -3.19×10−9 2.80×10−9 7.66×10−7

-3.19×10−9 2.09×10−8 -1.67×10−8 -4.54×10−6

2.80×10−9 -1.67×10−8 1.46×10−8 3.98×10−6

7.66×10−7 -4.54×10−6 3.98×10−6 1.09×10−3

 ,
and the asymptotic confidence intervals at 95% confidence level for the model parameters are: α ∈ [17.4230±4.55×10−5],
δ ∈ [8.91×10−4±2.83×10−3], b ∈ [21.4180±2.37×10−4] and β ∈ [0.3243 ± 0.0647], respectively. The TL-HT-
TIIEHL-W model out-performs the non-nested models that were considered according to the GoF obtained on head
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and neck cancer censored data.

7. Conclusions and Recommendations

In conclusion, this study introduced the Topp-Leone-heavy-tailed type II exponentiated half-logistic-G (TL-HT-TIIEHL-
G) FoDs, providing a valuable tool for modeling heavy-tailed data. The statistical properties of the TL-HT-TIIEHL-G
FoDs were examined, and actuarial risk measures were derived and analyzed. The study demonstrated the superiority
of the TL-HT-TIIEHL-G FoDs over some existing non-nested models by fitting the TL-HT-TIIEHL-W distribution
(a particular case of the TL-HT-TIIEHL-G) to three real-life data sets. The TL-HT-TIIEHL-G FoDs demonstrated its
capacity to accommodate both monotonic and non-monotonic hazard rate patterns. The findings highlighted the prac-
tical applicability of the TL-HT-TIIEHL-G FoDs in various domains including health and reliability analysis, where
accurate modeling of heavy-tailed phenomena is crucial for risk assessment and decision-making.

Although this study offers notable advancements in the realm of distribution theory, it is crucial to recognize and ac-
knowledge its inherent limitations. The empirical evaluation of the TL-HT-TIIEHL-G FoDs is based on specific data
sets, limiting the generalizability of the findings to other domains and data sets. Furthermore, the study solely relies
on maximum likelihood estimation for parameter estimation, leaving room for exploring alternative methods, such as
Bayesian estimation. Future research directions include incorporating Bayesian estimation techniques and exploring
computational efficiency for large data sets. These endeavors will further enhance our understanding and utilization
of the TL-HT-TIIEHL-G family in statistical modeling and analysis.

To access the appendix, kindly click on the link provided below:
https://drive.google.com/file/d/1yVKs-AyF2SLGwwWF9-jgZQiZwYxxn-3D/view?usp=sharing
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