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Abstract

In this study, we explore three innovative trigonometric models within the Bayesian framework, utilizing
the inverse Weibull distribution as our foundation. These models—namely the Sine inverse Weibull, Cosine
inverse Weibull, and Tan inverse Weibull—are crafted from distinct distribution families. We employ both
maximum likelihood estimation and Markov Chain Monte Carlo (MCMC) simulation techniques to estimate
parameters, drawing upon a comprehensive dataset. By scrutinizing posterior samples numerically and
graphically, we evaluate the efficacy of our models, generating Bayes estimates for parameters, examining
reliability and hazard functions, and establishing credible intervals. Furthermore, we assess the predictive
capacity of all three models through posterior predictive checks. We also conduct comparative analyses,
pitting our models against competing ones using real-world data. Notably, our results reveal that the
proposed trio of models exhibit strikingly similar performance in terms of fitting the data.

Key Words: Sine Inverse Weibull; Cosine Inverse Weibull; Tangent Inverse Weibull; Posterior Distribution;
Credible Interval.
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1. Introduction

Statistical distributions serve as indispensable tools for probing real-world phenomena, with ongoing research
delving into both foundational principles and novel applications. Various distribution families have been
devised to capture the complexities of diverse real-world scenarios, constituting a continuously evolving field
of study. While many distributions proposed in the literature boast a multitude of parameters to enhance
model adaptability, parameter estimation can pose significant challenges, as noted by some scholars (Marshall
and Olkin, 2007). Consequently, there is a growing interest in constructing models with fewer parameters
yet greater flexibility to accurately represent empirical data. Pursuing this objective, a cohort of researchers
has turned to trigonometric functions to develop innovative distributions (Kumar, 2010).
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In recent years, the allure of trigonometric models has intensified due to their intrinsic flexibility and math-
ematical rigor. Notably, (Souza et al., 2019b) introduced the Sin-G, Cos-G, and Tan-G families of distribu-
tions, while expanding this framework to include the Tan-Weibull and Cos-Weibull distributions. Building
upon this foundation, (Sapkota et al., 2023b) defined a new Sin-G family, and (Ahmad et al., 2024) intro-
duced yet another variant. Furthermore, (Souza et al., 2019a) delineated a distinct Sin-G class with unique
characteristics such as a bathtub-shaped failure rate function, exemplified by the Sine inverse Weibull dis-
tribution. Similarly, (Sapkota, 2022) undertook Bayesian analysis and estimation of the Weibull inverse
Rayleigh distribution, while (Sapkota et al., 2023a) utilized the Bayesian approach to analyze the arctan
exponential distribution.

In this study, we contribute to this burgeoning field by introducing three novel classes of trigonometric distri-
bution families based on sine, cosine, and tangent functions. We present the cumulative distribution functions
(CDFs) for these new Sin-G, Cos-G, and Tan-G families, laying the groundwork for further exploration and
application.

F (x; ξ) =

π( G(x;ξ)
1+G(x;ξ) )∫
0

cos(t)dt =sin

[
π

G(x; ξ)

1 +G(x; ξ)

]
;x ∈ ℜ. (1)

The CDF of the New Class of Cos-G family of distribution is

F (x; ξ) = −

π( G(x;ξ)
1+G(x;ξ) )∫
0

sin(t)dt =1− cos

[
π

G(x; ξ)

1 +G(x; ξ)

]
;x ∈ ℜ. (2)

The CDF of the New Class of Tan-G family of distribution is

F (x; ξ) =

π( G(x;ξ)
1+G(x;ξ) )∫
0

sec2(t)dt =tan

[
π

2

G(x; ξ)

1 +G(x; ξ)

]
;x ∈ ℜ. (3)

where G(x; ξ) is the CDF of any parent distribution and ξ > 0 is the vector of parameters of the parent
distribution.This article endeavors to explore trigonometric distributions within the Bayesian framework,
employing the Markov chain Monte Carlo (MCMC) simulation approach. It’s worth noting that much of
the literature cited herein predominantly leans toward classical inferential methods. One of the primary
challenges in Bayesian analysis lies in computing the posterior distribution, often necessitating complex inte-
gration, which is particularly daunting in high-dimensional models. In such scenarios, Monte Carlo Markov
Chain (MCMC) methods prove invaluable, facilitating posterior density approximation through simulation.
The advent of the MCMC method has propelled Bayesian Statistics forward. Since the mid-1990s, the freely
available software package Bayesian inference using Gibbs sampling (BUGS) has been at the forefront of
this advancement. Recent iterations, transitioning from WinBUGS to the open-source OpenBUGS, have
broadened access to MCMC methods, with integration into the open-source statistical package R further
democratizing its usage (Thomas et al., 2006); (Thomas, 2010); (Lunn et al., 2013); (R Core Team, 2023).
In this study, we have utilized OpenBUGS and R software.

In Bayesian analysis, specifying a prior distribution for model parameters is imperative. This article conducts
Bayesian analysis under various loss functions, assuming independent priors for the parameters. Since all
parameters are strictly positive, the Gamma distribution is an appropriate choice, as it is defined only
for positive values. Its two parameters, shape, and scale; provide flexibility to accommodate a variety of
distributions. Therefore, we selected a Gamma prior for both parameters. Additionally, the Gamma prior
has been commonly used for shape and scale parameters in similar distributions, as seen in previous research
by (Almetwally et al., 2018) and (Sapkota et al., 2023a).

The MCMC method is employed to estimate the parameters of trigonometric models based on complete
samples. We outline a procedure for obtaining Bayesian estimates using the MCMC simulation method in
OpenBUGS, which is known for its established Bayesian analysis capabilities. MCMC methods offer com-
putational ease, ensure the existence and statistical consistency of estimates, and facilitate the construction
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of probability intervals. Furthermore, we develop R functions to investigate statistical properties, validate
models, compare distributions, and analyze MCMC samples from OpenBUGS. A real dataset illustrates our
approach under a uniform set of priors.

The subsequent sections are organized as follows: Section 2 introduces model development and key distri-
bution family functions. Classical parameter estimation for all three trigonometric families is presented in
Section 3. Section 4 delves into the Bayesian analysis of these families. Finally, Section 5 offers conclusions.

2. New Trigonometric Models

Generalization of several distributions can be made using Equations (1), (2), and (3). Here we have considered
the inverse Weibull (IW) distribution as a parent distribution to introduce three new probability models.

2.1. A New Sin Inverse Weibull (NS-IW) Distribution

The CDF and PDF of the IW distribution are respectively given by

G(x; δ, θ) = exp(−θx−δ);x > 0, δ > 0, θ > 0

and
g(x; δ, θ) = δθx−(δ+1)exp(−θx−δ).

The CDF and PDF of the NS-IW distribution are given by using Equation (1)

F (x; θ, δ) = sin

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0. (4)

f(x; θ, δ) = πθδx−(δ+1) cos

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
exp(−θx−δ)

(1 + exp(−θx−δ))
2 ;x > 0. (5)

The reliability and hazard functions, respectively, are given by

R(x; θ, δ) = 1− sin

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0. (6)

and

h(x; θ, δ) = πθδx−(δ+1) exp(−θx−δ)

(1 + exp(−θx−δ))
2 cos

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
[
1− sin

(
π

exp(−θx−δ)

1 + exp(−θx−δ)

)]−1

;x > 0.

(7)

The possible shapes of PDF and HRF of NS-IW distribution are shown in Figure (1) and it is observed
that HRF can have reverse-j, or inverted bathtub or increasing hazard function. The quantile function and
random deviate generation for the NS-IW distribution, respectively, are given by

QX(p) =

[
−1

θ
log

(
sin−1 p

π − sin−1 p

)]− 1
δ

. (8)

and

x =

[
−1

θ
log

(
sin−1 u

π − sin−1 u

)]− 1
δ

. (9)
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Figure 1: Shapes of PDF and HRF of NS-IW distribution

2.2. New Cosine inverse Weibull (NC-IW)

We’ve introduced the NC-IW distribution utilizing the CDF and PDF of the IW. By using Equation (2) the
CDF and PDF expressions for the NC-IW distribution are provided as follows:

F (x; θ, δ) = 1− cos

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0 (10)

f(x; θ, δ) = πθδx−(δ+1) sin

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
exp(−θx−δ)

(1 + exp(−θx−δ))
2 ;x > 0 (11)

The reliability and hazard functions respectively are given by
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Figure 2: Shapes of PDF and HRF of NC-IW distribution

R(x; θ, δ) = cos

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0.
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and

H(x; θ, δ) = πθδx−(δ+1) exp(−θx−δ)

(1 + exp(−θx−δ))
2 sin

[
π

exp(−θx−δ)

1 + exp(−θx−δ)

] [
cos

(
π

exp(−θx−δ)

1 + exp(−θx−δ)

)]−1

.

The quantile function and random deviate generation for the NC-IW distribution respectively are presented
below

QX(p) =

[
−1

θ
log

(
cos−1(1− p)

π − cos−1(1− p)

)]− 1
δ

; p ∈ (0, 1),

and

xw =

[
−1

θ
log

(
cos−1(1− w)

π − cos−1(1− w)

)]− 1
δ

;w ∈ (0, 1).

2.3. New Tangent inverse Weibull (NT-IW) distribution

Also using the CDF and PDF of the IW distribution, we have presented the NT-IW model having CDF and
PDF based on Equation (3) are as follows

F (x; θ, δ) = tan

[
π

2

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0. (12)

f(x; θ, δ) =
π

2
θδx−(δ+1) sec2

[
π

2

exp(−θx−δ)

1 + exp(−θx−δ)

]
exp(−θx−δ)

(1 + exp(−θx−δ))
2 ;x > 0. (13)

R(x; θ, δ) = 1− tan

[
π

2

exp(−θx−δ)

1 + exp(−θx−δ)

]
;x > 0.

and

H(x; θ, δ) =
π

2
θδx−(δ+1) exp(−θx−δ)

(1 + exp(−θx−δ))
2 sec2

[
π

2

exp(−θx−δ)

1 + exp(−θx−δ)

]
[
1− tan

(
π

2

exp(−θx−δ)

1 + exp(−θx−δ)

)]−1

;x > 0.

The QF and random deviate generation for the NT-IW distribution respectively given by

QX(p) =

[
−1

θ
log

(
2 tan−1 p

π − 2 tan−1 p

)]− 1
δ

.

and

x =

[
−1

θ
log

(
2 tan−1 p

π − 2 tan−1 p

)]− 1
δ

.

3. Classical approach for parameter estimation

In this section, we have estimated the parameters of all three models using the maximum likelihood estimation
(MLE) method under the following real dataset
Data set: The dataset from (Gross and Clark, 1975) contains information on the relief times of 20 patients
who were administered an analgesic. An analgesic is a type of medication that is commonly used to reduce
pain, and the relief time refers to the duration for which the patients experience relief from their pain after
taking the medication. The data are 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7,
2.3, 1.6, and 2.0.
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Figure 3: Shapes of PDF and HRF of NT-IW distribution

3.1. MLE for NS-IW distribution

We now investigate the MLE for estimating the parameters of the NS-IW model. As a result, we intend
to compute MLEs for the parameters δ and θ. Let X = (x1, ..., xn)

T be a vector of size n of independent
random variables from the NS-IW distribution. Then, the log-likelihood is given by

l(x; δ, θ) = n log(πθδ) − (δ + 1)

n∑
i=1

log xi +

n∑
i=1

log cos

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
− 2

n∑
i=1

log
(
1 + exp(−θx

−δ
i )

)
− θ

n∑
i=1

x
−δ
i (14)

3.2. MLE for NC-IW distribution

The parameters of the NC-IW distribution are estimated using the MLE method. The log-likelihood function
of NC-IW is given by

l(x; θ, δ) = n log(πθδ)− (δ + 1)

n∑
i=1

log xi +

n∑
i=1

log sin

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]

− 2

n∑
i=1

log
(
1 + exp(−θx−δ

i )
)
− θ

n∑
i=1

x−δ
i . (15)

3.3. MLE for NT-IW distribution

To estimate the MLEs we have to optimize the log-likelihood function of NT-IW distribution given by

l(x; θ, δ) = n log
(π
2
θδ
)
− (δ + 1)

n∑
i=1

log xi + 2

n∑
i=1

logsec

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]

− 2

n∑
i=1

log
(
1 + exp(−θx−δ

i )
)
− θ

n∑
i=1

x−δ
i . (16)

3.4. Model comparison

To evaluate the suggested models under investigation, we have computed several commonly used goodness-of-
fit and model selection metrics. These include the log-likelihood value (-2logL), Akaike information criterion
(AIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling (AD), Kolmogorov-Smirnov (KS)
with associated p-values, and Cramer-von Mises (CVM) (Johnson et al., 1995). These computations were
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performed using the R software. For comparison purposes, we have selected specific models such as the
inverse Weibull (IW), arctan generalized exponential (ArcTGE) (Chaudhary et al., 2021), arctan Lomax
(ArcTLx) (Chaudhary and Kumar, 2021), arcsine exponential (ASE) (Rahman, 2021), Tan Burr XII (TBXII)
(Souza et al., 2021), New Cosine Weibull (NCW) (Ahmad et al., 2023), Exponentiated Cos Weibull (EcosW)
(Muhammad et al., 2021), arcsine exponentiated Weibull (ASEW) (He et al., 2020), Cos Weibull (CosW)
(Souza et al., 2019b), and Sine inverse Weibull (Sin-IW) (Souza et al., 2019a).

Goodness-of-fit statistics were then computed to compare all three models under investigation, utilizing
the metrics mentioned earlier. The results are summarized in Table 2. Based on AIC and HQIC, NT-IW
outperforms NS-IW and NC-IW. However, considering KS, AD, and CVM statistics, NS-IW demonstrates
superior performance compared to the other two models.

Table 1: MLEs with SE (in parentheses) of NS-IW, NC-IW, and NT-IW

Model parameter(SE) parameter(SE)
NS-IW(δ, θ) 2.3934(0.4249) 6.0185(1.3910)
NC-IW(θ, δ) 3.2906(0.5941) 3.9558(1.0140)
NT-IW(θ, δ) 6.6984(1.9636) 3.8242(0.6632)

Table 2: Some selection criteria and goodness-of-fit statistics

Model -2logL AIC HQIC KS p(KS) CVM p(CVM) AD p(AD)

NS-IW 31.0171 35.0171 35.4058 0.0975 0.9913 0.0254 0.9906 0.1594 0.9979
NC-IW 31.1170 35.1170 35.5057 0.1148 0.9548 0.0306 0.9770 0.1772 0.9956
NT-IW 30.9715 34.9715 35.3603 0.1103 0.9682 0.0295 0.9803 0.1685 0.9969
IW 30.8174 34.8174 35.2062 0.1020 0.9854 0.0266 0.9880 0.1545 0.9984
ArcGE 33.4131 39.4131 39.9962 0.1516 0.7473 0.0767 0.7169 0.4214 0.8256
ArcLmx 35.6262 41.6262 42.2094 0.1240 0.9182 0.0662 0.7806 0.5268 0.7175
ASE 154.7472 156.7472 156.9416 0.8863 0.0000 5.1247 0.0000 31.4397 0.0000
ASEW 31.1885 37.1885 37.7716 0.1170 0.9470 0.0363 0.9551 0.2096 0.9877
NCW 48.6870 52.6870 53.0757 0.1467 0.7829 0.1078 0.5521 0.7800 0.4940
Tan-BXII 31.0804 37.0804 37.6636 0.0919 0.9959 0.0231 0.9944 0.1377 0.9994
CosW 40.6035 46.6035 47.1867 0.1922 0.4508 0.1840 0.3022 1.0593 0.3267
NCosW 37.4854 41.4854 41.8742 0.1770 0.5576 0.1279 0.4681 0.7563 0.5118
Sin-IW 31.1572 35.1572 35.5460 0.1069 0.9763 0.0292 0.9813 0.1808 0.9949

4. Bayesian Analysis of Trigonometric Models

4.1. NS-IW distribution

Bayesian inference encompasses the procedure of adjusting a probability model to a provided dataset and
summarizing the result using a probability distribution on the model’s parameters, referred to as the pos-
terior distribution. In this section, we have used the dataset presented in the application section. From a
Bayesian viewpoint, both the observed variables (data) and the parameters are treated as stochastic vari-
ables. Assuming observed data x = (x1, x2, ..., xn) and a parameterψ, the connection between x and the
prior distribution h(ψ) is expressed by means of the likelihood function L(x|ψ), given as:

L(x|θ, δ) = (πθδ)
n

n∏
i=1

x
−(δ+1)
i cos

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

The joint distribution of x = (x1, x2, ..., xn) and ψ = (θ, δ) can therefore be represented as the product of
the likelihood and the prior distribution.

g(x; θ, δ) =

{
(πθδ)

n
n∏

i=1

x
−(δ+1)
i cos

[
π

exp(−θx−δ
i )

1+exp(−θx−δ
i )

]
exp(−θx−δ

i )

(1+exp(−θx−δ
i ))

2

}
×
{

ab

Γ(b)e
−aθθb−1

}{
cd

Γ(d)e
−cδδd−1

}
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By applying Bayes’ Theorem, one can update the distribution of ψ = (θ, δ) based on the information provided
by the sample x = (x1, x2, ..., xn).This yields the posterior distribution of ψ = (θ, δ) , given by:

f(θ, δ|x) ∝


{
(πθδ)

n
n∏

i=1

x
−(δ+1)
i cos

[
π

exp(−θx−δ
i )

1+exp(−θx−δ
i )

]
exp(−θx−δ

i )

(1+exp(−θx−δ
i ))

2

}
×
{

ab

Γ(b)e
−aθθb−1

}{
cd

Γ(d)e
−cδδd−1

}
.


which can be interpreted as the proportional relationship between the posterior distribution and the product
of the likelihood and the prior. The full conditional density of parameter θ is the term containing θ in
posterior distribution f(θ, δ|x) is given by:

f1(θ|x, δ) ∝ e−aθθb+n−1

{
n∏

i=1

cos

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

}
.

The full conditional density of parameter δ is the term containing δ in posterior distribution f(θ, δ|x) is given
by:

f2(δ|x, θ) ∝ e−cδδd+n−1

{
n∏

i=1

cos

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

}
.

The posterior distribution presents a considerable level of complexity, rendering closed-form inference im-
practical. Hence, we propose employing MCMC methods to generate samples from the posterior, facili-
tating straightforward sample-based inference. MCMC techniques operate by simulating samples through
the execution of a meticulously devised Markov chain. Over time, this chain converges to the desired
distribution, termed the stationary or equilibrium distribution—in our context, the posterior distribution.
Numerous methodologies exist for constructing such chains. These encompass various approaches, including
the renowned Gibbs sampler (Hastings, 1970), (Geman and Geman, 1984) and (Gelfand and Smith, 1990),
all falling under the broader framework outlined by (Murrell, 2005).

4.1.1. Convergence diagnostics

Before delving into parameter estimates or conducting other inferences, it’s advisable to examine plots
depicting the sequential (dependent) realization of these estimates. This sequential plot of parameters
commonly reveals challenges within the Markov chain. Figure (4) illustrates the sequential realization of the
model’s parameters.
History (Trace) plot:
The plot displays a smooth oscillation around a horizontal line with no discernible trend. This suggests that
the Markov chain is likely sampling from its stationary distribution and exhibiting good mixing, as depicted
in Figure (4).
Running Mean (Ergodic Mean) Plot: Create a time series plot illustrating the running mean for each
parameter in the chain. The running mean is calculated as the average of all sampled values up to and
including the current iteration. Figure (5) displays the convergence pattern based on the ergodic average,
highlighting the convergence of the chain.

4.1.2. Posterior Analysis

(a) Numerical Summary:

We present a numerical summary for (θ
(j)
1 , δ

(j)
1 ); where j ranges from 1 to 5000 for chain 1, and (θ

(j)
2 , δ

(j)
2 );

where j ranges from 1 to 5000 for chain 2. Various quantities of interest along with their numerical values
are considered based on the MCMC sample of posterior characteristics for the NS-IW distribution. Table
3 displays the MCMC results of the posterior mean, mode, standard deviation (SD), first quartile, median,
third quartile, 2.5th percentile, 97.5th percentile, skewness, and kurtosis of parameters θ and δ. Using the
MCMC method instead of the MLE method offers the advantage of obtaining reasonable interval estimates
for parameters through the construction of probability intervals based on empirical posterior distributions,
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Figure 4: Trace plots of δ and θ of NS-IW distribution
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Figure 5: Ergodic mean plots of δ and θ

which is often unavailable in maximum likelihood estimation. The algorithm outlined by (Chen and Shao,
1999) is employed to compute HPD intervals assuming an unimodal marginal posterior distribution. The
width of the HPD serves as another measure of uncertainty in beliefs: wider HPDs indicate greater uncer-
tainty, whereas narrower HPDs suggest more certainty.
(b) Visual Summary:
The visual representation encompasses a boxplot, density strip plot, histogram, marginal posterior density
estimate, and rug plots for the parameters, with superimposed 95% HPD intervals. These graphical rep-
resentations offer a comprehensive depiction of posterior uncertainty regarding the parameters, utilizing a

posterior sample (θ
(j)
1 , δ

(j)
1 ) for j = 1, . . . , 5000.

Figure (6) represents the histogram, marginal posterior density for parameters δ and θ. Histograms can
provide insights on skewness, behavior in the tails, presence of multi-model behavior, and data outliers;
histograms can be compared to the fundamental shapes associated with standard analytic distributions.
The kernel density estimates have been drawn using R with the assumption of Gaussian kernel and properly
chosen values of the bandwidth. We have shown the posterior mean, median, and mode which are Bayes
estimates under squared error, absolute error, and zero-one loss functions loss, respectively. Figure (7) (right
panel) shows the boxplot and density strip plot. The 95% HPD intervals are also superimposed. The density
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Table 3: Posterior summary statistics for both chains of NS-IW distribution

Chain I Chain II

Posterior Summary delta theta delta theta

Mean 2.3745 6.0732 2.3834 6.0669
SD 0.4160 1.4139 0.4240 1.4267
2.5th Percentile(P2.5) 1.6119 3.7999 1.6060 3.8049
First Quartile (Q1) 2.0818 5.0548 2.0950 5.0500
Median 2.3560 5.9125 2.3640 5.8955
Third Quartile (Q3) 2.6530 6.9168 2.6550 6.9033
97.5th Percentile(P97.5) 3.2550 9.2571 3.2590 9.4233
Mode 2.3317 5.7176 2.3174 5.8725
Skewness 0.2199 0.6764 0.2672 0.8516
Kurtosis -0.0102 0.7609 0.0522 1.4488
95% Credible Interval (1.612, 3.255) (3.799, 9.257) (1.606, 3.259) (3.805, 9.423)
95% HPD Credible Interval (1.546, 3.165) (3.700, 9.028) (1.558, 3.183) (3.581, 8.913)

strip visually represents a univariate distribution through shaded rectangles, where the darkness at any
given point correlates with the probability density. Similar graphical representations have been generated
for variables δ and θ, as depicted in Figure (7). Notably, both δ and θ exhibit positive skewness. To compare
Bayesian estimates with MLE, we adopted a graphical approach. In Figure (9), we plotted the density

functions f(x; θ̂, δ̂) using MLEs alongside Bayesian estimates derived from posterior means, computed via
MCMC samples. The figure illustrates a close alignment between MLEs and Bayesian estimates, indicating
a strong fit to the data. Also, we have displayed the quantile-quantile (Q-Q) plots for NS-IW and NC-IW
models 11. Further validation of this observation is provided in Figure (8). Here, we present the 2.5th,
50th, and 97.5th quantiles of the estimated density, offering an evaluation of model fit based on posterior

samples (θ
(j)
1 , δ

(j)
1 ) where j = 1, ..., 5000. The density function has been computed for each observed data

point across 5000 posterior samples using the density() function in OpenBUGS. Specifically, f(xi; θ
(j)
1 , δ

(j)
1 )

where j = 1, ..., 5000 and i = 1, ..., 20. Additionally, the density corresponding to MLE has been plotted
using ”plug-in” estimates of parameters, affirming the adequacy of our model for the given dataset.
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Figure 6: Histograms of marginal posterior density estimate of δ and θ

4.1.3. Estimation of Hazard and Reliability functions

This segment is chiefly dedicated to demonstrating the effectiveness of the suggested methodology. To
accomplish this, we computed the reliability function using posterior samples. Through our resilient MCMC
technique, we can efficiently estimate different parameter functions. To bolster its significance, we augmented
our comparison with the Kaplan-Meier estimate of the reliability function. As illustrated in Figure (8) (right
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Figure 7: Posterior estimates of δ and θ of NS-IW distribution
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Figure 8: Model fit and reliability fit of NS-IW distribution
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Figure 9: Comparison of MCMC and MLE methods of NS-IW distribution
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panel), the reliability estimate derived from MCMC closely matches empirical reliability estimates.

Table 4: Posterior summary of reliability and hazard functions of NS-IW distribution

Posterior Summary relia 13 hazard 13
Mean 0.5556 1.3949
SD 0.0912 0.3382
2.5th Percentile(P2.5) 0.3823 0.8120
First Quartile (Q1) 0.4933 1.1570
Median 0.5574 1.3600
Third Quartile (Q3) 0.6220 1.6090
97.5th Percentile(P97.5) 0.7278 2.1252
Mode 0.5650 1.3033
Skewness -0.0814 0.4381
Kurtosis -0.2079 0.2015
95% Credible Interval (0.382, 0.727) (0.812, 2.125)
95% HPD Credible Interval (0.386, 0.730) (0.787, 2.074)
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Figure 10: Histograms of reliability and hazard function estimates with density curves of NS-IW distribution

4.1.4. Estimation of Hazard and Reliability at X(13); t = 1.8

Certainly, the MCMC samples offer a comprehensive summary of the posterior uncertainty concerning the
parameters θ and δ, which can be utilized to derive a kernel estimate of the posterior distribution. This
principle extends to any function reliant on these parameters, such as reliability and hazard functions.
Suppose we aim to provide point and interval estimates for reliability and hazard functions at the mission
time t = 1.8 (corresponding to the 13th observed data point). In that case, we’ve conducted computations for
the hazard and reliability functions at this specific time using the logical functions hrf() and reliability()

(Kumar et al., 2010) within OpenBUGS, analyzing 5000 posterior samples. h(x = 1.8; θ
(j)
1 , δ

(j)
1 )j = 1, ..., 5000

and R(x = 1.8; θ
(j)
1 , δ

(j)
1 )j = 1, ..., 5000. The marginal posterior density estimates of the reliability (left panel)

and hazard functions (right panel) and their histograms based on samples of size 5000 are shown in Figure
(10) using the Gaussian kernel. The 95% HPD intervals are superimposed. It is evident from the estimate
that the marginal distribution of reliability is negatively skewed whereas hazard is positively skewed.
The MCMC results of the posterior mean, mode, SD, first quartile, median, third quartile, 2.5th percentile,
97.5th percentile, skewness, kurtosis, 90% symmetric and HPD credible intervals of reliability and hazard
functions are displayed in Table 4. The ML estimates of reliability and hazard function at t = 1.8 are
computed using the invariance property of the MLE. ML estimate ĥ(t = 1.8) = 0.1167 and R̂(t = 1.8) =
0.7677.
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Figure 11: QQ-plots of NS-IW and NC-IW respectively

4.1.5. Modal Compatibility

Posterior Predictive Checks:
One common approach to evaluating the suitability of a Bayesian model involves examining the degree
of concordance between the model’s predictions and the actual observed data (Gelman et al., 2004). This
assessment typically entails juxtaposing the posterior predictive simulations against the observed data. There
are several approaches available for the study of model compatibility in the Bayesian framework. Predictive
simulation is the easiest and most flexible one. The basic idea of studying the model compatibility through
predictive simulations is to compare the observed data or some function of it with the data that would
have been anticipated from the assumed model called the predictive data. If the two data sets compare
favorably, the assumed model can be considered to be an appropriate choice for the data in hand, (Gupta
et al., 2008). Model Bayesian computational tools however provided straightforward solutions as one can
easily simulate predictive samples if MCMC outputs are available from the posterior corresponding to the
assumed model. Most of the standard numerical and graphical methods based on predictive distribution
can be easily implemented to study the compatibility of the model. One of the best ways to assess model
adequacy based on posterior predictive distribution is graphically. To obtain further clarity on our conclusion
for the study of model compatibility, we have considered plotting density estimates of (X(1), X(2), ..., X(19)

and X(20)) replicated future observations from the model with superimposed corresponding observed data.
To achieve this, we conducted 10000 iterations for two chains (5000 each) of the MCMC procedure to draw
samples from the posterior distribution. Subsequently, we generated predictive samples from the model by
utilizing each simulated posterior sample, ensuring that the size of the predictive samples matches that of
the observed data. The posterior predictive distributions, based on replicated future data sets, are depicted
in Figure (12), illustrating estimates corresponding to both the smallest and largest predictive observations.
Table 6 showcases the MCMC results of the posterior mean, median, and mode for the smallest and largest
(X(1), X(2), ..., X(19) and X(20)). Figure (12) demonstrates that the posterior predictive distributions are
centered around the observed values, indicating a good fit. Generally, the distribution of replicated data
closely resembles that of the observed data. Overall, the results of the posterior predictive simulation suggest
a strong alignment between the model and the data. Furthermore, Figure (12) serves as a graphical posterior
predictive check for the adequacy of the model, where the solid line (-) represents the posterior median of
the observed data overlaid on the plot. These predictive data represent expected observations in future
experiments, given that we have already observed X̄ and are assuming the validity of the adopted model.
The findings of the posterior predictive simulation affirm that the model provides an excellent fit to the
observed data.
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Table 5: Posterior prediction of the observed data points of NS-IW distribution

Observed Mode Mean Median HPD
X(1) 1.10 1.09 1.09 1.09 (0.903, 1.255)
X(2) 1.20 1.22 1.21 1.22 (1.030, 1.380)
X(3) 1.30 1.28 1.30 1.30 (1.116, 1.470)
X(18) 2.70 2.44 2.54 2.50 (2.077, 3.142)
X(19) 3.00 2.71 2.87 2.81 (2.233, 3.620)
X(20) 4.10 3.46 3.69 3.58 (2.615, 4.956)
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Figure 12: Posterior prediction of first and last observed data points of NS-IW distribution
Table 6: Posterior summary of the prediction of the observed data points of NS-IW distribution

Posterior Summary x 1 x 2 x 3 x 18 x 19 x 20
Mean 1.09 1.21 1.30 2.54 2.87 3.69
SD 0.10 0.09 0.09 0.29 0.38 0.65
2.5th Percentile(P2.5) 0.88 1.01 1.10 2.11 2.31 2.76
First Quartile (Q1) 1.03 1.16 1.24 2.34 2.60 3.23
Median 1.09 1.22 1.30 2.50 2.81 3.58
Third Quartile (Q3) 1.15 1.28 1.36 2.71 3.07 4.00
97.5th Percentile(P97.5) 1.25 1.37 1.46 3.20 3.75 5.25
Mode 1.09 1.22 1.28 2.44 2.71 3.46
Skewness -0.46 -0.43 -0.36 0.89 1.01 1.26
Kurtosis 0.45 0.52 0.53 1.39 1.88 3.06
95% Credible Interval (0.88, 1.25) (1.01, 1.37) (1.11, 1.46) (2.11, 3.20) (2.31, 3.75) (2.76, 5.25)
95% HPD Credible Interval (0.90, 1.26 (1.03, 1.38) (1.12, 1.47) (2.08, 3.14) (2.23, 3.62) (2.62, 4.96)

4.2. NC-IW

Assuming observed data x = (x1, x2, ..., xn) and a parameterψ, the connection between x and the prior
distribution h(ψ) is expressed by means of the likelihood function L(x|ψ), given as:

L(x|θ, δ) = (πθδ)
n

n∏
i=1

x
−(β+1)
i sin

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

The joint distribution of x = (x1, x2, ..., xn) and ψ = (θ, δ) can therefore be represented as the product of
the likelihood and the prior distribution.

g(x; θ, δ) =

{
(πθδ)

n
n∏

i=1

x
−(δ+1)
i sin

[
π

exp(−θx−δ
i )

1+exp(−θx−δ
i )

]
exp(−θx−δ

i )

(1+exp(−θx−δ
i ))

2

}
×
{

ab

Γ(b)e
−aθθb−1

}{
cd

Γ(d)e
−cδδd−1

}
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By applying Bayes’ Theorem, one can update the distribution of ψ = (θ, δ) based on the information provided
by the sample x = (x1, x2, ..., xn).This yields the posterior distribution of ψ = (θ, δ), given by:

f(θ, δ|x) ∝


{
(πθδ)

n
n∏

i=1

x
−(δ+1)
i sin

[
π

exp(−θx−δ
i )

1+exp(−θx−δ
i )

]
exp(−θx−δ

i )

(1+exp(−θx−δ
i ))

2

}
×
{

ab

Γ(b)e
−aθθb−1

}{
cd

Γ(d)e
−cδδd−1

}


which can be interpreted as the proportional relationship between the posterior distribution and the product
of the likelihood and the prior. The full conditional density of parameter θ is the term containing θ in
posterior distribution f(θ, δ|x) is given by:

f1(θ|x, δ) ∝ e−aθθb+n−1

{
n∏

i=1

sin

[
π

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

}

The full conditional density of parameter δ is the term containing δ in posterior distribution f(θ, δ|x) is given
by:

f2(δ|x, θ) ∝ e−cδδd+n−1

{
n∏

i=1

sin

[
π

exp(−θx−δ
i )

1 + exp(−δx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2

}

4.2.1. Convergence diagnostics

History (Trace) Plot: It appears as a smooth oscillation around a horizontal line devoid of any discernible
trend. The Markov chain is likely sampling from the stationary distribution and demonstrates effective
mixing (see Figure 13).
Running Mean (Ergodic mean) plot: The convergence pattern based on the ergodic average is shown
in Figure 14 indicates the convergence of the chain.
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Figure 13: Trace plots of δ and θ of NC-IW distribution

4.2.2. Posterior Analysis

(a) Numerical Summary: A numerical summary is provided for (θ
(j)
1 , δ

(j)
1 ) with j ranging from 1 to 5000

for Chain 1, and (θ
(j)
2 , δ

(j)
2 ) with j ranging from 1 to 5000 for Chain 2. Various quantities of interest and their

numerical values derived from the MCMC sample of posterior characteristics for the ANC Cos-Inverse Weibull
distribution are examined. The MCMC results include the posterior mean, mode, standard deviation (SD),
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Figure 14: Ergodic mean plots of δ and θ of NC-IW distribution

first quartile, median, third quartile, 2.5th percentile, 97.5th percentile, skewness, and kurtosis of parameters
θ and δ, as presented in Table 7.
(b) Visual Summary:
The visual graph includes the boxplot, density strip plot, histogram, marginal posterior density estimate,
and rug plots for the parameters. We have also superimposed the 95% HPD intervals. These graphs provide
an almost complete picture of the posterior uncertainty about the parameters. We have used the posterior

sample (θ
(j)
1 , δ

(j)
1 ); j = 1, ..., 5000 to draw these graphs. Figure (15) represents the histogram, marginal

Table 7: Posterior summary statistics for both chains of NC-IW distribution

Chain I Chain II

Posterior Summary delta theta delta theta

Mean 3.2789 3.9616 3.2907 3.9774
SD 0.6049 1.0460 0.5998 1.0563
2.5th Percentile(P2.5) 2.1950 2.2759 2.1840 2.2950
First Quartile (Q1) 2.8530 3.2268 2.8790 3.2368
Median 3.2530 3.8420 3.2680 3.8400
Third Quartile (Q3) 3.6503 4.5740 3.6680 4.5660
97.5th Percentile(P97.5) 4.5861 6.3152 4.5500 6.4011
Mode 3.3226 3.4533 3.2689 3.6706
Skewness 0.3737 0.7826 0.3234 0.8537
Kurtosis 0.2141 1.1408 0.3667 1.4248
95% Credible Interval (2.1950 4.5861) (2.2760 6.3152) (2.184 4.5500) (2.2949 6.4010)
95% HPD Credible Interval (2.078 4.454) (2.095 6.053) (2.174 4.525) (2.104 6.085)

posterior density for parameters θ and δ. Histograms can provide insights on skewness, behavior in the tails,
presence of multi-model behavior, and data outliers; histograms can be compared to the fundamental shapes
associated with standard analytic distributions. The kernel density estimates have been drawn using R with
the assumption of Gaussian kernel and properly chosen bandwidth values. We have shown the posterior
mean, median, and mode which are Bayes estimates under squared error, absolute error, and zero-one loss
functions loss, respectively. The 95% HPD intervals are also superimposed. The density strip shows a
univariate distribution as a shaded rectangular, whose darkness at a point is proportional to the probability
density. We have plotted the similar graphs for θ and δ displayed in Figure (16). It can be seen that θ and
δ show positive skewness. Further support for this finding can be obtained by inspecting Figure (17). In
Figure (17) we have plotted 2.5th, 50th and 97.5th quantiles of the estimated density, it can be considered as

an evaluation of the model fit, based on posterior sample, (θ
(j)
1 , δ

(j)
1 ); j = 1, ..., 5000. We have computed the

density function at each observed data point for 5000 posterior samples, using logical function density() in

OpenBUGS. f(xi; θ
(j)
1 , δ

(j)
1 ); j = 1, ..., 5000; i = 1, ..., 20. The density corresponding to MLE has been plotted
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Figure 15: Histogram of marginal posterior density estimate of δ and θ of NC-IW distribution
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Figure 16: Boxplot and density strip plot of posterior estimates of δ and θ of NC-IW distribution

using the ”plug-in” estimates of the parameters. It shows we have a fairly good model for the given data
set.

4.2.3. Estimation of Hazard and Reliability Functions

To enhance comparability, we employed the Kaplan-Meier estimate of the reliability function. Figure (17)
(right panel), exhibits the estimated reliability function (dashed blue line: 2.5th and 97.5th quantiles; solid
red line: 50th quantile) using Bayes estimate based on MCMC output and the empirical reliability function
(black solid line).

4.2.4. Estimation of Hazard and Reliability at X(13); t = 1.8

We have computed the hazard and reliability and hazard functions at mission time t=1.8 (at the 13th observed

data point) for 5000 posterior samples. h(x = 1.8; θ
(j)
1 , δ

(j)
1 )j = 1, ..., 5000 and R(x = 1.8; θ

(j)
1 , δ

(j)
1 )j =

1, ..., 5000. The marginal posterior density estimates of the reliability (left panel) and hazard functions (right
panel) and their histograms based on samples of size 5000 are shown in Figure (18) using the Gaussian kernel.
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Figure 17: Model fit of hazard and reliability functions of NC-IW distribution

Table 8: Posterior summary of reliability and hazard functions of NC-IW distribution

Posterior Summary relia 13 hazard 13
Mean 0.4193 1.6217
SD 0.0867 0.3499
2.5th Percentile(P2.5) 0.2599 1.0079
First Quartile (Q1) 0.3567 1.3688
Median 0.4192 1.6050
Third Quartile (Q3) 0.4767 1.8523
97.5th Percentile(P97.5) 0.5884 2.3492
Mode 0.4302 1.6133
Skewness 0.0753 0.3448
Kurtosis -0.2035 0.1591
95% Credible Interval (0.259 0.588) (1.007 2.349)
95% HPD Credible Interval (0.256 0.584) (0.976 2.300)

The 95% HPD intervals are superimposed. It is evident from the estimate that the marginal distribution
of reliability is negatively skewed whereas hazard is positively skewed. The MCMC results of the posterior
mean, mode, SD, first quartile, median, third quartile, 2.5th percentile, 97.5th percentile, skewness, kurtosis,
90% symmetric and HPD credible intervals of reliability and hazard functions are displayed in Table 8. The
ML estimates of reliability and hazard function at t = 1.8 are computed using the invariance property of
the MLE. ML estimate ĥ(t = 1.8) = 0.1167 and R̂(t = 1.8) = 0.7677. A trace plot is a plot of the iteration
number against the value of the draw of the parameter at each iteration. Figures (20) display 5000 chain
values for the hazard h(t = 1.8) and reliability R(t = 1.8) functions, with their sample median at 95%
credible intervals.

4.2.5. Modal Compatibility

Posterior Predictive Checks:
To enhance our understanding of the conclusions drawn from our study on model compatibility, we engaged
in plotting density estimates of the ordered statistics (X(1), X(3), ..., X(19), and X(20)) along with replicated
future observations derived from the model. This involved generating 10,000 samples from the posterior via
the MCMC procedure and subsequently obtaining predictive samples from the model, mirroring the size of
the observed data. The posterior predictive distributions, based on these replicated future data sets, are
depicted in Figure (19), illustrating the estimates corresponding to both the smallest and largest predictive
observations.
Additionally, Table 9 presents the MCMC results of the posterior mean, median, and mode for the smallest
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Figure 18: Histograms of reliability and hazard function estimates with density curves of NC-IW distribution
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Figure 19: Posterior prediction of first and last observed data points of NC-IW distribution

and largest (X(1), X(3), ..., X(19), andX(20)). The depicted posterior predictive distributions in Figure (19) are
observed to be centered around the observed values, indicating a favorable fit. Moreover, the distribution of
replicated data closely aligns with that of the observed data. Overall, the results from the posterior predictive
simulation suggest a robust fit of the model to the data. Graphical model checking involves juxtaposing real
data with simulated data from the fitted model, aiming to identify any systematic disparities. In our case,
we extended this analysis to predict the entire data set.

4.3. NT-IW

Assuming observed data x = (x1, x2, ..., xn) and a parameterψ, the connection between x and the prior
distribution h(ψ) is expressed by means of the likelihood function L(x|ψ), given as:

L(x|θ, δ) =
(π
2
θδ
)n n∏

i=1

x
−(δ+1)
i sec2

[
π

2

exp(−θx−δ
i )

1 + exp(−θx−δ
i )

]
exp(−θx−δ

i )(
1 + exp(−θx−δ

i )
)2
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Figure 20: Trace plots of reliability and hazard function of NC-IW distribution

Table 9: Posterior summary of the prediction of the observed data points of NC-IW distribu-
tion

Posterior Summary x 1 x 3 x 18 x 19 x 20
Mean 1.1250 1.2912 2.7100 3.1989 4.5788
SD 0.0768 0.0757 0.3908 0.5668 1.1739
2.5th Percentile(P2.5) 0.9540 1.1320 2.1490 2.4170 3.0980
First Quartile (Q1) 1.0780 1.2440 2.4330 2.8078 3.7950
Median 1.1320 1.2960 2.6505 3.1000 4.3410
Third Quartile (Q3) 1.1770 1.3420 2.9170 3.4783 5.0930
97.5th Percentile(P97.5) 1.2561 1.4300 3.5660 4.4595 7.3361
Mode 1.1404 1.3060 2.5945 3.0186 4.1522
Skewness -0.4460 -0.2499 1.4832 1.7964 2.5860
Kurtosis 0.3076 0.2335 5.9078 8.6288 17.7363
95% Credible Interval (0.9540 1.2561) (1.1320 1.4300) (2.149 3.566) (2.4170 4.4594) (3.0980 7.3361)
95% HPD Credible Interval (0.970 1.265) (1.137 1.432) (2.103 3.486) (2.338 4.309) (2.939 6.793)

The joint distribution of x = (x1, x2, ..., xn) and ψ = (θ, δ) can therefore be represented as the product of
the likelihood and the prior distribution.

g(x; θ, δ) =

{(
π
2 θδ

)n n∏
i=1

x
−(δ+1)
i sec2

[
π
2

exp(−θx−δ
i )
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2
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cd
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}
By applying Bayes’ Theorem, one can update the distribution of ψ = (θ, δ) based on the information provided
by the sample x = (x1, x2, ..., xn).This yields the posterior distribution of ψ = (θ, δ) , given by:

f(θ, δ|x) ∝


{(
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}


which can be interpreted as the proportional relationship between the posterior distribution and the product
of the likelihood and the prior. The full conditional density of parameter θ is the term containing θ in
posterior distribution f(θ, δ|x) is given by:

f1(θ|x, δ) ∝ e−aθθb+n−1

{
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sec2

[
π

2

exp(−θx−δ
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}

The full conditional density of parameter δ is the term containing δ in posterior distribution f(θ, δ|x) is given
by:

f2(δ|x, θ) ∝ e−cδδd+n−1

{
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4.3.1. Convergence diagnostics

History (Trace) plot: The pattern resembles a smooth oscillation around a horizontal axis, showing no
discernible trend. This suggests that the Markov chain is likely sampling from its stationary distribution
and exhibiting good mixing, as illustrated in Figure (21).
Running Mean (Ergodic mean) plot: Figure (22) illustrates the convergence pattern based on the
ergodic average, indicating the convergence of the chain.
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Figure 21: Trace plots of δ and θ of NT-IW distribution
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Figure 22: Ergodic mean plots of δ and θ of NT-IW distribution

4.3.2. Posterior Analysis

(a) Numerical Summary: A numerical summary is provided for the following sets of data:

� (θ
(j)
1 , δ

(j)
1 ), where j ranges from 1 to 5000, derived from chain 1.

� (θ
(j)
2 , δ

(j)
2 ), where j ranges from 1 to 5000, derived from chain 2.
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We have computed various statistics of interest based on the MCMC sample of posterior characteristics
for the NT-IW distribution. Table 10 presents the MCMC results for the posterior mean, mode, SD, first
quartile, median, third quartile, 2.5th percentile, 97.5th percentile, skewness, and kurtosis of parameters θ
and δ.

Table 10: Posterior summary statistics for both chains of NT-IW distribution

Chain I Chain II

Posterior Summary delta theta delta theta

Mean 2.3745 6.0732 2.3834 6.0669
SD 0.4160 1.4139 0.4240 1.4267
2.5th Percentile(P2.5) 1.6119 3.7999 1.6060 3.8049
First Quartile (Q1) 2.0818 5.0548 2.0950 5.0500
Median 2.3560 5.9125 2.3640 5.8955
Third Quartile (Q3) 2.6530 6.9168 2.6550 6.9033
97.5th Percentile(P97.5) 3.2550 9.2571 3.2590 9.4233
Mode 2.3317 5.7176 2.3174 5.8725
Skewness 0.2199 0.6764 0.2672 0.8516
Kurtosis -0.0102 0.7609 0.0522 1.4488
95% Credible Interval (1.612, 3.255) (3.799, 9.257) (1.606, 3.259) (3.805, 9.423)
95% HPD Credible Interval (1.546, 3.165) (3.7 9.028) (1.558, 3.183) (3.581, 8.913)

(b) Visual Summary: Figure (23) represents the histogram, marginal posterior density for parameters θ
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Figure 23: Histogram of marginal posterior density estimate of δ and θ of NT-IW distribution

and δ. Histograms can provide insights on skewness, behavior in the tails, presence of multi-model behavior,
and data outliers; histograms can be compared to the fundamental shapes associated with standard analytic
distributions. The kernel density estimates have been drawn using R with the assumption of Gaussian kernel
and properly chosen values of the bandwidth. We have provided the posterior mean, median, and mode as
Bayes estimates under squared error, absolute error, and zero-one loss functions, respectively. In Figure
(24), we illustrate the density functions f(x; θ̂, δ̂) utilizing MLEs and Q-Q plots constructed via MCMC
samples. The comparison presented in Figure (24) highlights the alignment between predicted and observed
quantiles, affirming the compatibility of the NT-IW with the dataset. To further support this conclusion, see
Figure (26). On the left side of Figure (26), we display the 2.5th, 50th, and 97.5th quantiles of the estimated

density, serving as an assessment of model fit based on a posterior sample (θ
(j)
1 , δ

(j)
1 ) with j = 1, ..., 5000.

The density function at each observed data point has been computed for 5000 posterior samples using the

density() function in OpenBUGS, denoted as f(xi; θ
(j)
1 , δ

(j)
1 ) with j = 1, ..., 5000 and i = 1, ..., 20. This

analysis indicates a robust model fit for the provided dataset.
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Figure 24: MLE and QQ-plot using MCMC samples of NT-IW distribution
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Figure 25: Histograms of reliability and hazard function estimates with density curves of NT-IW distribution

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2.5th   quantile
50th   quantile
97.5th quantile
observed

x

x

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

 

2.5th   quantile
50th   quantile
97.5th quantile
Empirical CDF

x

C
D

F

Figure 26: Model fit and CDF fit of NT-IW distribution
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4.3.3. Estimation of Hazard and Reliability Functions

To enhance the comparison’s significance, we employed the Kaplan-Meier estimate of the reliability function.

Table 11: Posterior summary of reliability and hazard functions of NT-IW distribution

Posterior Summary relia 13 hazard 13
Mean 0.5556 1.3949
SD 0.0912 0.3382
2.5th Percentile(P2.5) 0.3823 0.8120
First Quartile (Q1) 0.4933 1.1570
Median 0.5574 1.3600
Third Quartile (Q3) 0.6220 1.6090
97.5th Percentile(P97.5) 0.7278 2.1252
Mode 0.5650 1.3033
Skewness -0.0814 0.4381
Kurtosis -0.2079 0.2015
95% Credible Interval (0.382, 0.727) (0.812, 2.125)
95% HPD Credible Interval (0.386, 0.730) (0.787, 2.074)

4.3.4. Estimation of Hazard and Reliability at X(13); t = 1.8

Let’s consider providing point and interval estimates for the reliability and hazard functions at the mission
time of t = 1.8 (corresponding to the 13th observed data point). We’ve obtained these estimates from 5000
posterior samples using the logical functions hrf() and reliability() (as per (15)) in OpenBUGS. Specifically,

we’ve calculated h(x = 1.8; θ
(j)
1 , δ

(j)
1 ) and R(x = 1.8; θ

(j)
1 , δ

(j)
1 ), where j = 1, ..., 5000. Figure (25) depicts

the marginal posterior density estimates for both the reliability (on the left panel) and hazard functions
(on the right panel). Additionally, histograms are provided, derived from samples of size 5000 using the
Gaussian kernel. Overlaid on these histograms are the 95% HPD intervals. The estimate reveals a negative
skew in the marginal distribution of reliability, while the hazard distribution exhibits positive skewness.
The MCMC results of the posterior mean, mode, SD, first quartile, median, third quartile, 2.5th percentile,
97.5th percentile, skewness, kurtosis, 90% symmetric, and HPD credible intervals of reliability and hazard
functions are presented in Table 11. Additionally, the Maximum Likelihood (ML) estimates of the reliability

and hazard function at t = 1.8 are computed using the invariance property of the MLE as ĥ(t = 1.8) = 0.1167
and R̂(t = 1.8) = 0.7677. In the histogram, each point corresponds to the iteration number plotted against
the parameter’s value drawn at that iteration. Figure (25) illustrates 5000 chain values for the hazard
h(t = 1.8) and reliability R(t = 1.8) functions, along with their sample median at 95

4.3.5. Modal Compatibility

Posterior Predictive Checks:
To achieve this, 10,000 samples (5000 for each chain) were drawn from the posterior utilizing the MCMC
procedure. Predictive samples were then obtained from the model under consideration using each simulated
posterior sample, with the size of predictive samples matching that of the observed data. The posterior pre-
dictive distributions, based on replicated future datasets, are illustrated in Figure (27), showcasing estimates
corresponding to both the smallest and largest predictive observations. The MCMC results, including the
posterior mean, median, and mode of the smallest and largest (X(1), X(2), ..., X(18), X(19)) and X(20), are
summarized in Table 12. Figure (27) highlights that the posterior predictive distributions are well-centered
over the observed values, indicating a favorable fit. Overall, the distribution of replicated data closely re-
sembles that of the observed data, suggesting a satisfactory match. Consequently, the posterior predictive
simulation results suggest a strong alignment between the model and the dataset at hand.
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Figure 27: Posterior prediction of first and last observed data points

Table 12: Posterior summary of the prediction of the observed data points of NT-IW distri-
bution

Posterior Summary x 1 x 3 x 18 x 20

Mean 1.1190 1.2883 2.6864 4.2849
SD 0.0792 0.0788 0.3673 0.9678
2.5th Percentile(P2.5) 0.9374 1.1210 2.1230 2.9700
First Quartile (Q1) 1.0680 1.2390 2.4278 3.6258
Median 1.1280 1.2925 2.6350 4.1030
Third Quartile (Q3) 1.1750 1.3430 2.8753 4.6988
97.5th Percentile(P97.5) 1.2500 1.4320 3.5713 6.7302
Mode 1.1413 1.2985 2.5946 3.9791
Skewness -0.5474 -0.2487 1.0636 1.5467
Kurtosis 0.3822 0.2902 2.0463 4.3969
95% Credible Interval (0.937 1.250) (1.121 1.432) (2.123 3.571) (2.961 6.730)
95% HPD Credible Interval (0.943 1.25) (1.134 1.44) (2.072 3.454) (2.765 6.209)

4.4. Model comparison under the Bayesian approach

We compared three models using OpenBUGS software and assessed their fit using the Deviance Information
Criterion (DIC) and related statistics. Table 13 summarizes the model comparison statistics. Where Dbar

Table 13: Model comparison statistics

Models Dbar Dhat DIC pD

NS-IW 33.06 31.03 35.09 2.031
NC-IW 33.12 31.12 35.12 2.000
NT-IW 33.01 30.98 35.05 2.037

represents the posterior mean of the deviance, Dhat is a point estimate of the deviance obtained by sub-
stituting in the posterior means, DIC is the Deviance Information Criterion, and pD indicates the effective
number of parameters used in the model. Lower values of DIC suggest better model fit, considering model
complexity (for more information about Dbar, Dhat, and DIC reader can go through Spiegelhalter et al.,
2002). Among the models, NT-IW exhibits the lowest DIC value, closely followed by NS-IW. However, the
differences in DIC values between the models are small, indicating comparable fits.

5. Conclusion

This research introduces three novel trigonometric distributions derived from the Inverse Weibull (IW)
distribution. We estimate the parameters associated with these new distributions using both Maximum
Likelihood Estimation (MLE) and Bayesian methods. Our analysis is conducted exclusively through Bayesian
techniques, employing Markov Chain Monte Carlo (MCMC) simulations with the Gibbs algorithm to generate
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independent samples. By comparing our proposed models with alternative ones using real-world data, we
find that all three models demonstrate comparable performance in fitting the data. This suggests that
our proposed distribution family, along with its constituent distributions, holds promise for application
across various fields such as medical science, reliability engineering, and survival analysis. Furthermore, we
anticipate that future endeavors may leverage this distribution family to develop additional models.
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