
Pak.j.stat.oper.res. Vol.20 No.3 2024 pp 553-586 DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4609

Dependence of Drought Characteristics:
Parametric and Non-parametric Copula Approach

Ozan Evkaya1,∗, Honygi Lu2

∗Corresponding author

1. School of Mathematics, University of Edinburgh, United Kingdom, oevkaya@ed.ac.uk
2. NatWest Bank Groups, Edinburgh, United Kingdom, hongyi.luu@gmail.com

Abstract

Drought, which has harmful impacts both environmentally and economically, is one of the most devastating natural
phenomena. In order to better understand and monitor the effects of drought, various methods have been developed in
recent decades to quantify drought characteristics, with a primary focus on univariate drought indices. Understanding
drought characteristics is essential for conducting an in-depth examination of its impacts on a specific area. That
specifically requires examining the specific characteristics of drought such as its duration, or severity and including
the association between these characteristics. In that respect, it is crucial to model the joint behavior of these drought
characteristics. This study endeavors to investigate univariate and bivariate drought indices using both parametric and
non-parametric copula techniques. For that purpose, drought characteristics, such as duration, severity, mean intensity
and peak intensity are analysed relying on different drought indices. The dependence among the main characteristics
is evaluated and corresponding bivariate return period calculations are investigated. The data set used in this study is
retrieved from monthly meteorological observations collected at five different Stations in Konya, located in the Central
Anatolia Region of Türkiye. As we explored, parametric or non-parametric copula usage may differ slightly based
on the extreme drought cases. In that respect, the findings of the study examines the suitability of both parametric
and nonparametric dependence setting for a specific region by testing across different weather stations. Besides, that
comparative study indicates the importance of using multiple drought indices for different geographical reasons for
extreme dry periods.
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1. Background

Drought is an inevitable and long-lasting natural phenomenon that often leads to environmental, societal and economic
damages. It mainly arises from an insufficient amount of precipitation compared to the normal level, resulting in
significant economic and environmental impacts over extended time and spatial scales. In recent years, many countries
have encountered dry periods, leading to tremendous worldwide economic losses. To illustrate, droughts have had
large impacts on the population, often leading to significant damages (50% of the mortality due to natural hazards).
Meanwhile, nearly 7% of economic losses have been associated with the occurrence of dry periods worldwide (Núñez
et al., 2011). In that respect, monitoring and understanding drought require increased attention and it is vital to design
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efficient drought management plans to reduce its harmful impacts.
Drought has been increasing in Türkiye in recent years, and it is predicted that there will be a significant lack of
precipitation, especially in the Southeastern and Central Anatolia regions and the Aegean region. Global warming,
combined with the current lack of precipitation, constitutes an important obstacle to meeting the water requirements
for drinking and agriculture. Drought is occurring as a result of rising temperatures and insufficient precipitation,
observed in many basins of Türkiye. The Konya Closed Basin among others, located on the southwestern edge of
the Central Anatolian Plateau, plays a crucial role in Türkiye’s agricultural output, encompassing 10% of the entire
farmland (mainly relying on the rain-fed agriculture (Evkaya et al., 2019)). Geographically, Konya Closed Basin,
which encompasses an area of 53,850 square kilometers, is situated in the Central Anatolia region of Türkiye and
accounts for 7% of the country’s total area. However, because of its semi-arid climate, it is one of the regions most
affected by drought, and a particularly vulnerable area to drought due to its meteorological characteristics. This region
is mainly classified as having a cold, semi-arid climate with low precipitation levels, mainly in winter and spring.
Therefore, it is crucial to provide a detailed analysis of the performance of drought indexes in this particular region.
As a widely applied monitoring tool, univariate drought indices aim at capturing drought characteristics but may not
be sufficient for quantifying risk. Generally, the benefits are limited since they are based on just one climatic variable.
In the recent decades, multivariate setting is applied to construct more reliable drought indices. More clearly, the joint
behavior of weather parameters are considered to derive a multivariate standardized index. To develop flexible mul-
tivariate distribution functions, copula functions played an important role recently. Mainly, this framework allows to
model the dependence structure of the massive multivariate data where the joint dependence is of great interest and the
usual normality assumption is violated. Copulas successfully cover both negative and positive dependence, including
the case of independence and incorporating asymmetric dependence structure as well. Copulas and their multivariate
extension (vine copulas) have widespread usage in various areas that require multivariate modelling, including quan-
titative finance, medicine, geostatistics, and hydrology. In particular, copula-oriented hydrological studies, including
the use of copulas for drought analysis, have been increasingly employed in recent years. Specifically, it is vital to
consider the interactions between weather variables in the design of any standardised drought index.
For many decades, researchers have proposed several indices and methods to detect and monitor droughts by different
variables such as precipitation, soil moisture, stream flow, and evapotranspiration (Heim et al., 2000). One of the
oldest indicators is called the Palmer Drought Severity Index (PDSI), having various recent adaptations. More widely
applied ones are the Standardised Precipitation Index (SPI) (McKee et al., 1993) and Standardised Precipitation Evap-
otranspiration Index (SPEI) (Vicente-Serrano et al., 2010) by following a similar methodology. SPI is only based
on the long-term precipitation amount for the certain period of time, whereas SPEI utilises precipitation and evapo-
transpiration data to determine dry periods. Mainly, SPEI uses the idea of the climatic water balance (precipitation
minus potential evapotranspiration) to characterise dry or wet circumstances. As a common similarity, both indices
are in the univariate form regarding its construction but it is observed that SPEI is more useful for incorporating the
effect of climate change by finding trends in time series data (Erhardt and Czado, 2018). Recently, different versions
of such univariate standardised indices have been introduce; (including but not limited to) Reconnaissance Drought
Index (RDI) (Tsakiris and Vangelis, 2005), Streamflow Drought Index (SDI) (Nalbantis, 2008), Standardised Runoff
Index (SRI) (Shukla and Wood, 2008), and Regional Drought Area Index (RDSI) (Fleig et al., 2011) and more. There
are many other alternatives in the growing literature for drought monitoring, and a recent comprehensive review of
various indices can be found in (Alahacoon and Edirisinghe, 2022). In a nutshell, the concept of standardised drought
indices is generally summarised with the Standardised Drought Analysis Toolbox (SDAT), which includes the possi-
bility of extending the idea of SPI to bivariate data using non-parametric estimates (Farahmand and AghaKouchak,
2015). Afterwards, this process is generalized and expanded for higher dimensional data so that it is possible to con-
struct any standardized index by flexibly embedding the relationship between weather variables (Erhardt and Czado,
2018). These new tools have recently been applied to specific regions and they have mainly exploited the benefits of
pair copulas for constructing multivariate drought index.
Another drought-related concept is called the return period with the corresponding probability of exceedance. Once
a standardized index is created for a specific weather gauge, drought characteristics can be described using certain
thresholds in terms of the run theory. Mainly, the properties of any drought event can be summarized using the char-
acteristics such as duration, severity, peak intensity and mean intensity over a certain period of time. The relationship
between these characteristics is worth exploring to gain a deeper understanding of drought based on the available data
and fitted models. Specifically, different return periods and related joint exceedance probabilities are crucial quantities
that decision-makers can utilize. In analogy to the use of copulas for multivariate drought indices, one can benefit
from copulas to capture the dependence structure between drought characteristics.
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In addition to constructing new joint indices, one can benefit from copulas to analyze drought properties more effi-
ciently. The main motivation for this approach relies on the fact that separate univariate frequency analysis are not
satisfactory (Serinaldi et al., 2009). Since one weather variable is not sufficient enough to conduct a comprehensive
evaluation of drought because of the complexity of its nature (Shiau et al., 2007), considering the joint distribution of
drought characteristics is more reliable in general (Mishra and Singh, 2010). As drought can be defined by its charac-
teristics (Stambaugh et al., 2011), there have been many studies that show how copulas and the dependencies between
drought features work well together. Copulas have been introduced in rainfall studies as they offer a more flexible
approach that allows different types of marginal distributions to coexist and combine to generate a multivariate distri-
bution. (Kao and Govindaraju, 2007, 2008, 2010, Serinaldi et al., 2009). Another advantage of using copula is that the
method helps to relax the independence assumption, inappropriate for designing hydrological variables (De Michele
and Salvadori, 2003) (Genest and Favre, 2007) (Zhang and Singh, 2007). By borrowing the same approach, it is pos-
sible to consider the use of parametric and non-parametric copulas in order to capture the dependence between the
drought characteristics.
As one of the pioneering works, (Shiau, 2006) and (Shiau and Modarres, 2009) estimated the Standard Precipita-
tion Index by fitting rainfall intensity based on the Gamma distribution. Afterwards, Abdul Rauf and Zeephongsekul
investigated rainfall severity and duration patterns in the Australian state of Victoria using parametric distributions,
(Abdul Rauf and Zeephongsekul, 2014a,b). However, as expected, this framework does not work well for every
weather data and has a poor fit near the tails of the distribution (Haghighat jou et al., 2013). Recent related works
mainly follow the implementation of non-parametric marginals, and even non-parametric copulas for the analysis of
drought characteristics. To begin with, the SDAT mentioned above relies on a non-parametric framework that can be
applied to different climatic variables including precipitation, soil moisture and relative humidity, without assuming
typical parametric distributions. (Farahmand and AghaKouchak, 2015). In a similar vein, the multivariate tool in-
troduced by Erhardt and Czado allows non-parametric distribution estimates for the climatic variables for the index
construction (Erhardt and Czado, 2018). Generally, previous works have focused on the use of the parametric type of
copulas to explore the dependence structure between pre-selected drought characteristics. For instance, conditional
probabilities and multivariate return period calculations have been investigated based on the joint probabilities with
copulas. Furthermore, copula functions have been said to be useful and reliable methods for probabilistic drought
analysis (Mirabbasi et al., 2013) (Hesami Afshar et al., 2016). On the other side, non-parametric copula approaches
have also been examined for the analysis of rainfall and severity and duration using six stations in the state of Victoria,
Australia (Abdul Rauf and Zeephongsekul, 2014a). Their main findings indicate that non-parametric approaches may
give better results than a pure parametric setting. In another study, the drought duration, severity and peak intensity
were analysed based on only parametric copula with parametric marginals for the Türkiye case (Evkaya et al., 2019).
Another work combined non-parametric margins with parametric copulas over the same study area, including similar
weather stations (Vazifehkhah and Kahya, 2019).
In light of the previously mentioned works, this study aims to contribute to the analysis of drought characteristics by
considering the use of both parametric and non-parametric copulas. Besides, it is aimed to use vine copula models
to create a drought index and assess drought risk. For that purpose, multivariate indices are generated and the corre-
sponding dependence emerged in drought characteristics are examined by copulas. The main objective is to examine
the benefits of parametric and non-parametric copula approaches in modelling the joint distribution of drought char-
acteristics. For that purpose, widely used drought characteristics such as duration, severity, mean intensity and peak
intensity are derived using various drought indices. Mainly, we explored four different drought indices, 2 of them
are univariate (classical Standardised Precipitation Index (SPI) and Standardised Precipitation and Evapotranspiration
Index (SPEI) relying on univariate weather indicator), 2 joint indices relying on bivariate and trivariate settings as fol-
lows; (i) SBI(PREC-PET): bivariate case using both precipitation and evapotranspiration and (ii) STI(PREC-PET-RH):
trivariate case using precipitation, evapotranspiration and relative humidity, via pair copulas. Using the PREC-PET or
PREC-PET-RH variables together is reasonable for joint drought index construction, but requires careful consideration
of their meaning. Since the aim is to explore the drought characteristics relationship, combination of these weather
variables in the drought index adds complexity but also depth to the analysis. Higher PET or lower RH typically cor-
responds to more severe drought conditions, whenever PET is lower or RH is higher, the conditions are more normal
compared to dryness.
For the construction of drought indices, available toolkit are exploited by considering certain parameter selections.
Afterwards, the four main drought characteristics (duration, severity, mean intensity and peak intensity) are extracted
with the inter-arrival time. As a next step, parametric approach is considered for the marginal distributions of drought
characteristics. In order to model the dependence structure between drought characteristics, both parametric and
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non-parametric copula approaches are investigated over the parametrically modelled marginals. Finally, based on the
fitted dependence structure of the characteristics, corresponding bivariate exceedance probabilities are derived for the
specific drought events. As a case study, monthly data spanning 720 months between 1950 and 2010 from weather
stations in Türkiye located within Central Anatolia Region is explored for the application of the drought analysis. After
summarising the main results for the main weather station as Aksehir, other stations; Cihanbeyli, Karapinar, Cumra
and Yunak are added from the same region. The rest of the paper is designed in 5 consecutive sections, Firstly, related
research studies are discussed briefly in the literature review part, then copula theory simply introduced. Afterwards,
modeling steps and drought index calculation part is described. In the findings, Türkiye case study is explored in
detail. Finally, the main findings and limitations of the work is summarized including potential future directions.

2. Copula Theory

Previously, Sklar introduced copulas that combine individual distribution functions flexibly to generate a multivariate
distribution function (Sklar, 1959). The construction of multivariate distribution, therefore, is simplified to examining
the relationship between the random variables when the marginal distributions are defined. This study employs the
copula method for drought analysis in two different ways; both index design and dependence of characteristics using
two forms parametric (P) and non-parametric (NP).

Definition 2.1. For p ≥ 2, a p-dimensional copula is a multivariate distribution having marginals are all uniform
over I = [0, 1]. For a p-dimensional vector U = (U1, U2, . . . , Up) on the unit hyper-cube, a copula function C is
defined as:

C(u1, u2, . . . , up) = Pr(U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up). (1)

Theorem 2.1 (Sklar’s Theorem). Let F be a continuous p-dimensional distribution function with univariate margins
F1, F2, . . . , Fp. Let Aj denote the range of Fj and Aj = [−∞,∞] where j = 1, 2, . . . , p. Then, there exists a copula
function C such that for all (x1, x2, . . . , xp) ∈ [−∞,∞] it satisfies the following:

F (x1, x2, . . . , xp) = C(F1(x1), F2(x2), . . . , Fp(xp)). (2)

The functionC, which connects the joint distribution F with its marginals, is the copula and this is determined uniquely
whenever all F1, F2, . . . , and Fp are continuous marginal distributions.

Knowing the distribution function for many random variables is one of the most efficient ways of analyzing the
association between multivariate outcomes from a probabilistic viewpoint. Copulas or copula functions are extremely
promising for this goal since they focus on the joint behavior of random variables without imposing strict constraints
on their marginal distributions. In that respect, there exists a certain relationship between the dependence measures and
copula parameters for any multivariate random vector. Among the alternatives, the rank-based dependence measures,
such as Spearman’s ρ and Kendall’s τ , are widely considered for the copula functions (Czado, 2019).

2.1. Parametric Copulas

Sklar’s Theorem has an essential reverse implication that is often used when building multivariate models by analysing
the individual behaviour of the components of a random vector and their dependence properties as described by
copulas.

Theorem 2.2. If F1, F2, . . . , Fp are univariate distribution functions, and if C is any p-copula, then the function
F : Rp → I defined by Equation 2 is a p-dimensional distribution function with margins F1, F2, . . . , Fp. In other
words, a copula C can be derived from any p-variate distribution function F using Equation 2. When each Fi is
continuous for every i ∈ 1, 2, . . . , p, C can be computed using the formula:

C(u1, u2, . . . , up) = F (F−1(u1), F
−1(u2), . . . , F

−1(up)), (3)

where F−1
i is the pseudo-inverse of Fi given by F−1

i (s) = inf {t|Fi(t) ≥ s}. Thus, copulas transform the random
variables (X1, X2, . . . , Xp) into to the set of random variables (U1, U2, . . . , Up) = (F1(X1), F2(X2), . . . , Fp(Xp)),
which have uniform margins on I and preserve the dependence among the components.

Alternatively, the above theorem implies that copulas pair various univariate density distributions to generate a p-
variate density distribution. This enables copulas to be used for modelling scenarios where each marginal requires a
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different distribution, which offers a valid alternative to classical multivariate density distributions such as Gaussian,
Pareto, Gamma, among others. The Equation 3 provides a direct way to derive the copula density, c (u1, . . . , up)
= ∂pC (u1, . . . , up) / (∂u1 · · · ∂up). Then, we can express copula density function c (u1, . . . , up) as follows:

c (u1, . . . , up) =
f
(
F−1
1 (u1) , . . . , F

−1
p (up)

)∏p
j=1 fi

(
F−1
j (uj)

) . (4)

where f, f1, . . . , fp represents the densities corresponding to F, F1, . . . Fp, respectively. The above equation permits
the use of arbitrary parametric distribution functions F to construct parametric copula families. Mainly, the parametric
families can be classified into elliptical and Archimedean types based on their construction mechanism.
In particular, elliptical copulas are widely used families in statistical modelling, finance, and insurance to study mul-
tivariate dependence. The Gaussian and Student-t copulas are the most notable examples of elliptical copulas, which
can be constructed with arbitrary parametric distribution functions F , allowing for flexibility in their use. By nature,
the bivariate Student t-copula function exhibits both upper and lower tail dependence unlike the Gaussian one.
Gaussian (Normal) copula: Let ΦΓ, be the cumulative density function of a p-dimensional vector following a multi-
variate normal distribution with zero means, unit variances and correlation matrix Γ ∈ [−1, 1]p×p. Also, let Φ be the
univariate standard normal cumulative distribution function. The following provides the expression for the Gaussian
copula with correlation matrix Γ: CGauss

Γ (u1, . . . , up) = ΦΓ(Φ
−1(u1), . . . ,Φ

−1(up)) where Φ−1 denotes the inverse
of the univariate standard normal cumulative distribution function, Φ.
Student t-copula: Let tν,Γ, be the cumulative density function of a p-dimensional vector following a multivari-
ate t-distribution with zero mean and scale parameter matrix Γ ∈ [−1, 1]p×p and degrees-of-freedom parameter
ν. Also, let tν be the univariate cumulative density function of a t-distribution with degrees-of-freedom parameter
ν. The following provides the expression for the Student-t or t-copula with parameters ν,Γ: Ct

ν,Γ(u1, . . . , up) =

tν,Γ(t
−1
ν (u1), . . . , t

−1
ν (up))

Another essential collection of parametric copula families is known as Archimedean copulas. To begin, let us introduce
a continuous, strictly monotonic decreasing, convex ϕ : [0, 1] → [0,∞] constructive function with ϕ(1) = 0, called
as Archimedean generator (Nelsen, 2007). The widely known families, relying on the Archimedean generator, are
simply exemplified as follows:
Frank copula: CFrank

θ (u1, . . . , up) = − 1
θ

[
log

(
1 +

∏p
i=1(exp(−θui)−1)

(exp(−θ)−1)p−1

)]
Gumbel copula: CGumbel

θ (u1, . . . , up) = exp
[
−
(∑p

i=1(− log(ui))
θ
)1/θ]

Clayton copula: CClayton
θ (u1, . . . , up) =

(∑p
i=1(ui)

−θ − p+ 1
)−1/θ

There are also two parameter Archimedean copulas, such as BB1, BB7 or BB8 families. To exemplify, elliptical
copulas and the Frank copula are preferable to examine the symmetric dependence structures. On the other hand,
Clayton and Gumbel copulas are useful to identify different tail dependencies at lower and upper quantiles, respec-
tively. It should be noted that certain parametric families described here have restrictions in their parameter space. For
example, some may only be suitable for positive dependence, and some may only accommodate either upper or lower
tail-dependence. Upper tail-dependence occurs when the likelihood of other variables taking extreme values in-
creases as one variable assumes an extreme value. To overcome these limitations and provide more flexibility, rotated
copula families can be employed. The density functions of rotated copulas can be derived from the copula density,
expressed as; (i) 90 degrees rotation: c90(u, v) := c(1− u, v), (ii) 180 degrees rotation: c180(u, v) := c(1− u, 1− v)
and (iii) 270 degrees rotation: c270(u, v) := c(u, 1 − v) (Nagler, 2014). Readers are referred to (Czado, 2019) for a
comprehensive discussion on different copula families.
To keep things simple and relevant to the number of variables, all the possible parametric families are tested automat-
ically by benefiting from the related R packages. The main families and their rotated versions are all considered using
VineCopula CRAN and SIndices open-source R packages by adding new helper functions.

2.2. Non-parametric Copulas

Previously, univariate Kernel density estimation (KDE) was introduced by Rosenblatt (Rosenblatt, 1956) and Parzen
(Parzen, 1962). Wand and Jones (Wand and Jones, 1993) elaborately discussed a natural extension to the multivariate
case. For a more extensive introduction, interested readers can refer to (Simonoff, 2012). In the non-parametric
estimation literature, as a common practice, independently and identically distributed (i.i.d.) copies are considered
rather than i.i.d. observations (Nagler, 2014). Therefore, we let (X,Y ) ∈ R2 be a random vector with density f and
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assume we are given i.i.d. copies (Xi, Yi)i=1,...,n. Recall that the density can be defined as

f(x, y) =
∂2F (x, y)

∂x∂y
= lim

ϵx→0
lim
ϵy→0

F (x+ ϵx, y + ϵy)− F (x− ϵx, y − ϵy)

4ϵxϵy
, (5)

where F is the CDF corresponds to f . A natural estimator of the density could be obtained by fixing values for ϵx, ϵy
in (5) and benefiting from the empirical CDF (F̂n), as an estimator for F . For simplicity, take ϵx = ϵy = b, for some
small b > 0. The resulting estimator, using the kernel function, can be written as

f̂n(x, y) =
1

nb2

n∑
i=1

K

(
x−Xi

b

)
K

(
x− Yi
b

)
(6)

where the kernel K is defined as K(z) :=

{
1/2 if − 1 ≤ z ≤ 1

0 else
.

The estimator calculates the fraction of all (Xi, Yi) that lie in a (rectangular) neighborhood around the point (x, y)
and divides it by the neighborhood’s area. The parameter b controls the size of the neighborhood and is usually called
the bandwidth of the estimator. This given estimator of the form (6) is known as a bivariate kernel density estimator.
In the above case, the kernel K corresponds to the uniform probability density function with support on the interval
[−1, 1]. In general, one could use any probability density function as the kernel K and the resulting estimator will be
a proper probability density function. However, it is usually assumed that the kernel is bounded, i.e. K(z) < ∞ for
z ∈ R, and symmetric. The resulting estimator benefits from these features and is easier to theoretically analyze.
Definition: The kernel density estimator with bandwidth parameter bn > 0 is given by

f̂n(x, y) =
1

n

n∑
i=1

Kbn (x−Xi)Kbn (y − Yi) .

for all (x, y) ∈ R2. In general, the kernel density estimator can be interpreted from both a local and a global per-
spective. Herein, we see a point estimate as a weighted average of frequencies in a neighborhood of that point. The
weighting is determined in accordance with the kernel function K, and the bandwidth bn is responsible for determin-
ing the size of the neighborhood. Note that the bandwidth bn in the above definition is annotated to depend on the
sample size n. Most commonly used kernel functions are Gaussian, Epanechnikov or Uniform with different char-
acteristics. Various methods to address this issue are considered, but only the bivariate definitions and expressions
presented below using the notations introduced before (Nagler, 2014).
Naive estimator: A naive estimator of a copula density c(u, v) with bandwidth parameter bn > 0 is given by
ĉn(u, v) =

1
n

∑n
i=1Kbn(u−Ui)Kbn(v−Vi) for all (u, v) ∈ [0, 1]2 and we used the notation Kb(·) = 1/bK(·/b),K

is a symmetric, bounded probability density function on R2 and bn > 0.
Mirror-Reflection estimator: The mirror-reflection estimator of a copula density c(u, v) with bandwidth parameter
bn > 0 is given by ĉ(MR)

n (u, v) = 1
n

∑n
i=1

∑9
k=1Kbn

(
u− Ũik

)
Kbn

(
v − Ṽik

)
for all (u, v) ∈ [0, 1]2.

Improved Mirror-Reflection estimator: The improved mirror-reflection estimator of a copula density c(u, v) with
bandwidth parameter bn > 0 and shrinkage function r : [0, 1] → R is given by ĉ(MRS)

n (u, v) = 1
n

∑n
i=1

∑9
k=1Kr(u)bn(u−

Ũik)Kr(v)bn(v − Ṽik) for all (u, v) ∈ [0, 1]2.
Beta Kernel estimator: The beta kernel estimator of copula density c(u, v) with bandwidth parameter bn is given by

c(β)(u, v) =
1

n

n∑
i=1

K

(
Ui,

u

bn
+ 1,

1− u

bn
+ 1

)
K

(
Vi,

v

bn
+ 1,

1− v

bn
+ 1

) (7)

where K(x, p, q) is the density of a Beta(p, q)-distributed random variable evaluated at x, for all (u, v) ∈ [0, 1]2.
Transformation estimator: The transformation estimator of a copula density c(u, v) with bandwidth parameter bn is
given by

ĉ(T )
n (u, v) =

∑n
i=1Kbn

(
Pu − Φ−1 (Ui)

)
Kbn

(
Pv − Φ−1 (Vi)

)
nϕ (Pu)ϕ (Pv)

(8)
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where Pu = Φ−1(u), Pv = Φ−1(v) for all (u, v) ∈ [0, 1]2, where Φ be the standard normal cdf and ϕ its density. In
summary, this copula density estimator inherits all of the desirable qualities of the standard kernel density estimator.
By following this transformation idea, further extensions such as the fully parametrised transformation estimator, or
local Likelihood Transformation estimator based on different choices of smoothing parametrisation can be considered.
As this study aims to implement such ideas for having the best non-parametric copula fit, the rest of the theoreti-
cal foundations and related properties are skipped. Interested readers can see (Nagler, 2014) for more information
on kernel methods for copulas. As a computational tool, the functionalities given in kdecopula R package are
considered.

3. Modeling Steps

The model we follow was initially proposed by Erhardt et al. (Erhardt and Czado, 2018) to compute univariate and
multivariate standardised drought indices.

3.1. Identification of dry and wet conditions

The main drought-related raw variables considered in the study are Precipitation (PREC), Mean Temperature (MTemp),
and Relative Humidity (RH), which are essential for drought index construction. The Water Balance (WB), a key in-
gredient of SPEI, can be calculated by using differences between PREC and Potential Evapotranspiration (PET). For
the calculation of PET, we are exploiting the (MTemp) values. Each arbitrary drought input variable is represented
by a time series, denoted as xtk, where k = 1, . . . , N ; t = 1, . . . , T . To ensure that small values correspond to dry
conditions and large values correspond to wet conditions, the sign of the time series should be reversed if it is the
other way around. For instance, high temperatures signify high evapotranspiration, indicating dry conditions, and low
temperatures indicate wet conditions. Thus, the (PET) series has to be multiplied by −1 while processing the data.

3.2. Elimination of seasonality

The monthly time series, xtk, typically exhibit seasonal variations in their mean, variance and skewness. To eliminate
this seasonal heterogeneity, we need to standardize the time series separately for each month of the year. Each time
point, xtk with k = 1, . . . , N ; t = 1, . . . , T , is represented as a 2-tuple (mk, yk), where mk ∈ 1, . . . , 12 (1 ≡ January,
. . ., 12 ≡ December) denotes the month, and the integer yk ∈ Z denotes the corresponding year. The month-wise time
series xm := (xtk)k∈K(m) = {x(m,yk), k ∈ Km}, m = 1, . . . , 12, is then constructed, where the index set for month
m is defined as Km := {k : mk = m}.
The first step in standardizing the month-wise time series xm, where m = 1, . . . , 12, is to remove any seasonal skew-
ness. This is accomplished through continuous, monotonic increasing transformations, such as the Yeo and Johnson
transformation ψ : R×R → R (Yeo and Johnson, 2000), which is similar to the famous Box-Cox transformations. As
stated in (Yeo and Johnson, 2000), the skewness in each month-wise time series xm, m = 1, . . . , 12, can be reduced
by estimating a parameter λm for each month separately using maximum likelihood estimation. The resulting trans-
formed series is denoted as x̂m, m = 1, . . . , 12. These transformed series serve as the key inputs for the subsequent
calculation of the drought index.

3.3. Elimination of temporal dependence

In addition to seasonality, time series often contain temporal dependence, which can be captured by using auto-
regressive moving average (ARMA) models (Box et al., 2015). An ARMA(p, q) model, with auto-regressive order
p ∈ N0 and moving average order q ∈ N0, is used to analyse a deseasonalised and homogeneous time series rtk with
zero mean, where k = 1, . . . , N . The model is defined by the equation of rtk =

∑p
j=1 ϕjrtk−j

+
∑q

j=1 θjεtk−j
+ εtk

where the error terms εtk are independently and identically distributed as N
(
0, σ2

)
. Here, ϕj and θj are the auto-

regressive and moving average parameters, respectively. If p or q equals 0, the corresponding component of the model
is not considered, resulting in an MA(q) or AR(p) model, respectively. If appropriate orders p and q are selected,
and the corresponding parameter estimates ϕ̂j , j = 1, . . . , p, and θ̂j , j = 1, . . . , q, are used, the model residuals
ϵtk := rtk − Σp

j=1ϕ̂jrtk−j
− Σq

j=1θ̂jϵtk−j , k = 1, . . . , N can be approximately temporally independent. Therefore,
the ARMA(p, q) model can help to eliminate the serial dependence in the time series, and the residual terms ϵtk can
provide information about the impact on the current dryness or wetness conditions every month. As noted by Erhardt
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and Czado (Erhardt and Czado, 2018), an AR(1) model is usually sufficient for monthly drought statistics. In this
study, we follow a similar approach to construct drought indices from weather time series using ARMA models.

3.4. Transformation to standard normal

To transform the data to a standard normal distribution, we apply the estimated distribution F̂N to transform our
residuals, ϵtk , k = 1, . . . , N , into a u-scale, approximately uniformly distributed over the interval [0, 1]. The estimate
F̂N (x) is used to compare and test the effectiveness of the non-parametric empirical distribution function of the data:
F̂N (x) := (1/N)ΣN

k=1I{ϵtk ⩽ x}, with residuals ϵtk , k = 1, . . . , N where I serves as an indicator function. When
fitting a distribution to a sample ϵtk , k = 1, . . . , N , whether parametric or not, it is crucial to assume that the sample
is identically and independently distributed. Regarding the data used in this study, for instance, the independence
assumption was already established in the previous modelling phase, where temporal dependencies were modelled
and eliminated. Additionally, there is no observed variation in the distributions across different months. This is
a monotonic increasing transformation, so the process is also referred to as probability integral transformation. The
calculation of utk is done by formulating utk := NF̂N (ϵtk)/(N+1) = rank(ϵtk)/(N+1), k = 1, . . . , N . To prevent
any utk value from being equal to 1, we multiply the expression by N/(N + 1). Then, we transform the data to the
standard normal distribution by applying the inverse probability integral transform based on the cumulative distribution
function Φ of a standard normal distribution, which results in the calculation of ztk := Φ−1(utk) for k = 1, . . . , N .
The transformed data ztk , where k = 1, . . . , N , is approximately independently and identically distributed with a
standard normal distribution (Erhardt and Czado, 2018).

3.5. Standardised index with different timescales

This study applies the temporal aggregation at the end of the described modelling process, to maintain the indepen-
dence assumption required for fitting a probability distribution to the residuals (Erhardt and Czado, 2018). Once we
have completed the corresponding modelling steps outlined earlier in this section, we can compute the index on any
desired timescale without repetition. The time series, denoted as ztk , k = 1, . . . , N , is assumed to be almost tem-
porally independent and follows a standard normal distribution. Therefore, it is already a standardised index with a
timescale l = 1. A key advantage of using a normal distribution is that the sum of independent normally distributed
random variables is also normally distributed. Therefore, we can compute standardised indices for timescales l ⩾ 1
by exploiting this property. Specifically, by taking the sum Σl−1

j=0ztk−j
of standard normal variables, we obtain a new

normal distribution with properties N(0, l). Thus, a standardised index with timescale l could be represented as:

SIl (tk) := (1/
√
l)Σl−1

j=0ztk−j
,

for k = l, . . . , N . Notably, this construction is applicable not only to univariate cases but also to multivariate stan-
dardised drought indices. The categorisation of the indices is based on dryness and wetness categories given by the
quantiles of the standard normal distribution (Svoboda et al., 2002), such as the 2.05 < SI < ∞ quantile represents
the Exceptionally wet condition whereas, −∞ < SI ≤ −2.05 shows the Exceptionally dry period. In the work of
(Svoboda et al., 2002), totally 10 different categories are expressed based on the range of quantile levels.

4. Drought Index

Drought indices play a crucial role in monitoring and assessing drought events, which is essential for effective drought
management. These indices enable the quantification of drought characteristics, providing a more comprehensive
understanding of the impact of drought. For this study, we elaborate two types of drought indices, namely univariate
and multivariate cases, and briefly describe the methods used for their calculation.

4.1. Univariate Drought Index

To compute any standardised drought index, specific steps must be taken based on the selected weather-related vari-
able. For example, the SPI value is calculated based on monthly precipitation (PREC) (McKee et al., 1993). SPEI is
an improvement of SPI and considers both PREC and evapotranspiration (PET) through the water balance function:
WBi = PRECi − PETi for the given i’th time location. This new univariate variable serves as the input for the
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calculation of SPEI, similar to SPI. While the calculation of SPEI is generally robust and straightforward (Keyantash
and Dracup, 2002), it requires a larger number of observations and is sensitive to the method of PET calculation. The
interpretation of SPEI is comparable to that of SPI and considers both precipitation deficit and temperature variations
by incorporating PET. The Thornthwaite method, which takes into account the mean temperature and latitude of the
weather station, is commonly used to calculate PET. In this study, the functionalities in the SPEI CRAN package
were used to derive PET values (Beguerı́a and Vicente-Serrano, 2017). Afterwards, the functions belonging to the
SIndices R package are adapted to construct univariate indices using raw weather variables.

4.2. Multivariate Drought Index

In addition to the widely used univariate indices, SPI and SPEI, this study evaluates the performance of multivariate
indices for the comparison purposes. The standardised multivariate indices are calculated using the method outlined
by (Erhardt and Czado, 2018), which can be adapted to model various types of droughts based on different drought-
related variables. The method enables the combination of drought information captured in the different variables into
a single standardised multivariate drought index using vine copulas, namely Pair Copula Constructions (PCCs).
By following Sklar’s theorem, the margins and dependence structure can be modelled separately. As a flexible ex-
tension of limited multivariate copulas, vine copulas (vines) are d-dimensional copula constructions composed of
both unconditional and conditional bivariate copulas (Aas et al., 2009). Let assume u := (u1, . . . ,ud) be the cop-
ula data that are obtained from the marginal models corresponding to d different drought input variables, where
uj = (uj,tk)k=1,...,N , j = 1, . . . , d, and uj,tk is the copula data corresponding to variable j at time tk. In the
second step, a suitable vine copula is estimated for these data (Erhardt and Czado, 2018). Generally, the structure
of (d-dimensional) vine copulas is organised by using a nested set of trees T1, . . . , Td−1, which are connected graphs
without cycles. The trees Tk, k = 1, . . . , d−1, are nested in the sense that edges of a tree (which are labelled following
the scheme i, j;Dk, where {i, j} conditioned set, Dk is (k − 1)-dimensional conditioning set) become nodes in the
subsequent tree. For a more general explanation of vine copulas, see (Aas et al., 2009) and the recent book (Czado,
2019).
The computation of the multivariate drought index starts with modelling the margins of the input variables and their
dependence using copulas, as they allow for separate modelling of the margins and dependence structure. The first step
involves changing the sign of the input data, if required, then eliminating any seasonality and temporal dependence.
Next, a non-parametric distribution of the residuals is estimated, enabling the transformation to the u-scale, which is
required for copula-based dependence modelling. Mainly, there are three alternatives to create a multivariate drought
index using different sources of information, as described in (Erhardt and Czado, 2018). The primary definition of the
aggregation method is illustrated below;

SIAl (1, . . . , d) (tk) :=
1√
(ld)

l−1∑
i=0

d∑
j=1

Φ−1
(
vj,tk−i

)
.

For the simplicity, we mainly investigated the bivariate and trivariate index construction using (PREC-PET) and
(PREC-PET-RH) weather variables, respectively over different time scales (3, 6 and 9 months). We primarily utilised
the aggregation method (Method A) with a timescale of l = 3, since there exists a certain level of dependence between
considered climatic variables. It should be noted that the order in which variables are specified can influence the calcu-
lation, as noted by (Erhardt and Czado, 2018). Steps 1 to 3 involve modelling the margins and obtaining standardised
time series inputs. Step 4 uses the marginal models from the previous steps to transform several univariate margins
into the copula space (uniform margins). Step 5 is the calculation of classical univariate drought indices. Finally, Step
6 deals with vine-copula-based dependence modelling and provides a methodology to combine several variables into
a multivariate standardised index (Erhardt and Czado, 2018).

4.3. Drought Characteristics

Once the standardised drought indices have been generated over different time scales, it is possible to classify the index
values for interpretation and analysis. In this study, we set a 0-threshold for the standardised index, where positive and
negative values indicate wet and dry conditions, respectively. To better understand and describe the nature of drought
events, a set of drought characteristics can be derived from the behavior of the standardised index, exemplified by
SPI3 below;
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• Drought duration (D) is defined as the number of consecutive time intervals (months) where SPI3 remains
below the threshold value selected as 0 for drought condition.

• Drought severity (S) is defined as a total magnitude of SPI3 value during a drought period, which can be
formulated as Sd = |

∑D
i=1 SPI3i | where SPI3i denotes the SPI3 value in the i-th month, as an example.

• Peak Intensity (PI) is defined as the minimum SPI3 value within a drought period to identify the peak of
drought events.

• Mean Intensity (MI) is defined as the average SPI3 value within a drought period, which identifies the mean
of drought events. It could be formulated as MI = Sd

D , where D is the total drought period.

• Drought Inter-arrival Time (Ld) is defined as the elapsed time interval from the beginning of a drought to the
initiation of the following drought event (The total duration for two consecutive dry periods from the initiation
of a drought event to the next one).

4.4. Return Periods

The estimated return period for drought events provides valuable advice for proper water usage (Serinaldi et al., 2009).
The average elapsed time or mean interval time between the occurrences of important events, in particular, determines
the drought return period (Shiau and Shen, 2001). In this regard, univariate return periods for drought events with
duration, severity, and peak or mean intensity can be calculated as follows (Shiau and Shen, 2001) (Shiau, 2006).

RpD =
E(Ld)

1− FD(d)
, RpS =

E(Ld)

1− FS(s)
, RpPI =

E(Ld)

1− FPI(pi)
, RpMI =

E(Ld)

1− FMI(mi)

where RpD, RpS , RpPI and RpMI denotes univariate return periods for duration, severity, peak intensity and mean
intensity, respectively; FD(·), FS(·), FPI(·) and FMI(·) are percentiles of corresponding CDFs; and E(Ld) denotes
the expected value of inter-arrival time between consecutive drought events.
On the other hand, the return period that considers more than one variable is preferred because a multivariate approach
delivers more accurate findings in assessing drought. For the sake of simplicity and without loss of generality, we
now focus on the bivariate case. Especially, joint behaviour of the drought duration and severity in terms of bivariate
and conditional return periods are important tools to analyse dry periods. The return period of drought duration and
severity can be formulated based on two cases (Shiau, 2003).

• Case 1: When both the drought duration and severity exceed certain thresholds (Dd ≥ d ∧ Ds ≥ s), the joint
return period RpDd∧Ds

, which is also referred to as the ’and’ case in this study, can be calculated as follows:

RpDd∧Ds
=

E(Ld)

P (Dd ≥ d ∧Ds ≥ s)
=

E(Ld)

1− FD(d)− FS(s) + FDS(d, s)

=
E(Ld)

1− FD(d)− FS(s) + C[FD(d), FS(s)]

• Case 2: When either the drought duration or severity exceed the respective threshold (Dd ≥ d ∨Ds ≥ s), the
joint return periodRpDd∨Ds , which is also referred to as the ’or’ case in this study, can be calculated as follows:

RpDd∨Ds =
E(Ld)

P (Dd ≥ d ∨Ds ≥ s)
=

E(Ld)

1− FDS(d, s)
=

E(Ld)

1− C[FD(d), FS(s)]

where d, s ∈ R+ represent the thresholds for duration and severity, respectively; RpDd∧Ds
and RpDd∨Ds

represent
the joint return period for Case 1 (the ’and’ case) and Case 2 (the ’or’ case), respectively. The bivariate copula function
for drought duration and severity, C [FD(d), FS(s)], is computed from the corresponding marginal CDFs, FD(d) and
FS(s).
Once the suitable copula family has been selected for each characteristic pair,both univariate and bivariate return
periods can be derived by exploiting the properties of drought events and the drought indices. However, the inter-
pretation of the return period can become more prone to misinterpretation in non-stationary and multivariate settings,
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compared to classical univariate frequency analysis of independent-identically distributed (iid) data (Serinaldi, 2015).
This observation was pointed out by Serinaldi (Serinaldi, 2015), who argued that the return period Rp, which is often
interpreted as ”This event is expected to occur on average once each Rp years,” can be misleading in such settings.
Therefore, it is crucial to examine the joint probabilities that correspond to commonly studied bivariate return periods,
which can be expressed as denominators in return period definitions: (i) pand := 1−FD(d)−FS(s)+C[FD(d), FS(s)]
and (ii) por := 1− C[FD(d), FS(s)].
The calculations presented above are based on the univariate setting of the exceedance probability concept, which
represents the ’probability pM of observing a specific event at least once in the design life period of M years’. This
concept has a unique and general definition that applies to both univariate and multivariate cases. For this study, the
main goal is to examine the case where M = 1 to understand the likelihood of certain events for the upcoming year.
The calculations based on the exceedance probability concept, which represent the probability of observing a critical
event at least once in the design life period. This concept has a unique and general definition that applies to both
univariate and multivariate cases. The formulations for bivariate return periods and occurrence probabilities presented
earlier are extensions of the exceedance probability concept in the univariate setting. Further details on the use of
probabilities and the exceedance probability in place of return periods can be found in (Serinaldi, 2015).
In this study, we mainly focus on the corresponding joint exceedance probabilities instead of calculating the return
periods similar to other studies. Specifically, we examine various pairs of drought characteristics, such as Duration-
Severity, Duration-Peak Intensity, and Severity-Peak Intensity, for Case 1 and 2 as presented earlier. To illustrate, a set
of suitable grid values are considered for the calculation of pand and por cases. In the upcoming sections, mainly the
findings of two settings are summarised: Parametric marginals-Parametric Copulas (PP) and Parametric marginals-
Non-parametric Copulas (PN), with selected drought characteristics to see the potential impact of considered copulas.

5. Türkiye Case Study

This section first summarizes the numerical findings that belong to the monthly climatic data of the Aksehir weather
station in Konya province from 1950 to 2010. Mainly, the data includes three variables: monthly precipitation
(PREC), mean temperature (MTemp) and relative humidity (RH). During data preparation, a potential evapotran-
spiration (PET) variable is generated by using the Thornthwaite method, by using the MTemp as the input. Drought
index calculation and related dependence analysis are exemplified for the Aksehir station and then extended for dif-
ferent weather stations in the same province, visualized in Figure 1 with their location specific information (Source:
https://www.mgm.gov.tr/).

Figure 1: Map of Konya province including sub-regions (Considered stations: Aksehir (latitude 38.36, longitude
31.42), Cihanbeyli (latitude 38.65, longitude 32.92), Karapinar (latitude 37.71, longitude 33.52), Cumra (latitude
37.56, longitude 32.79) and Yunak (latitude 38.82, longitude 31.72))

5.1. Aksehir Weather Station

Regarding the constructed drought indices, including all stations that we explored, 3-month visual display is briefly
presented. For simplicity, the last ten years (2000-2010) are highlighted by considering the reported drought events in
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the Konya closed basin. The multivariate indices (SBI and STI) demonstrated comparable performance in capturing
the onset and recovery of the dry periods over time (See Figures in Appendix A). Regarding the reported drought
events such as 2000-2001, 2004-2005, 2006-2007 and 2008 in (Orman Bakanligi, 2023), the multivariate indices
performances aligned with the other used drought indices in that area. They behave similarly to each other but differ
from the univariate indices, especially from SPI behaviour. To illustrate, for the dry period in 2000-2001, multivariate
indices performance indicates more severe drought, whereas SPI has larger values and this is common in all the
considered weather stations. For a different period during 2007, the reported drought severity based on specific indices,
multivariate indices are aligning with the Decimal indices, commonly used in this specific region (Orman Bakanligi,
2023). Such nuances and comprehensive approach can play a crucial role regarding drought management for the Konya
closed basin, and the findings of the study directly contributing to enriching the Konya Basin Drought Management
Plans (Orman Bakanligi, 2023).
Mainly, the above-mentioned steps are followed to construct the related drought characteristics. The similar calcula-
tions are executed for different drought indices (SPI, SPEI, SBI and STI) over distinct time scales. To illustrate, the
extracted drought events for different indices can be summarized with their descriptive statistics as in Table 1.

Table 1: Drought Characteristics Statistics Based on Different Drought Indices.

SPI SPEI
Statistics 3-month 6-month 9-month 3-month 6-month 9-month

Drought Counts 102 65 62 96 69 55
E(D) 3.569 5.462 5.710 3.740 5.101 6.455
E(S) 2.781 4.297 4.414 2.989 4.067 5.165
E(MI) 0.621 0.568 0.452 0.644 0.540 0.454
E(PI) 1.005 0.954 0.747 1.025 0.896 0.822
E(Ld) 7.158 11.297 11.902 7.579 10.632 13.259

SBI STI
3-month 6-month 9-month 3-month 6-month 9-month

Drought Counts 95 78 61 97 70 54
E(D) 3.853 4.487 5.639 3.825 5.043 6.537
E(S) 2.91 3.553 4.598 2.864 3.890 5.145
E(MI) 0.574 0.46 0.437 0.612 0.497 0.462
E(PI) 0.933 0.774 0.728 0.999 0.840 0.762
E(Ld) 7.553 9.130 11.700 7.479 10.217 13.245

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity and Ld for the Interarrival
time. (E(.) stands for the expectation of the given characteristics.)

As one can realize from Table 1, there are certain impacts of selected time scale and the considered drought index for
the summarized drought events. Firstly, when the duration is increased from 3 to 9- months, the number of detected
drought events are decreased for all cases with different frequencies. Specifically, when the PET variable is taken
into account under univariate index (SPEI) or joint indices (SBI or STI), the drought count numbers are comparatively
smaller than SPI over 3-month scale. This pattern is preserved except the behavior of SBI over 6-month period in
the lower panel of the given Table 1. When the time scale increased, for each index, the corresponding inter-arrival
time between two consecutive dry periods are getting larger with different increasing rates naturally. In terms of main
characteristics, such a pattern occurs for duration and severity whereas the opposite change appears for the mean and
peak intensity. Briefly, considering different standardized index can result in different characteristic values so it is
important to exploit more than one drought index for a comprehensive understanding.
Additionally, the dependence structure between the drought characteristics may be different for each index and this
difference can play an important role for the drought analysis. As an illustration, the dependence between four main
characteristics are visualized in Figures 2a, 2b, 2c and 2d to detect the change from SPI, SPEI, SBI and STI over
3-month scale, respectively.
For the parametric marginal fitting, five widely considered distributions are tested by following the considered ex-
amples in the literature. The best-fitting distribution for each drought characteristic was obtained based on criteria
such as the goodness-of-fit to the observed data. Specifically, Normal, Log-normal, Weibull, Exponential and Gamma
distributions are compared to detect the best option for each drought characteristic. Before doing so, it is necessary to
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Figure 2: Kendall correlation between drought characteristics extracted from (a) SPI, (b) SPEI, (c) SBI and (d) STI
over a 3-month scale. (Note that the automatically generated red stars are to simply highlight the correlation significant.
Shortly, the number of red stars in the figure indicates the level of statistical significance: *: p ¡ 0.05, **: p ¡ 0.01, ***:
p ¡ 0.001, as determined by Kendall’s tau correlation.)
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apply continuity correction to the duration data, typically a discretised version of the actual continuous measurements
for drought index data with some repeated (tied) observations. When dealing with tied data (repeated values), we
followed the pre-processing concept that adds random values between -0.5 and 0.5 to the values of duration, helps
eliminate the issue of systematic ties in data. This approach minimally affects the inherent marginal distribution of
duration, as explained by Pham et al. (Pham et al., 2016), and has been utilised in previous studies (Salvadori et al.,
2007) (Pappada et al., 2017). By adding noise, duration is treated as a continuous variable, and ties are resolved as
described above. As an illustration, one can see the similarities and differences of the parametric marginal distribu-
tions on 3-month scale in Table 2. As shown in Table 2, for the all considered drought indices, the characteristics of
S, PI and MI followed the Weibull distribution with varying shape and scale parameters, except the case of SBI3 for
MI (Normal distribution case). For Duration, again for all indices, the best selected distribution is the log-normal with
very close mean and standard deviation parameters.

Table 2: Summary of selected marginal distributions for drought characteristics at a 3-month scale.

Univariate Drought Characteristics
D S PI MI

SPI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=1.0087 shape=0.8585 shape=1.3809 shape=1.6476
par2 sdlog=0.7455 scale=2.5664 scale=1.0997 scale=0.6953

SPEI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=0.9954 shape=0.8536 shape=1.4181 shape=1.6566
par2 sdlog=0.8255 scale=2.7486 scale=1.1233 scale=0.7185

SBI3
Dist Lognormal Weibull Weibull Normal
par1 meanlog=1.000 shape=0.7327 shape=1.1815 mean=0.5739
par2 sdlog=0.821 scale=2.3830 scale=0.9835 sd=0.3755

STI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=1.0669 shape=0.8796 shape=1.4533 shape=1.7418
par2 sdlog=0.7497 scale=2.6754 scale=1.1018 scale=0.6865

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity.

For the selection of suitable copulas, we considered well-known copula families including all options in the VineCop-
ula R package and the best one is selected based on the specific dependencies observed between drought characteristics
and BIC value

Table 3: Summary of fitted parametric copulas for the pairs of drought characteristics (3-month, PP case)
Bivariate Drought Characteristics

D-S D-MI D-PI S-PI
SPI3 Family (Rotation) Frank Frank Frank Clayton (0)

θ1 (θ2) 12.57 (-) 5.06 (-) 8.3 (-) 9.55 (-)
SPEI3 Family (Rotation) Frank Frank Frank BB7

θ1 (θ2) 11.97 (-) 4.4 (-) 7.37 (-) 2.31 (12.31)
SBI3 Family (Rotation) Gumbel Gumbel (180) Frank BB7

θ1 (θ2) 3.8 (-) 1.78 (-) 8.76 (-) 2.79 (16.16)
STI3 Family (Rotation) BB8 Gaussian Frank Gumbel (180)

θ1 (θ2) 7.64 (0.81) 0.56 (-) 7 (-) 5.75 (-)

BB7 is a bivariate case of Joe and Clayton copula; BB8 is a bivariate case of Joe and Frank copula.

For the fitted copulas, Table 3 and 4 summarizes the corresponding PP and PN scenarios for each drought index.
Different standardized indices (SPI, SPEI, SBI and STI) over 3 months resulted in different parametric copula fits on
the pair of characteristics. After deciding the suitable marginal distribution and attaching to two different approaches
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Table 4: Summary of fitted non-parametric copulas for the pairs of drought characteristics (3-month, PN case)
Bivariate Drought Characteristics

D-S D-MI D-PI S-PI
SPI3 Kernel Type T T T T

Kendall’s τ 0.6852 0.4215 0.5677 0.7983
SPEI3 Kernel Type T T T T

Kendall’s τ 0.6807 0.3825 0.5432 0.7919
SBI3 Kernel Type T T T T

Kendall’s τ 0.7197 0.421 0.6025 0.8209
STI3 Kernel Type T T T T

Kendall’s τ 0.656 0.3445 0.533 0.8033
(Parametric margin-Parametric copulas and Parametric margin-Non-parametric copula), the next step is to explore the
exceedance probability calculations based on certain thresholds. To illustrate, the change across time scales, joint
exceedance probabilities and applied PP-PN settings can be visualized for SPI on duration-severity pair. In Figure
3, one can see the opposite pattern change from 3-month to 9-month scales for pand and por exceedance probability
scenarios. To be more specific, on the left panel, when the time scale increased the PP setting dominates the PN setting
for the grid values of duration and severity. On the other hand, right panel indicates the reversed relationship, where
PN is getting larger when the time-scale is raised but having different behaviors for the 9-month scale.

To have a general comparison on different indices over the same time scale, only 3-month scale is investigated for
the simplicity. Specifically, for the both pand and por probability calculations, over PP and PN settings, a general
pattern comparison can be summarized with the help of contour plots. In Figure 4a, one can see the pand exceedance
probability contour lines for the all indices under PP and PN setting. In a similar way, the main differences between
four standardized index can be followed for por in Figure 4b.

In Figure 4a, regarding individual patterns of PP and PN setting for each index, the upper 2x2 panel is the main
summary. From higher to the lower exceedance probability values (off-diagonal cursor movement), the differences
between PP and PN getting more visible. Specifically, for the rare events, which copula approach is used has a
moderate impact on the calculated values. In the bottom panel, the overall comparison of four indices shows that for
PP setting, with low probability values, the bivariate and trivariate index behaves slightly different whereas univariate
indices almost overlapped each time. This pattern quite common for the higher probability values (bottom-left corners)
and certain differences appear towards to the lower probabilities (top-right corners). In PN setting, the contour lines
behave similarly for rare events. This finding is reversed when the calculation of exceedance probability values are
switched to the por, as in Figure 4b. Mainly, the calculated values much larger compared to pand but the changing
behaviour from the higher to lower (bottom-left to top-right) is preserved. However, the contour line behavior for
indices seemed to be reversed at a certain level for both PP and PN settings (bottom panel of the same figure). To
explore these patterns for other pair of characteristics, mainly the duration-peak intensity and severity-peak intensity
combinations are summarized in terms of comparing indices all at once.
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p_{and}, 3-month p_{or}, 3-month

p_{and}, 6-month p_{or}, 6-month

p_{and}, 9-month p_{or}, 9-month

Figure 3: Left panel for pand and right panel for por cases for Duration-Severity pair wit PP: Red, PN: Blue
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Figure 4: Exceedance Probability Contour Plots for (a) pand and (b) por (Orange: STI3, Green: SBI3, Blue: SPEI3,
red: SPI3)
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Figure 5: Exceedance Probability Contour Plots for (a) Duration-Peak Intensity pair and (b) Severity-Peak Intensity
pair Orange: STI3, Green: SBI3, Blue: SPEI3, red: SPI3

In Figure 5a, both PP and PN scenarios are summarized graphically for the pair of Duration-Peak Intensity. For
the highly likely events defined by the larger p-and case, there are slight differences in the contours presented in
the upper panel. Mostly, both SPI3 and SPEI3 overlap, whereas there are some discrepancies for STI3 and SBI3.
Especially, the differences between the univariate or multivariate types of drought indices are more visible when
the exceedance probability values are smaller (off-diagonal movement on the contour lines). This means that the
occurrence of extreme drought is associated with higher drought characteristics and this pattern is varying across
different drought indices. Similar behavior can be observed in the lower panel for p-or values. To illustrate, for the
value of exceedance probability of 0.1 under the PP model, both SBI3 and STI3 seem to lie above SPI3 in general.
Overall, Figure 5a shows some varied behavior across PP and PN cases for p-and and p-or values, suggesting that the
choice of drought index can moderately influence the relationship between drought characteristics. Such differences
are more visible in Figure 5b for the pair of Severity-Peak intensity for the likelihood of joint extremes in the upper
panel (towards the right upper corner). Specifically, differences or overlaps for different drought indices are presented
over contour lines to demonstrate that how the index can be crucial for certain pair values of drought characteristics.
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5.2. Other Stations

In addition to the Aksehir station as a main location, other weather stations with certain characteristics are examined
to take a general snapshot of the region. For that purpose, four additional weather stations are investigated, including
Cihanbeyli, Karapinar, Cumra and Yunak stations located in the same province. Because of the computational demand
for the PN case, rather than adding all other weather stations, these four specific locations are considered. Another
motivation for this is coming from the fact that these are most vulnerable places based on crop yield loss in general
since various farmers got support previously (these are the cities that higher money support is given to farmers during
2002-2017). In the meantime, there are certain differences on their latitude values, compared to Aksehir station. In
that sense, these new stations may serve as complementary for the overall drought analysis by underlining different
locations. For the new stations, we will be presenting mainly three contour lines of pand- por under PP and PN
settings over only 3-month scale (short term period), by summarizing the rest of the calculations in the Appendix part.
To illustrate the main differences, drought statistics based on different locations are summarized in Table 5 similar to
the Table 1 only.

Table 5: Drought Characteristics Statistics Based on Different Drought Indices across four weather stations
(3-month scale only).

Cihanbeyli Karapinar
Statistics SPI SPEI SBI STI SPI SPEI SBI STI

Drought Counts 102 99 102 101 102 90 100 105
E(D) 3.539 3.586 3.49 3.386 3.539 4 3.57 3.467
E(S) 2.854 2.902 2.769 2.751 2.768 3.157 2.793 2.642
E(MI) 0.615 0.624 0.576 0.6 0.625 0.622 0.62 0.598
E(PI) 0.983 1.018 0.93 0.954 1.004 0.998 0.96 0.938
E(Ld) 7.149 7.306 7.109 7.11 7.129 8.124 7.232 6.904

Cumra Yunak
SPI SPEI SBI STI SPI SPEI SBI STI

Drought Counts 92 98 93 91 99 97 101 99
E(D) 3.978 3.735 3.957 4 3.525 3.608 3.485 3.566
E(S) 3.177 3.008 3.117 3.157 2.945 2.986 2.723 2.86
E(MI) 0.646 0.618 0.632 0.649 0.673 0.683 0.642 0.657
E(PI) 1.068 0.96 1.02 1.048 1.058 1.101 1.02 1.068
E(Ld) 7.901 7.381 7.761 7.978 7.418 7.552 7.16 7.327

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity and Ld for the Interarrival
time. (E(.) stands for the expectation of the given characteristics.)

For Cihanbeyli station, for the drought characteristic pairs (Duration - Severity, Duration - Peak Intensity and Severity-
Peak Intensity), the exceedance probability behaviours are summarized in Figures 6a-6c. For each characteristic pairs,
one can see the main differences between PP and PN settings, specifically the discrepancy between indices, which
appeared more visible for events that were less likely (more extreme events) for the upcoming year.
In Figures 6a - 6c, three different pairs of drought characteristics behavior patterns over varying joint exceedance
probabilities are summarized in a similar way. To illustrate, the differences between four drought indices are more
visible for the extreme events that represents why decision-makers should not rely on a single index for certain events.
For specific cases, in Figure 6a, SBI3 contour line lies above the others that implies at the same level of exceedance
probability, that index results in higher Duration for the fixed value of Severity (in upper-left panel). Such contour
line differences are less visible for the pair of Duration-Peak Intensity in Figure 6b wheres there are certain changes in
Figure 6c for the pair of Severity-Peak Intensity. As an example, for a fixed severity, the peak-intensity values are very
different for the extreme events for the univariate or multivariate indices (upper panel of p-and calculations). Such a
difference is narrowed down in the case of p-or by nature, given in the lower panel of Figure 6c. Especially for extreme
events, both the drought index selection and the modeling approach can impact the values of drought characteristics,
which implies the importance of looking at more than one drought index. In a similar manner, for the other remaining
stations (Karapinar, Cumra and Yunak), similar visualizations are presented to highlight the potential differences in
the calculated joint exceedance probabilities. In general, similar patterns are observed across different locations for
the less extreme events (small p-and, p-or values). Generally, across different geographical locations, different drought
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Figure 6: Exceedance Probability Contour Plots for (a) Duration-Severity, (b) Duration-Peak Intensity and (c) Severity-
Peak Intensity pairs for Cihanbeyli station (Orange: STI3, Green: SBI3, Blue: SPEI3, red: SPI3)
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indices have a tendency to behave differently during extreme drought events.
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Figure 7: Exceedance Probability Contour Plots for (a) Duration-Severity, (b) Duration-Peak Intensity and (c) Severity-
Peak Intensity pairs for Karapinar station (Orange: STI3, Green: SBI3, Blue: SPEI3, red: SPI3)

The importance of using different indices is elevated when the geographical characteristics are changed. To illustrate,
for Karapinar, as visualized in Figures 7a-7c, the visibility of the differences of high and less extreme events is
moderate. Besides, the contour line flow across different values of drought characteristics under the given exceedance
probability has a tendency to change its pattern. For example, in the upper panel of Figure 7b, for the extreme event (p-
and = 0.1), firstly SPEI3 contour line lies above the other indices (means higher drought characteristics) for the values
of Duration between 0-5 whereas SPI3 contour lies at the top of others for higher Duration (nearby 10). Additionally,
differences between univariate and multivariate drought indices are comparatively larger for the extreme events in
Karapinar compared to Aksehir and Cihanbeyli in different drought characteristic pairs. This empirical evidence
underlines the location-specific use of certain drought indices based on spatial properties.
For Cumra weather station, behaviors are changed again for the extreme events in each pair, with certain patterns
dominated by the univeriate index. As an example, in Figure 8a, SPEI3 lies above the other contour lines in the upper
panel for the case of p-and. Similar to Karapinar case, there are some turning points in the behavior of some indices
regarding the change of drought characteristic values. In Figure 8b, SBI3 and STI3 are lying below the univariate
cases for smaller Duration values, whereas they started to lie at the top when Duration is larger across different peak-
intensity values. Especially for the contour line of SPI3 in Figure 8c is moderately different compared to the patterns in
Figure 7c. These slight nuances of different indices can have certain impacts on decisions about water or agricultural
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Figure 8: Exceedance Probability Contour Plots for (a) Duration-Severity, (b) Duration-Peak Intensity and (c) Severity-
Peak Intensity pairs for Cumra station (Orange: STI3, Green: SBI3, Blue: SPEI3, red: SPI3)
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risk management in certain areas. For that reason, leveraging multiple indices at a certain location can be crucial for a
comprehensive drought characteristic analysis.
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Figure 9: Exceedance Probability Contour Plots for (a) Duration-Severity, (b) Duration-Peak Intensity and (c) Severity-
Peak Intensity pairs for Yunak station (Orange: STI3, Green: SBI3, Blue: SPEI3, red: SPI3)

For a consistent but changing behavior of contour lines of four different indices, Yunak station can be different from
others. In Figures 9a-9c, for the less extreme events (higher exceedance probability values), the contour lines follow a
certain pattern but change across different values of p-and and p-or calculations. Regarding the nature of drought event
under two calculations, whether both characteristics or at least one characteristic is the focus can have an impact on
drought event conditions. To be complete, it is possible to consider both p-and and p-or values for the overall change
at a specific location. For the Yunak case, as an example, STI3 lies above the other contour lines most of the time
in Figure 9b whereas this is reversed in general for the case of the Duration-Severity pair given in Figure 9a. Such
differences can be crucial for understanding the risks of different drought events with changing extreme levels (i.e.,
joint exceedance probabilities).
Overall, these presented contour plots for specific weather stations are instrumental for comparing the performance
of different drought indices in capturing the joint distribution of drought characteristics. For the pairs of Duration-
Severity, Duration-Peak Intensity and Severity-Peak Intensity, different modeling results (PP and PN) provides insights
into how model selection affects the interpretation of drought risks and related characteristics. Additionally, empirical
evidences in the same region with certain geographical differences highlight the necessity of using multiple indexes to
monitor drought characteristics more effectively.
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6. Concluding Remarks

In this work, both parametric and non-parametric copula approaches are investigated in detail to understand their im-
pact on the dependence between drought characteristics. For that purpose, at the first step, the vine copula approach is
exploited for the multivariate drought index construction (mainly bivariate and trivariate cases). The constructed joint
indices (SBI and STI) were demonstrated to be effective tools for drought management, offering additional insight
over the traditional univariate SPI and SPEI by integrating additional climatic variables (PET, RH). Regarding the
geographical nature of the selected region, the complex impact from the precipitation can be captured more effectively
by adding moisture availability and atmospheric demand. The findings come from different weather stations in the
same region so it can be informative about their possible usage and their interpretation. Over different time scales, var-
ious exceedance probability calculations are summarized visually to depict the main similarities and differences. The
main findings are summarized for 3-month scale and certain drought characteristic combinations (Duration-Severity,
Duration-Peak Intensity and Severity-Peak Intensity). For the overall behavior of these characteristics, exceedance
probability values are investigated in detail instead of classical return period calculations. Additionally, the use of
copulas in the construction of the multivariate drought index offers promising avenues for advancing drought risk
management strategies. In that sense, this study is the first comprehensive case that explores joint exceedance proba-
bilities focusing on Türkiye’s specific region.
Over a 3-month scale, SPI, SPEI, SBI and STI display similar magnitudes, but slight differences in the case of Aksehir.
With regards to the copula fit of the same station, under PP setting different copula family selection is done for
different indices, while PN indicates that the transformation estimator (T) is suitable and consistent in different pairs.
A similar selection summary can be mentioned for the other considered weather stations; details are summarized in
the Appendix. Two distinct scenarios regarding the pand and por resulted slightly different results in terms of the use
of four different indices. Differently from other previous works, main focus is the calculated exceedance probability
values under certain models and selected drought indices rather than relying on return periods. For a certain location,
the main findings indicate the importance of index selection and the resulting behavior of drought characteristics that
describe the drought event properties under exceedance probability values. Specifically, from higher to lower joint
exceedance probabilities (from less to most extreme cases), the differences between indices are more visible in various
locations. Additionally, over different locations, patterns of drought indices are changing, which suggests the use of
multiple indices for a comprehensive drought analysis. In that respect, it is crucial to leverage the benefits of both
univariate (SPI, SPEI) and multivariate (SBI, STI) types of indices under different copula model settings (PP and PN).
Regarding the distribution fit or copula model selections on various weather stations, there are certain differences that
can be followed in the presented detailed Tables in the Appendix B-E. To illustrate, in Cihanbeyli station, the best
distribution fit results varying across different indices and drought characteristics including Gamma or Exponential
one. The summary Table on the distributions indicate that why we need a distribution fit selection rather than only
using one fixed family borrowing from the literature. In terms of the fitted parametric copula, certain spatial differences
attached to the various tail dependence properties such as D-S pair based on SBI3 follows Clayton for Cihanbeyli
station in Table 7 whereas the same D-S pair based on SBI3 follows Gumbel for Cumra station, tabulated in Table 13.
Especially, for the same pair of drought characteristics, the use of different drought index can result in distinct copula
families, good indicator to consider various monitoring tools together. Under the non-parametric copula approach, on
the other hand, all the best fitted models follow the family of ’T’ estimator.
From a practical point of view, this empirical study highlights the issue of drought index and copula modeling issues
over a drought-prone region. In terms of water resources and agricultural risk management, the findings of the study
could be informative for decision-makers. Such analyses are vital for enhancing drought characteristic models, aiding
in the development of more effective drought risk management and mitigation strategies. Regarding the importance of
the chosen region for agricultural production, the extreme event drought characteristics and the corresponding occur-
rence probabilities can be major forces in upgrading drought risk management policies. Especially for the behavior of
multivariate drought indices, which take into account multiple weather variables, they can be more reliable for drought
risk management compared to the classical univariate drought indices. Considering multiple drought indices over the
same location may allow for the design of step-by-step risk action plans and territorial-based policies to cope with the
harmful impacts of dry periods.
From a modeling perspective, the scenarios considered in this paper is limited up to PP and PN cases. On the other
hand, as studied in the literature, it is possible to consider additional NP (non-parametric marginals and parametric
copulas) and NN (non-parametric marginals and non-parametric copulas) to complete the gap. Besides, it can be aimed
to decide the best model based on a benchmark cases on a certain location and choosing the most plausible model for
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detecting rare events. In a different direction, return period values can be considered together but for simplicity, this
paper just focused on the main exceedance probability calculations. Regarding the use of weather variables in the
index construction step, only three variables were taken into account but computationally, it is possible to add more
variables in general, whereas the degree of being explainable can be decreased in this case. Additionally, looking
at other pairs of drought characteristics (i.e. Duration-Mean Intensity), adding more weather stations from the same
region and considering other type of drought indices (satellite based etc.) can polish the presented empirical findings.
In order to get a more comprehensive understanding of and mitigate the impacts of drought, the first future direction on
the author’s agenda is to reduce the above-mentioned limitations. In a different setting, considering different threshold
levels while deriving the drought characteristics can quantify the changes across different drought levels in depth. The
generation of multiple drought indices relying on multiple sources can add more novelty to the drought characteristics
analysis by following the work of Farahmand and AghaKouchak (2015) and the corresponding references therein.
It is possible to explore the application of these indices in different climatic regions and consider integrating other
relevant variables, such as soil moisture or vegetation indices, to further refine drought assessments. In a different
direction, instead of a simplified parametric copula approach, copulas with varying dependence parameters based
on specific weather variables can play a significant role in the drought index construction, that directly impacts the
drought characteristic behaviors. Besides, the construction of the drought index can be enhanced with the help of the
wavelet filtering concept by considering the short- or medium-term fluctuations in the weather variables. Since this
idea is widely considered in financial market shocks, a similar analogy can be derived in the field of drought studies
to capture the behaviors of weather variables at different frequency levels as long as there are enough weather data
records. These ideas lie at the top of the list of potential future studies.
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A. Drought Index Comparison, 3-month
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Drought Indices: SPI3 (Solid), SPEI3 (Dashed), SBI3 (Dotted), STI3 (Dash-Dotted) for different stations
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Drought Indices: SPI3 (Solid), SPEI3 (Dashed), SBI3 (Dotted), STI3 (Dash-Dotted) for different stations
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B. Cihanbeyli Station Modeling Summary

C. Karapinar Station Modeling Summary

D. Cumra Station Modeling Summary

E. Yunak Station Modeling Summary
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Table 6: Summary of selected marginal distributions for drought characteristics for Cihanbeyli

Univariate Drought Characteristics
D S PI MI

SPI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=0.9618 shape=0.7760 shape=1.2225 shape=1.4619
par2 sdlog=0.8045 scale=2.4639 scale=1.0459 scale=0.6766

SPEI3
Dist Weibull Gamma Weibull Weibull
par1 shape=1.4696 shape=0.7078 shape=1.2164 shape=1.3921
par2 scale=3.9487 rate=0.2439 scale=1.0805 scale=0.6814

SBI3
Dist Lognormal Weibull Exponential Weibull
par1 meanlog=0.8905 shape=0.7053 rate=1.0751 shape=1.3201
par2 sdlog=0.8649 scale=2.1967 - scale=0.6244

STI3
Dist Lognormal Weibull Exponential Weibull
par1 meanlog=0.9210 shape=0.7280 rate=1.0477 shape=1.3229
par2 sdlog=0.7846 scale=2.2511 - scale=0.6492

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity.

Table 7: Summary of fitted parametric copulas for the pairs of drought characteristics for Cihanbeyli (3-month,
PP case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Family (Rotation) BB8 Frank Frank Joe (180)
θ1 (θ2) 8 (0.84) 5.44 (-) 8.28 (-) 10.55 (-)

SPEI3 Family (Rotation) BB8 Gaussian Frank Clayton
θ1 (θ2) 8 (0.78) 0.65 (-) 7.37 (-) 10.38 (-)

SBI3 Family (Rotation) Clayton (180) Frank BB8 BB7
θ1 (θ2) 3.45 (-) 4.95 (-) 7.78 (0.65) 2.68 (25)

STI3 Family (Rotation) Clayton (180) Frank BB8 BB7
θ1 (θ2) 3.59 (-) 5.01 (-) 6.97 (0.69) 3.37 (25)

BB7 is a bivariate case of Joe and Clayton copula; BB8 is a bivariate case of Joe and Frank copula.

Table 8: Summary of fitted non-parametric copulas for the pairs of drought characteristics for Cihanbeyli
(3-month, PN case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Kernel Type T T T T
Kendall’s τ 0.6958 0.4432 0.573 0.8026

SPEI3 Kernel Type T T T T
Kendall’s τ 0.6593 0.4255 0.5415 0.8192

SBI3 Kernel Type T T T T
Kendall’s τ 0.6301 0.42 0.5353 0.8396

STI3 Kernel Type T T T T
Kendall’s τ 0.6402 0.4224 0.5304 0.844
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Table 9: Summary of selected marginal distributions for drought characteristics for Karapinar

Univariate Drought Characteristics
D S PI MI

SPI3
Dist Weibull Gamma Weibull Weibull
par1 shape=1.2977 shape=0.7196 shape=1.2390 shape=1.4724
par2 scale=3.8744 rate=0.2600 scale=1.0693 scale=0.6865

SPEI3
Dist Lognormal Lognormal Weibull Weibull
par1 meanlog=0.9850 meanlog=0.3250 shape=1.3878 shape=1.7391
par2 sdlog=0.8819 sdlog=1.3814 scale=1.0937 scale=0.6973

SBI3
Dist Lognormal Lognormal Weibull Weibull
par1 meanlog=0.9038 meanlog=0.1870 shape=1.3803 shape=1.7210
par2 sdlog=0.8335 sdlog=1.3962 scale=1.0505 scale=0.6928

STI3
Dist Lognormal Lognormal Weibull Normal
par1 meanlog=0.8744 meanlog=0.1050 shape=1.3227 mean=0.5981
par2 sdlog=0.8503 sdlog=1.4445 scale=1.0164 sd=0.3673

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity.

Table 10: Summary of fitted parametric copulas for the pairs of drought characteristics for Karapinar (3-
month, PP case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Family (Rotation) Gumbel BB8 (180) Frank BB7
θ1 (θ2) 3.29 (-) 3.86 (0.83) 7.37 (-) 2.13 (14.39)

SPEI3 Family (Rotation) Clayton (180) Frank BB8 Gumbel (180)
θ1 (θ2) 4.23 (-) 4.09 (-) 8 (0.64) 5.56 (-)

SBI3 Family (Rotation) BB8 Frank BB8 Gumbel (180)
θ1 (θ2) 6.67 (0.92) 3.51 (-) 5.94 (0.75) 6.17 (-)

STI3 Family (Rotation) Clayton (180) Gaussian BB8 BB1
θ1 (θ2) 3.12 (-) 0.51 (-) 5.43 (0.75) 5.27 (1.87)

BB7 is a bivariate case of Joe and Clayton copula; BB8 is a bivariate case of Joe and Frank copula.

Table 11: Summary of fitted non-parametric copulas for the pairs of drought characteristics for Karapinar
(3-month, PN case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Kernel Type T T T T
Kendall’s τ 0.6847 0.4192 0.5409 0.795

SPEI3 Kernel Type T T T T
Kendall’s τ 0.6731 0.3599 0.5424 0.8021

SBI3 Kernel Type T T T T
Kendall’s τ 0.6507 0.32 0.518 0.8113

STI3 Kernel Type T T T T
Kendall’s τ 0.6074 0.291 0.4923 0.8234
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Table 12: Summary of selected marginal distributions for drought characteristics for Cumra

Univariate Drought Characteristics
D S PI MI

SPI3
Dist Weibull Gamma Weibull Weibull
par1 shape=1.3658 shape=0.7749 shape=1.3818 shape=1.6033
par2 scale=4.4160 rate=0.2440 scale=1.1628 scale=0.7179

SPEI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=0.9774 shape=0.7710 shape=1.2408 shape=1.4710
par2 sdlog=0.8075 scale=2.5574 scale=1.0274 scale=0.6818

SBI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=0.9928 shape=0.8012 shape=1.3970 shape=1.6236
par2 sdlog=0.8852 scale=2.7298 scale=1.1149 scale=0.7043

STI3
Dist Lognormal Weibull Weibull Weibull
par1 meanlog=1.0046 shape=0.8310 shape=1.4436 shape=1.7366
par2 sdlog=0.8882 scale=2.8419 scale=1.1534 scale=0.7283

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity.

Table 13: Summary of fitted parametric copulas for the pairs of drought characteristics for Cumra (3-month,
PP case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Family (Rotation) Frank Gumbel (180) Frank BB7
θ1 (θ2) 12.35 (-) 1.74 (-) 7.49 (-) 2.4 (13.71)

SPEI3 Family (Rotation) Gumbel Frank Frank Clayton
θ1 (θ2) 3.32 (-) 4.85 (-) 7.38 (-) 8.41 (-)

SBI3 Family (Rotation) Gumbel Gaussian Frank Clayton
θ1 (θ2) 3.52 (-) 0.6 (-) 7.84 (-) 9.04 (-)

STI3 Family (Rotation) Joe Frank Frank BB7
θ1 (θ2) 5.2 (-) 3.89 (-) 7.15 (-) 2.14 (10.79)

BB7 is a bivariate case of Joe and Clayton copula; BB8 is a bivariate case of Joe and Frank copula.

Table 14: Summary of fitted non-parametric copulas for the pairs of drought characteristics for Cumra (3-
month, PN case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Kernel Type T T T T
Kendall’s τ 0.6918 0.3996 0.5436 0.7931

SPEI3 Kernel Type T T T T
Kendall’s τ 0.6896 0.4096 0.5366 0.7909

SBI3 Kernel Type T T T T
Kendall’s τ 0.699 0.3772 0.5619 0.7973

STI3 Kernel Type T T T T
Kendall’s τ 0.6876 0.3376 0.5187 0.765
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Table 15: Summary of selected marginal distributions for drought characteristics for Yunak

Univariate Drought Characteristics
D S PI MI

SPI3
Dist Gamma Gamma Normal Normal
par1 shape=2.0274 shape=0.7591 mean=1.0578 mean=0.6730
par2 rate=0.5704 rate=0.2578 sd=0.7279 sd=0.4208

SPEI3
Dist Weibull Gamma Normal Normal
par1 shape=1.5705 shape=0.8383 mean=1.1014 mean=0.6830
par2 scale=3.9981 rate=0.2807 sd=0.7336 sd=0.4042

SBI3
Dist Gamma Gamma Normal Normal
par1 shape=2.1362 shape=0.7722 mean=1.0197 mean=0.6416
par2 rate=0.6110 rate=0.2835 sd=0.7051 sd=0.4040

STI3
Dist Weibull Gamma Weibull Weibull
par1 shape=1.6404 shape=0.8613 shape=1.4104 shape=1.5907
par2 scale=4.0084 rate=0.3012 scale=1.1677 scale=0.7308

Abbreviations: D for Duration, S for Severity, MI for Mean Intensity, PI for Peak Intensity.

Table 16: Summary of fitted parametric copulas for the pairs of drought characteristics for Yunak (3-month,
PP case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Family (Rotation) Gumbel Gaussian Frank Clayton
θ1 (θ2) 3.11 (-) 0.64 (-) 7.48 (-) 10.18 (-)

SPEI3 Family (Rotation) Frank Gaussian Frank BB7
θ1 (θ2) 11.49 (-) 0.6 (-) 6.84 (-) 3.51 (15.34)

SBI3 Family (Rotation) Gumbel Gaussian Frank Gumbel (180)
θ1 (θ2) 2.94 (-) 0.56 (-) 7.21 (-) 6.36 (-)

STI3 Family (Rotation) Gumbel Frank Frank BB6 (180)
θ1 (θ2) 2.82 (-) 4.18 (-) 7.15 (-) 3.12 (3.19)

BB7 is a bivariate case of Joe and Clayton copula; BB8 is a bivariate case of Joe and Frank copula.

Table 17: Summary of fitted non-parametric copulas for the pairs of drought characteristics for Yunak (3-
month, PN case)

Bivariate Drought Characteristics
D-S D-MI D-PI S-PI

SPI3 Kernel Type T T T T
Kendall’s τ 0.6744 0.4013 0.5507 0.8068

SPEI3 Kernel Type T T T T
Kendall’s τ 0.6673 0.3684 0.5203 0.7843

SBI3 Kernel Type T T T T
Kendall’s τ 0.6525 0.342 0.5397 0.8101

STI3 Kernel Type T T T T
Kendall’s τ 0.6378 0.3595 0.5378 0.8242
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