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Abstract  

The continuous probability distributions can be successfully utilized to characterize and evaluate the risk exposure 

in applied actuarial analysis. Actuaries often prefer to convey the level of exposure to a certain hazard using merely 

a numerical value, or at the very least, a small number of numbers. In this paper, a new applied probability model 

was presented and used to model six different sets of data. About estimating the risks that insurance companies are 

exposed to and the revenues of the reinsurance process, we have analyzed and studied data on insurance claims and 

data on reinsurance revenues as an actuarial example. These actuarial risk exposure functions, sometimes referred 

to as main risk actuarial indicators, are unquestionably a result of a particular model that can be explained. Five 

crucial actuarial indicators are used in this study to identify the risk exposure in insurance claims and reinsurance 

revenues. The parameters are estimated using techniques like the maximum product spacing, maximum-likelihood, 

and least square estimation. Monte Carlo simulation research is conducted under a specific set of conditions and 

controls. Additionally, five actuarial risk indicators including the value-at-risk, tail-variance, tail value-at-risk, tail 

mean-variance, and mean of the excess loss function, were utilized to explain the risk exposure in the context of 

data on insurance claims and reinsurance revenue. The peak over a random threshold value-at-risk  (PORT-VaR) 

approach and value-at-risk estimate are taken into account and contrasted for detecting the extreme financial 

insurance peaks. 

 

Key Words: Cullen-Frey plot; Maximum Product Spacing; Financial Peaks; Mean Excess Loss Function; Risk 

exposure; Risk indicators; Value-at-risk; Peak Over Random Threshold; XGamma model 

 

 

1.Introduction 

Elbatal et al. (2024) introduced a novel and significant probability model tailored for the analysis of losses and 

revenues. Their model incorporated entropy-based measures and provided valuable insights through applications and 

case studies, particularly in the contexts of value-at-risk (VaR) modeling and mean of order-𝑃 (MOOP) analysis. 

Despite its theoretical contributions, the model proposed by Elbatal et al. (2024) demonstrates certain limitations, 

specifically, a lack of flexibility in its probability density function (PDF) and hazard rate function (HRF). These 

structural constraints hinder its ability to accurately capture the diverse and often complex behavior observed in real-

world financial data involving losses and revenues. This notable gap in the existing literature serves as the key 

motivation behind our work. In response, we propose a new, more adaptable statistical model designed to overcome 

these shortcomings and provide a more robust framework for modeling and interpreting financial and actuarial risks 

and returns.  
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The actuarial assessment of the potential loss that could occur in the future because of a given actuarial action or 

occurrence is known as the risk exposure. As part of the actuarial analysis of the business's exposure to risk, actuarial 

risks are frequently ranked according to their probability of happening in the future multiplied by the loss that would 

result if they did. By rating the risk of expected losses in the future, insurance (and reinsurance) companies can 

distinguish between little and major losses. Speculative risks frequently lead to losses including breaking rules, losing 

brand value, having security flaws, and having liability problems. The chance of a risk happening and the total loss if 

it does may often be multiplied to get the risk exposure. On the other hand, a lot of work has gone into applying several 

statistical methods, such as the continuous distributions and time series analysis, to analyze historical insurance data 

(see Rasekhi et al. (2022) and Salem et al. (2023), Shrahili et al. (2021), Mohamed et al. (2022), Yousof et al. 

(2023a,b,c), Yousof et al. (2024a,b) and Mohamed et al. (2024)).  

 

Recent years have seen an increase in the usage of continuous distributions, especially those with large tails, to reflect 

actual data from the insurance or reinsurance industries. In many real applications, such as economics, engineering, 

risk management, dependability, and actuarial sciences, actuarial data is modelled using continuous heavy-tailed 

probability distributions. The data sets for insurance claims and reinsurance may be unimodal (bimodal) left-skewed, 

unimodal (bimodal) right-skewed, or both with large tails. Reinsurance is the term used in actuarial literature to 

describe the coverage an insurance organization obtains from another insurance provider to safeguard itself (at least 

in part) against the potential of a sizable claim. Stop-loss insurance, insurance for insurers, and reinsurance are terms 

that are frequently used to describe reinsurance. Reinsurance is a term used to describe the process by which insurers, 

through some form of agreement, transfer a portion of their risk portfolios to other parties to reduce the likelihood that 

they may face a significant financial burden because of an insurance claim. The process of reinsurance can be used by 

reinsurance seekers or ceding businesses to expand their ability to take on any form of risk. Financial reinsurance is a 

tactic used by life insurance carriers to balance their returns and keep a profit. This approach may be used by other 

firms who want to increase their profits without considerably raising their risk. Several recent studies have introduced 

innovative statistical models tailored for actuarial, reliability, and extreme value analysis. Ibrahim et al. (2025) 

proposed a novel Fréchet-Poisson model with various estimation methods, applied effectively in strength-stress 

reliability under extreme data. Ramaki et al. (2025) developed the Weighted Flexible Weibull model, demonstrating 

its suitability for modeling extreme events in reliability and risk studies. Ibrahim et al. (2025) also introduced a new 

Reciprocal Weibull distribution, highlighting its adaptability for medical and reliability data along with a sequential 

sampling plan. In another contribution, Alizadeh et al. (2025) presented a new Weighted Lindley model, showcasing 

its ability to handle extreme historical insurance claims efficiently. Das et al. (2025) focused on economic data by 

applying a Laplace distribution to model house price peaks, offering insights into Value-at-Risk (VaR) analysis. 

Ibrahim et al. (2025) further extended inverse Weibull modeling, providing comprehensive estimation techniques and 

real-life applications. Abonongo et al. (2025) developed an accelerated failure time model with a focus on colon cancer 

data, contributing to survival analysis and model validation techniques. Another study by Ibrahim et al. (2025) 

introduced an extended discrete model for actuarial data, particularly useful in financial automobile claims and VaR 

assessment. AlKhayyat et al. (2025) contributed a Rao-Robson-Nikulin goodness-of-fit test adapted for censored and 

uncensored data, integrating both classical and Bayesian estimation frameworks. Hashempour et al. (2024) explored 

the Weighted Xgamma model, emphasizing its risk analysis potential and flexible structure for complex datasets. 

Lastly, Alizadeh et al. (2024) proposed the Extended Gompertz model, integrating mean-of-order-P measures and 

threshold-based risk evaluation under extreme stress data scenarios. 

 

 

In this study, we present a probability model for projecting and analyzing insurance claims and reinsurance enterprises' 

revenues, accounting for both these crucial factors and current global trends in insurance and reinsurance. However, 

any actuarial model stands out due to the simple procedures and good level of forecast accuracy. As part of a review 

of the business's risk exposure, risks are often rated according to their tendency to occur in the future multiplied by 

the potential loss if they did. The company can distinguish between minor and substantial losses by estimating the 

likelihood of future expectations losses. Speculative risks typically result in losses, such as breaking rules, losing 

brand value, having security flaws, and having liability problems. Time series analysis or continuous distributions 

have been intensively investigated for the study of historical insurance data. Recently, continuous distributions, 

particularly those with long tails, have been employed by actuaries to represent actual insurance data. Engineering, 

risk management, dependability, and the actuarial sciences are just a few of the real applications where real data has 

been simulated using continuous heavy-tailed probability distributions. The insurance data sets' skewness can be either 

left, right, or right with massive tails. Actuaries typically look for heavy-tailed distributions when modelling data that 

relates to actuarial and business risk issues. In this paper, we introduce a novel class of heavy-tailed distributions for 
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simulating data in the financial sciences. Many applied studies have studied reinsurance data in one way or another: 

for some applications of spectral and autoregressive integrated moving average analysis, see Venezian and Leng 

(2006), for the dynamics of unemployment reinsurance revenues with an application, see Mohammadi and Rich 

(2013). The autoregressive integrated moving average model was used by Hafiz et al. (2021) to forecast insurance 

penetration rates in Nigeria, and Kumar et al. (2020) to forecast motor insurance claim amounts. It is worth noting 

that the consideration of such important reinsurance data is extremely rare in the actuarial literature. While there are 

studies that dealt with the issue of insurance claims in general. In this paper, we will cover this flaw in the literature 

by relying on reinsurance data in analyzing and evaluating the risks faced by reinsurance companies, see Hamed et al. 

(2022), Hamedani et al. (2023), Hashempour et al. (2024a, b) for more relevant works. 

 

 

Distributions based on probabilities might be able to explain risk exposure effectively. Usually, one number, or at the 

very least, a limited number of numbers, are used to describe the amount of risk exposure. Commonly known as crucial 

critical risk indicators, these risk exposure numbers, which are undeniably the outcome of a specific model, reflect the 

importance of the key risk indicators (KRIs) they represent (see Artzner (1999)). Actuaries and risk managers can 

learn from such KRIs how exposed a company is to various dangers. The tail-value-at-risk (TVaR), value-at-risk 

(VaR), conditional-value-at-risk (CVaR) tail Mean-Variance (TMV) and tail variance (TV), are just a few of the KRIs 

that can be considered and studied. Specific to the quantile distribution of aggregate losses is the VaR. Most of the 

time, actuaries and risk managers focus on estimating the likelihood of a negative result, which can be calculated using 

the VaR indicator at a specific probability/confidence level. The amount of money needed to deal with such probable 

negative effects is often estimated using this indicator. Actuaries, policymakers, investors, and rating agencies are 

concerned about the insurance company's capacity to handle. For the purpose of analyzing and evaluating the risks 

that reinsurance companies are exposed to, we will present a new flexible distribution with a heavy tail on the right 

and left side also called the novel odd log-logistic XGamma (NOLLX) distribution, the new model is derived based 

on the the XGamma (X) model (see Sen et al. (2016)) and considered as applicable extension which can be applied in 

the actuarial sciences.  

 

 

The XGamma model is applied successfully to time-to-event data set, and its different properties are studied. Then, 

following Sen et al. (2016), Yadav et al. (2021b), introduced a new monotone failure rate exponentiated XGamma 

model. Sen et al. (2018) presented a new compound XGamma model called quasi XGamma-Poisson distribution, The 

XGamma G family is a new family for censored regression modelling and applications that [cor] examine using Sen 

et al. (2016)'s XGamma model, Yadav et al. (2021a) presented the inverse XGamma distribution. The Nikulin-Rao-

Robson goodness-of-fit test was used to statistically validate by Yadav et al. (2022) under the XGamma exponential 

model using both complete and censored samples with various estimating techniques. For more details see Bantan et 

al. (2020) (for the half-logistic XGamma model), Para et al. (2020) (for the Poisson XGamma model). Generally, the 

XGamma distribution has been used to analyze failure time data as well as for modelling data in reliability, biology, 

insurance and finance over the past decades. The XGamma (Sen et al. (2016)) distribution has been used to analyze 

failure time data as well as for modelling data in reliability, biology, insurance and finance over the past decades. 

Loubna et al. (2024) presented a quasi-xgamma frailty model with survival analysis under heterogeneity problem. The 

PDF and cumulative distribution function (CDF) of the XGamma distribution with parameter  (𝜆)  are, respectively, 

given by  

𝑤𝜆(𝔁) =
1

(𝜆 + 1) 𝑒𝑥𝑝(𝜆𝔁)
(1 + 0.5

𝜆

𝔁−2
) 𝜆2 and 𝑊𝜆(𝔁) = 1 −

1

𝑒𝑥𝑝(𝜆𝔁)
𝜙𝜆(𝔁)|𝔁>0,𝜆>0, 

where  𝜙𝜆(𝔁) = (
0.5𝜂

𝜆+1
𝔁2 +

𝜆

𝜆+1
𝔁 + 1) . The proposed distribution can be quite flexible in terms of the hazard rate 

function and PDF, and it can be helpful in lifetime data analysis, actuarial science, finance, bioscience, and 

telecommunications. The odd log-logistic XGamma (GOLLX) distribution, a new generalization of the XGamma 

distribution, is presented for the desired distribution risk analysis using the unimodal right-skewed reinsurance 

revenues and the unimodal left-skewed insurance claims payments data with Peaks-Over Random Threshold (PORT) 

analysis. The CDF of the GOLLX is  

𝐹𝑉(𝔁) = {[1 − 𝒰(𝔁; 𝜆)]
𝛼 + [𝒰(𝔁; 𝜆)]𝛼}−𝛽[1 − 𝒰(𝔁; 𝜆)]𝛽𝛼 ,  

(1) 

where 𝛼, 𝛽 are two extra shape parameters and 𝒰(𝔁; 𝜆) =
𝜙𝜆(𝔁)

𝑒𝑥𝑝(𝜆𝔁)
. Then, the corresponding PDF of the GOLLX 

distribution is given by  
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𝑓𝑉(𝔁) =
𝛽𝛼𝜆2

𝜆 + 1

(1 + 0.5
𝜆
𝔁−2

) [𝜙𝜆(𝔁)]
𝛽−1

[1 − 𝒰(𝔁; 𝜆)]1−𝛽𝛼
𝑒𝑥𝑝(−𝜆𝛽𝔁) {[1 − 𝒰(𝔁; 𝜆)]𝛼 + [𝒰(𝔁; 𝜆)]𝛼}−𝛽−1. 

 

 

(2) 

Figure 1 shows charts for the PDFs of the NOLLX distribution for various parameter values (see the plots of the first 

row). Figure 1 shows charts for the HRFs of the NOLLX distribution for various parameter values (the plots of the 

second row). Due to Figure 1 (plots of the first row), The NOLLX model's density can have an asymmetric right-

skewed distribution that has one peak and a heavy tail to the right, or it can have an asymmetric right-skewed 

distribution that has no peaks and a heavy tail to the right. Due to Figure 1 (plots of the second row), the HRF of the 

NOLLX model can take on several different forms, including increasing monotonically HRF, monotonically 

decreasing HRF, U-HRF (bathtub), upside-down, and upside-down-bathtub. The flexibility of new PDFs and their 

associated HRFs provides a significant advantage in statistical modelling procedures and real-life applications in 

several fields including medicine, engineering, finance and insurance. All these advantages were strong inducements 

for us to present the new model and the related method of risk evaluation and analysis. 

 

2. Some properties 

Using generalized binomial expansion and geometric expansion we can obtain  

𝐹(𝔁; 𝛼, 𝛽, 𝜆) = ∑ ∑∑𝑤𝜍,𝜅,𝑙,ℏ

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

𝐺(𝔁; 𝜆)𝛼(𝛽+ℏ)+𝑙 
 

(3) 

where 𝑤𝜍,𝜅,𝑙,ℏ = (−1)
𝜍+𝜅+𝑙+ℏ (

−𝛽
𝜍
) (
𝜍
𝜅
) (
𝛼𝜅
𝑙
) (
𝜍 − 𝜅
ℏ

). Equation (3) shows that CDF of GOLLX can expressed as a 

linear combination of exponentiated XGamma (EXG) distribution, similarly   

𝑓(𝔁; 𝛼, 𝜆) = ∑ ∑∑𝑞∗𝑤𝜍,𝜅,𝑙,ℏ𝑔(𝔁; 𝜆)𝐺(𝔁; 𝜆)
𝑞∗−1

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

|𝑞∗=𝛼(ℏ+𝛽)+𝑙 . 
 

(4) 

 

Equation (4) shows that CDF of GOLLX can expressed as a linear combination of EXG. Now, we can derive some 

mathematical properties of the new model based on EXG distribution. Let  𝜇𝑛 = 𝐸(𝑋𝑛) = ∫ 𝔁𝑛
∞

0
𝑓(𝔁)𝑑𝔁  denote the 

n-th moment of X. Let us first define and compute  

𝐴(𝜁1, 𝜁2, 𝜁3; 𝜆) = ∫ 𝔁𝜁1
∞

0

(1 + 0.5𝜆𝔁2)[1 − 𝜙𝜆(𝔁)]
𝜁2 𝑒𝑥𝑝(−𝜁3𝔁)𝑑𝔁, 

where  𝜁1  > 0, 𝜁2 ≥ 1, 𝜁3 ≥ 0  are real numbers. After using generalized binomial expansion and multinomial 

expansion we obtain 

𝐴(𝜁1 , 𝜁2, 𝜁3; 𝜆) =∑ ∑ 𝑣𝜉,𝜉1,𝜉2
(𝜉1,𝜉2)∈𝐴

∞

𝜉=0

[
1

(𝜆𝜉 + 𝜁3)
𝑝∗+1

𝛤(𝑝∗ + 1) +
0.5𝜆

(𝜆𝜉 + 𝜁3)
𝑝∗+3

𝛤(𝑝∗ + 3)] |𝑝∗ = 𝜁1 + 𝜉1 + 2𝜉2, 

and  

𝑣𝜉,𝜉1,𝜉2 =
(−1)𝜉(𝜆 + 1)−𝜉1−𝜉2𝜆𝜉1+2𝜉2𝜉! (

𝜁3
𝜉
)

2𝜉2(𝜆 + 1)𝜉1+𝜉2𝜉1! 𝜉2! (𝜉 − 𝜉1! − 𝜉2!)
, 𝐴 = {(𝜉1, 𝜉2)|0 ≤ 𝜉1  ≤ 𝜉, 0 ≤ 𝜉2  ≤ 𝜉, 0 ≤ 𝜉1 + 𝜉2  ≤ 𝜉}, 

and  𝛤(𝑎) = ∫ 𝔁𝑎−1
∞

0
𝑒𝑥𝑝(− 𝔁) 𝑑𝔁  (for any  𝑎 > 0 ) denote the gamma function. Then using equation (pdfmixture), 

we obtain 

𝜇𝑛 =
𝜆2

𝜆 + 1
∑ ∑∑(𝛼(ℏ + 1) + 𝑙)𝑤𝜍,𝜅,𝑙,ℏ𝐴(𝑛, 𝑞

∗ − 1, 𝜆; 𝜆)

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

.

∞

𝜍,𝑙=0

 

 

The moment generating function (MGF) of  𝑋  using equation (4), can be obtained as 

𝑀𝑋(𝑡) =
𝜆2

𝜆 + 1
∑ ∑∑𝑞∗𝑤𝜍,𝜅,𝑙,ℏ𝐴(𝑛, 𝑞

∗ − 1, 𝜆 − 𝑡; 𝜆)

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

 

Let  𝑚𝑛(𝓎) = 𝐸(𝑋𝑛|[𝑋≤𝓎]) = 
1

𝐹(𝓎)
∫ 𝑓(𝔁)
𝓎

0
𝔁𝑛𝑑𝔁  denote the n 𝑡ℎ  incomplete moment of  𝑋. Let us first define and 

compute  

𝐵(𝜁1, 𝜁2, 𝜁3; 𝓎, 𝜆) = ∫ 𝔁𝜁1
𝓎

0

(1 + 0.5𝜆𝔁2)[1 − 𝒰(𝔁; 𝜆)]𝜁2 𝑒𝑥𝑝(−𝜁3𝔁)𝑑𝔁, 
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where 𝜁1  > 0, 𝜁2 ≥ 1, 𝜁3 ≥ 0  are real numbers. After using generalized binomial expansion and multinomial 

expansion we obtain 

 

𝐵(𝜁1 , 𝜁2, 𝜁3; 𝓎, 𝜆) = ∑ ∑ 𝑣𝜉,𝜉1,𝜉2
(𝜉1,𝜉2)∈𝐴

∞

𝜉=0
{
 

 
1

(𝜆𝜉 + 𝜁3)
𝑝∗+1

𝛾((𝑝∗ + 1), 𝓎(𝜆𝜉 + 𝜁3))

+
0.5𝜆

(𝜆𝜉 + 𝜁3)
𝑝∗+3

𝛾((𝑝∗ + 3), 𝓎(𝜆𝜉 + 𝜁3))}
 

 

 

where  𝛾(𝑣, 𝔁) = ∫ 𝑡𝑣−1
𝔁

0
𝑒−𝑡𝑑𝑡  represent the lower incomplete gamma function. Using equation (4), we can write 

 

𝑚𝑛(𝓎) =
𝜆2

(𝜆 + 1)𝐹(𝓎)
∑ ∑∑𝑞∗𝑤𝜍,𝜅,𝑙,ℏ𝐵(𝑛, 𝑞

∗ − 1, 𝜆; 𝓎, 𝜆)

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

. 

Figure 2 below presents the plots of the expectation (top left), variance (top right), skewness (bottom left) and kurtosis  

(bottom right) for the GOLLX distribution using selected values of 𝛼 and 𝛽 for 𝜆 = 2. These plots show the wide 

flexibility of the new model in this regard. 

 

 
Figure 1: Different shapes of GOLLX pdf and Hazard function. 
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Figure 2: The plots of the expectation (top left), variance (top right), skewness (bottom left) and kurtosis  

(bottom right) for the GOLLX distribution using selected values of 𝛼 and 𝛽 for 𝜆 = 2. 

 

3. KRIs 

3.1 VaR indicator 

Risk exposure is an inherent event for any insurance firm. Many actuaries developed a variety of risk indicators to 

measure risk exposure as a result. The VaR indicator determines the risk of a potential loss for the insurance company 

with a certain probability and calculates the amount that a group of investments might lose. An increasing used 

benchmark risk metric for determining risk exposure is this actuarial indicator. The VaR often determines how much 

capital is required, given a specific probability, to ensure that the firm won't officially go out of business. The chosen 

confidence level is arbitrary. As a result, a significant VaR amount may be considered for various levels of confidence. 

It can be a high percentage like 99.95% or higher for the entire company. These various percentages can represent the 

inter-unit or inter-risk type diversification that exists. The quantile function is generally used to find representations 

in terms of lookup tables for key percentiles. For  𝛼 = 𝛽 . The algorithm is based on generating random data from the 

Lindley distribution mixturing the exponential and gamma distributions. 

Algorithm 1: 

1)  Generate  𝑈𝜉|[𝜉=1,…,𝑛] ∼ Uniform(0,1);  

2)  Generate  𝑍𝜉|[𝜉=1,…,𝑛] ∼ Exponential(𝜆);  

3)  Generate  𝑃𝜉|[𝜉=1,…,𝑛] ∼ Gamma(3, 𝜆);  
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4)  If  
𝑈
𝜉

1
𝛼

𝑈
𝜉

1
𝛼+(1−𝑈𝜉)

1
𝛼

≤
𝜆

𝜆+1
  set  𝑋𝜉 = 𝑍𝜉  ,   𝑋𝜉 = 𝑃𝜉|[𝜉=1,…,𝑛].  

Otherwise, if  𝑢 ∼ 𝑈(0,1) the solution of eqution  𝐹(𝔁) = 𝑢  has CDF (cdfF). 

 

Definition 1: The VaR of  𝑋  at the  100𝑞%  level, say VaR (𝑋)  or  𝛥𝑋(𝜌) , is the  100𝑞%  quantile (or percentile ( 

𝑄𝑋 )) of the distribution of  𝑋 . 

Then, based on Definition 1 for the GOLLX distribution, we can simply write 

𝑃𝑟(𝑋 > 𝑄𝑋) = {

0.1%|𝜌=99.9% 

1%|𝜌=99% 

⋮ 

, 

 

(5) 

 

where  𝑄𝑋  represents the numerical suotion of Algorithm 1 (see Wirch (1999)). 

 

3.2 TVaR indicator 

Definition 2: Suppose that  𝑋  denote a loss random variable. The TVaR of  𝑋  at the  100𝑞%  confidence level is the 

expected loss given that the loss exceeds the   100𝑞%  of the distribution of  𝑋  , namely  

TVaR(𝑋) = E(𝑋|[𝑋>𝛥𝑋(𝜌)]) =
1

1 − 𝐹𝑉(𝛥𝑋(𝜌))
∫ 𝔁
∞

𝛥𝑋(𝜌)

𝑓𝑉(𝔁)𝑑𝔁 =
1

𝜌
∫ 𝔁
∞

𝛥𝑋(𝜌)

𝑓𝑉(𝔁)𝑑𝔁. 

Let  

∫ 𝔁𝜁1
∞

𝛥𝑋(𝜌)

(0.5𝜆𝔁2 + 1)[1 − 𝒰(𝔁; 𝜆)]𝜁2
𝑑𝔁

𝑒𝑥𝑝(𝜁3𝔁)
= 𝐵(𝜁1, 𝜁2, 𝜁3; 𝛥𝑋(𝜌), 𝜆), 

then, 

𝐵(𝜁1, 𝜁2, 𝜁3; 𝛥𝑋(𝜌), 𝜆) =∑ ∑ 𝑣𝜉,𝜉1,𝜉2
(𝜉1,𝜉2)∈𝐴

∞

𝜉=0
{
 

 
1

(𝜆𝜉 + 𝜁3)
𝑝∗+1

𝛤(𝑝∗ + 1, 𝛥𝑋(𝜌)(𝜆𝜉 + 𝜁3))

+
0.5𝜂

(𝜆𝜉 + 𝜁3)
𝑝∗+3

𝛤(𝑝∗ + 3, 𝛥𝑋(𝜌)(𝜆𝜉 + 𝜁3))}
 

 

, 

where  𝛤(𝑣, 𝓎) = ∫ 𝑒−𝑡
∞

𝓎
𝑡𝑣−1𝑑𝑡  represent the lower incomplete gamma function and  𝜁1  > 0, 𝜁2 ≥ 1, 𝜁3 ≥ 0  are 

real numbers. Then,  

TVaR(𝑋) = 𝐶𝜆,𝜌,𝛥𝑋(𝜌) ∑ ∑∑𝑞∗𝑤𝜍,𝜅,𝑙,ℏ𝐵(1, 𝑞
∗ − 1, 𝜆; 𝛥𝑋(𝜌), 𝜆)

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

, 
 

(6) 

where   

𝐶𝜆,𝜌,𝛥𝑋(𝜌) =
𝜆2

(𝜆 + 1)𝜌𝐹(𝛥𝑋(𝜌))
. 

 

Thus, the quantity TVaR (𝑋)  can be expressed as an average of all VaR values above at the confidence level  𝜌 , 

which provides more information about the tail of the GOLLX distribution. Further, it can also be expressed as  

TVaR(𝑋|𝜌) = VaR(𝑋|𝜌) + 𝑚(𝑋|𝜌), 

where  𝑚(𝑋|𝜌)  is the mean excess loss function evaluated at the  100𝑞%𝑡ℎ  quantile. So, TVaR (𝑋|𝜌)  is larger than 

its corresponding VaR (𝑋|𝜌)  by the amount of average excess of all losses that exceed the EL (𝑋|𝜌)  value of VaR 

(𝑋|𝜌) . The VaR (𝑋|𝜌)  has been independently developed and is also known as the conditional tail expectation in the 

insurance literature (see Wirch (1999); Tasche (2002); Acerbi and Tasche (2002)).  

 

3.3 TV indicator 

According to Tasche (2002); Acerbi and Tasche (2002), it has also been referred to as the expected shortfall (ExSh) 

or the tail conditional expectation (TCE). The loss's departure from the average is determined along a tail by the TV 

risk indicator, which Furman and Landsman (2006) established. Furman and Landsman (2006) also created explicit 

formulations for the TV risk indicator under the multivariate normal distribution. 

Definition 3: Suppose that  𝑋  denote a loss random variable. The TV risk indicator (TVq( 𝑋 )) can be expressed as 

TV(𝑋|𝜌) = 𝐸(𝑋
2|𝑋 > 𝛥𝑋(𝜌)) − [TVaR(𝑋|𝜌)]

2
, (7) 

where TVaR (𝑋)  is defiend in (TVaR) and 
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𝐸(𝑋2|𝑋 > 𝛥𝑋(𝜌)) =
1

1 − 𝐹𝑉(𝛥𝑋(𝜌))
∫ 𝔁2
∞

𝛥𝑋(𝜌)

𝑓𝑉(𝔁)𝑑𝔁 =
1

𝜌
∫ 𝔁2
∞

𝛥𝑋(𝜌)

𝑓𝑉(𝔁)𝑑𝔁, 

then,  

𝐸(𝑋2|𝑋 > 𝛥𝑋(𝜌)) =
𝜆2

(𝜆 + 1)(𝜌)𝐹(𝛥𝑋(𝜌))
∑ ∑∑𝑞∗

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

𝑤𝜍,𝜅,𝑙,ℏ𝐵(2, 𝑞
∗ − 1, 𝜆; 𝛥𝑋(𝜌), 𝜆). 

Finally, the TVq( 𝑋 ) can be expressed as 

TV(𝑋|𝜌) = 𝐶𝜆,𝜌,𝛥𝑋(𝜌)

{
  
 

  
 

∑ ∑∑𝑞∗𝑤𝜍,𝜅,𝑙,ℏ

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

𝐵(2, 𝑞∗ − 1, 𝜆; 𝛥𝑋(𝜌), 𝜆)

−𝐶𝜆,𝜌,𝛥𝑋(𝜌) [∑ ∑∑𝑞∗

𝜍−𝜅

ℏ=0

𝜍

𝜅=0

∞

𝜍,𝑙=0

𝑤𝜍,𝜅,𝑙,ℏ𝐵(1, 𝑞
∗ − 1, 𝜆; 𝛥𝑋(𝜌), 𝜆)]

2

}
  
 

  
 

. 

 

 

 

 

 

(8) 

The last formula and other formulas in this paper can be dealt with and its mathematical complexities can be overcome 

numerically through some statistical programs and packages like "R" and "MATHCAD", among others. This is what 

has already been implemented to calculate all the previously presented risk measures and other calculations in the 

aspect of estimation, simulation, applications, etc. And the growing development in statistical assertions has made this 

task easier for us and made it easy to accomplish. We do not claim that these series are convergent series, but we 

confirm that we have been able to find suitable approximate numerical values for all these quantities, and this is what 

helped complete the numerical results and accomplish the related practical applications. 

 

3.4 TMV risk indicator 

As a metric for the best portfolio choice, Landsman (2010). developed the TMV risk indicator, which is based on the 

TCE risk indicator and the TV risk indicator. 

 

Definition 4: Suppose that  𝑋  denote a loss random variable. The TMV risk indicator can then be expressed as 

TMV(𝑋|𝜌) = TVaR(𝑋|𝜌) + 𝜋TV(𝑋|𝜌)|0<𝜋<1. (9) 

Then, for any loss random variable, TMV (𝑋|𝜌) > TV (𝑋|𝜌)  and, for  𝜋 = 0 , TMV (𝑋|𝜌) = TVaR (𝑋|𝜌) , for  𝜋 =

1 , TMV (𝑋|𝜌) = TVaR (𝑋|𝜌) + TV (𝑋|𝜌)  and when  𝜋 → 0,  TMV (𝑋|𝜌) → TVaR (𝑋|𝜌) . 

 

3.5 The PORT-VaR methodology 

According to Alizadeh et al. (2023, 2024 and 2015), Aljadani et al. (2024) and Das et al. (25), the PORT-VaR approach 

is employed alongside the traditional VaR estimate to rigorously detect and analyze extreme financial events in 

insurance data. While conventional VaR methods provide a static quantile-based threshold for loss estimation, PORT-

VaR introduces a dynamic perspective by focusing on the distribution of exceedances above randomly selected 

thresholds. This allows for greater sensitivity in identifying clusters of extreme values that may otherwise remain 

undetected. The two methods are contrasted to evaluate their effectiveness in capturing tail risk, particularly in non-

normal, skewed distributions often observed in insurance and reinsurance data. PORT-VaR's flexibility enables it to 

adapt to the irregularities of financial extremes, offering a richer understanding of the risk structure. When applied to 

insurance claims, it helps isolate the most severe loss events, while for reinsurance revenues, it exposes windfall peaks 

beyond standard expectations. This comparative analysis offers a nuanced view of financial extremes and highlights 

the importance of choosing appropriate models for tail risk detection in the insurance sector. 

 

4. Applications and modeling  

From complete samples, we derive the maximum likelihood estimates (MLEs) of the GOLLX distribution's 

parameters. Using two real data sets, we demonstrate in this section how well the GOLLX distribution fits. We 

compared the models we fitted to see how well the GOLLX distribution fits with actual data: Lindley distribution, 

power Lindley distribution, generalized Lindley, Weibull distribution, exponential distribution, gamma distribution, 

and odd log-logistic Distribution by Lindley Odd log-logistic Weibull distribution, the X-Gamma distribution, and 

OLLL Odd Logistic Logistic X-Gamma Distribution, or OLLW The new odd log-logistic X-Gamma distribution is 

called OLL-XGamma. NOLL-XGamma. The maximum likelihood estimates (MLEs), the standard errors are 

presented for each dataset. The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Cramer 
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Von Mises (𝑊∗) and Anderson-Darling statistics (𝐴∗) are used for comparing the competitive models. For 

comparison's sake, we also considered the Kolmogorov-Smirnov (K-S) statistic, its accompanying p-value, and the 

minimal value of the minus log-likelihood function ( −𝑙 ). Generally, the smaller values of  𝐴∗,   𝑊∗,  p-value,  𝐴𝐼𝐶,   
𝐵𝐼𝐶  and  −𝑙  the better fit to a data set. The programme R was used to do all the computations. 

 

The first set of information consists of the Wheaton River's near-Carcross, Yukon Territory, Canada, exceedances of 

flood peaks (measured in m3/s). The information consists of 72 exceedances with one decimal place over the years 

1958 to 1984. (see Table 1). The MLEs (standard errors in parentheses) for the first data set are shown in Table 2. The 

goodness-of-fit test statistics for the initial data set are shown in Table 3. The second data set is related to failure time 

of 40 devices given by Murthy et al. (2019) (see Table 4). Table 5 gives the MLEs (standard errors in the parentheses) 

for the failure times data set (second data set). Table 6 lists the goodness-of-fit test statistics for the failure times data 

set (second data set). The third data, a list of complete extreme natured skewed to right data, discussed by Murthy et 

al. (2019), represents the failure times of 20 components (see Table 7).  Table 8 gives the MLEs (standard errors in 

the parentheses) for third data set. Table 9 lists the goodness-of-fit test statistics for the failure times data set of 20 

components (third data set). The fourth data set given below represents the failure times of 50 components. For 

previous study on this data set see Merovci et al. (2020) (see Table 10). Table 11 gives the MLEs (standard errors in 

the parentheses) for fourth data set. Table 12 lists the goodness-of-fit test statistics for the failure times data set of 50 

components (fourth data set). 

The four actual data sets are evaluated first. In general, the analysis of real data can be done analytically, visually, or 

by combining the two approaches. We address both numerical methodologies and many graphical tools, such as the 

skewness-kurtosis plot, to assess the initial fits of theoretical distributions like as the normal, uniform, exponential, 

logistic, beta, lognormal, and Weibull (or the Cullen and Frey plot). For higher accuracy, plotting and bootstrapping 

are also used. Cullen and Frey's figure only compares distributions in the space of, despite being a fantastic depiction 

(squared skewness, kurtosis). To analyze the initial form of the empirical HRF, the "total time in test (TTT)" plot, the 

"box plot," the "nonparametric Kernel density estimation (NKDE)" approach, and the determination of the extreme 

observations are all considered. Figure 3 provides the TTT plots for the four data sets respectively. Figure 4 shows the 

box plots for the four data sets respectively. Figure 5 presents the Q-Q plots for the four data sets respectively. Figure 

6 presents the NKDE plots for the four data sets respectively. Figure 7 presents the Cullen and Frey plots for the four 

data sets respectively. The 1st plots for the exceedances of flood peaks data, the top right plots for the failure time of 

40 devices data, the bottom left plots for the failure times of 20 components data and the bottom right plots for the 

failure times of 50 components data. Due to Figure 3, it is noted that the HRF of the exceedances of flood peaks data 

is "monotonically increasing HRF", the HRF of the failure time of 40 devices data is "monotonically increasing HRF", 

the HRF of the failure times of 20 components data is "increasing-decreasing-increasing" shape and the HRF of the 

failure times of 50 components data is "monotonically decreasing" shape. Based on Figure 4, it is noted that the 

exceedances of flood peaks data have some extreme values, the failure time of 40 devices data has no extreme values, 

the failure times of 20 components data has no extreme values and the HRF of the failure times of 50 components data 

has some extreme values. Due Figure 5, it is noted that the exceedances of flood peaks data have two extreme values, 

the failure time of 40 devices data has no extreme values, the failure times of 20 components data has no extreme 

values and the HRF of the failure times of 50 components data has two extreme values. Based on Figure 6, it is noted 

that the exceedances of flood peaks data is asymmetric density with bimodal shape and heavy right tail, the failure 

time of 40 devices data is asymmetric density with bimodal shape and right tail, the failure times of 20 components 

data is asymmetric density with bimodal shape and right tail and the HRF of the failure times of 50 components data 

is asymmetric density with bimodal shape and heavy right tail. Based on Figure 7, it is seen that all data does not 

follow any of the standard distributions including the normal, exponential, uniform, logistic, lognormal, beta, and 

Weibull. Figure 8 gives the fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth 

panels) for all competitive distributions for first data set. Figure 9 gives the fitted PDFs (the first and the second panels) 

and fitted CDFs (the third and the fourth panels) for all competitive distributions for second data set. Figure 10 gives 

the fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth panels) for all competitive 

distributions for third data set. Figure 11 gives the fitted PDFs (the first and the second panels) and fitted CDFs (the 

third and the fourth panels) for all competitive distributions for fourth data set. Due to Figure 8, Figure 9, Figure 10 

and Figure 11 the proposed model provides adequate fits to the empirical data. 

 

Based on Table 3, it is noted that the GOLLX model has proven its superiority and applicability in the field of statistical 

modeling of the exceedances of flood peaks data, and the results of the GOLLX distribution are the best ever compared 

to other competing distributions, where 𝐴∗ = 0.0441, 𝑊∗ = 0.2780, p-value=0.6406, 𝐴𝐼𝐶 = 502.5833, 𝐵𝐼𝐶 =509.4133 

and  −𝑙 = 248.2917.  Based on Table 6, it is noted that the GOLLX model has proven its superiority and applicability 
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in the field of statistical modeling of the failure times data, and the results of the GOLLX distribution are the best ever 

compared to other competing distributions, where  𝐴∗ = 0.0554,   𝑊∗ = 0.4338,  p-value= 0.8421,  𝐴𝐼𝐶 = 57.1990,   
𝐵𝐼𝐶 = 62.26565 and  −𝑙 = 25.5995.  Based on Table 9, it is noted that the GOLLX model has proven its superiority 

and applicability in the field of statistical modeling of the failure times of 20 components data, and the results of the 

GOLLX distribution are the best ever compared to other competing distributions, where  𝐴∗ = 0.0439,   𝑊∗ = 0.3049,  
p-value= 0.9322, 𝐴𝐼𝐶 = 172.3996, 𝐵𝐼𝐶 = 175.3868 and −𝑙 = 83.1998.  Based on Table 12, it is noted that the GOLLX 

model has proven its superiority and applicability in the field of statistical modeling of the failure times of 50 

components data, and the results of the GOLLX distribution are the best ever compared to other competing 

distributions, where 𝐴∗ = 0.0541,   𝑊∗ = 0.4351, p-value= 0.9752,  𝐴𝐼𝐶 = 198.9925,  𝐵𝐼𝐶 = 204.7286 and  −𝑙 = 

96.49627.  The p-value, used in null-hypothesis significance statistical testing, represents the likelihood that the test 

findings will be at least as severe as the result actually observed, assuming that the null hypothesis is true. A very low 

p-value indicates that the null hypothesis would not accept the extreme observed event.  Generally, the p-values are 

0.6406, 0.8421, 0.9322 and 0.9752 for the four real data sets respectively. Table 13 gives the LR test and its related 

results for the four real data sets respectively. 

 

 
Figure 3: The TTT plots. 

 

 
Figure 4: Box plots. 

 

 

 
Figure 5: Q-Q plots. 
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Figure 6: NKDE plots. 

 

 

 

 
Figure 7: Cullen and Frey plots. 

 

Table1: First data set. 

1.70   2.20   14.4   1.10   0.40   20.6   5.30   0.70   1.90   13.0   12.0   9.30   1.40 

18.7   8.50   25.5   11.6   14.1   22.1   1.10   2.50   14.4   1.70   37.6   0.60   2.20   

39.0   0.30   15.0   11.0   7.30   22.9   1.70   0.10   1.10   0.60   9.00   1.70   7.00 

20.1   0.40   2.80   14.1   9.90   10.4   10.7   30.0   3.60   5.60   30.8   13.3   4.20 

25.5   3.40   11.9   21.5   27.6   36.4   2.70   64.0   1.50   2.50   27.4   1.00   27.1 

20.2   16.8   5.30   9.70   27.5   2.50   27.0 

 

Table 2: Estimation results for the first data. 

Model �̂� (SE) �̂� (SE) �̂� (SE)  

Exponential (𝜆) 0.0819 (0.0096) -- -- 

Weibull (𝛼, 𝜆) 11.634 (1.6022) 0.9011 (0.0855) -- 

Gamma (𝛼, 𝜆) 0.8377 (0.1209) 0.0686 (0.0132) -- 

GE (𝛼, 𝜆) 0.0724 (0.011) 0.8281 (0.1230) -- 

Lindley (𝜆) 0.1529 (0.0127) -- -- 

GL (𝛼, 𝜆) 0.1042 (0.0149) 0.5087 (0.0766) -- 

PL (𝛼, 𝜆) 0.3384 (0.0558) 0.7001 (0.0569) -- 

EPL (𝛼, 𝛽, 𝜆) 0.3002 (0.2786) 0.7298 (0.234) 0.9156 (0.5944) 

OLLL (𝛼, 𝜆) 0.1836 (0.0220) 0.6122 (0.0660) -- 

OLLPL (𝛼, 𝛽, 𝜆) 0.1549 (0.0910) 1.0736 (0.2434) 0.5577 (0.1772) 

OLLW (α, β, λ) 11.278 (1.5062) 0.5915 (0.1498) 1.3804 (0.2848) 

XGamma (𝜆) 0.2044 (0.015) -- -- 

OLLX (𝛼, 𝜆) 0.2391 (0.0254) 0.6120 (0.0658) -- 

NOLLX (𝛼, 𝛽, 𝜆) 0.6669 (0.0026) 1.2038 (0.1848) 0.1538 (0.0204) 

GOLLX (𝛼, 𝛽, 𝜆) 0.6387 (0.0047) 5.5615 (0.0156) 0.1988 (0.0193) 

 

 

 

 



Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 83-117  DOI: https://doi.org/10.18187/pjsor.v21i2.4591 

 

  
A Novel Insurance Claims (Revenues) Xgamma Extension: Distributional Risk Analysis Utilizing Left-Skewed Insurance Claims and Right-Skewed Reinsurance Revenues Data with Financial PORT-VaR Analysis 94 

 

Table 3: Fitting results for the first data. 

Model 𝑊∗ 𝐴∗ p-value AIC BIC −𝑙 
Exponential (𝜆) 0.1305 0.7523 0.1088 506.2561 508.5326 252.128 

Weibull (𝛼, 𝜆) 0.1379 0.7854 0.4025 506.9973 511.5506 251.4986 

Gamma (𝛼, 𝜆) 0.1563 1.0714 2.2e-16 506.6887 511.2421 251.3444 

GE (𝛼, 𝜆) 0.1285 0.7420 0.4471 506.5871 511.1404 251.2936 

Lindley (𝜆) 0.1391 0.8521 0.001 530.4231 532.7001 264.211 

GL (𝛼, 𝜆) 0.1322 0.8222 0.276 509.3492 513.9022 252.674 

PL (𝛼, 𝜆) 0.1231 0.7662 0.405 508.4431 512.9961 252.103 

EPL (𝛼, 𝛽, 𝜆) 0.1472 0.8541 0.395 510.4252 517.2552 252.212 

OLLL (𝛼, 𝜆) 0.1001 0.6213 0.501 506.0291 510.5821 251.015 

OLLPL (𝛼, 𝛽, 𝜆) 0.1330 0.8623 <0.001 507.9373 514.7673 250.9687 

OLLW (α, β, λ) 0.1525 0.9890 0.0007 534.9293 537.2060 266.4647 

XGamma (𝜆) 0.0744 0.4737 0.5158 505.8522 512.6822 249.9261 

OLLX (𝛼, 𝜆) 0.1236 0.8126 0.2476 510.1478 514.7011 253.0739 

NOLLX (𝛼, 𝛽, 𝜆) 0.0953 0.5051 0.1108 505.6432 512.4732 249.8216 

GOLLX (𝛼, 𝛽, 𝜆) 0.0441 0.2780 0.6406 502.5833 509.4133 248.2917 

 

Table 4: Second data set. 

0.602 0.603 0.603 0.615 0.652 0.663 0.688 0.705 0.761 0.770 

0.868 0.884 0.898 0.901 0.911 0.918 0.935 0.953 0.983 1.009 

1.040 1.097 1.097 1.148 1.296 1.343 1.422 1.540 1.555 1.653 

1.752 1.885 2.015 2.015 2.030 2.040 2.123 2.175 2.443 2.548 

 

Table 5: Estimation results for the second data. 

Model �̂� (SE) �̂� (SE) �̂� (SE)  

Exponential (𝜆) 0.7978 (49.036) -- -- 

Weibull (𝛼, 𝜆) 1.4214 (0.0995) 2.3948 (0.2884) -- 

Gamma (𝛼, 𝜆) 5.2912 (1.1477) 4.2214 (0.9606) -- 

GE (𝛼, 𝜆) 2.2484 (0.3361) 8.7053 (3.0073) -- 

Lindley (𝜆) 1.1662 (0.1410) -- -- 

GL (𝛼, 𝜆) 2.6156 (0.3491) 7.2935 (2.5363) -- 

PL (𝛼, 𝜆) 0.8044 (0.1232) 2.0437 (0.2277)  

EPL (𝛼, 𝛽, 𝜆) 7.0753 (1.9847) 0.3935 (0.1196) 546.09 (1057.61) 

OLLL (𝛼, 𝜆) 0.9969 (0.0615) 2.3152 (0.2984) -- 

OLLPL (𝛼, 𝛽, 𝜆) 1.1096 (0.0105) 0.0885 (0.0879) 27.543 (42.7398) 

OLLW (α, β, λ) 18.846 (29.051) 20.855 (11.695) 0.1297 (0.0708) 

XGamma (𝜆) 1.5082 (0.1721) -- -- 

OLLX (𝛼, 𝜆) 1.2389 (0.0672) 2.5823 (0.3338) -- 

NOLLX (𝛼, 𝛽, 𝜆) 3.9132 (1.4205) 15.523 (13.673) 0.3776 (0.2080) 

GOLLX (𝛼, 𝛽, 𝜆) 7.4010 (1.7777) 308.37 (400.97) 0.3166 (0.1021) 

 

Table 6: Fitting results for the second data 

Model 𝑊∗ 𝐴∗ p-value AIC BIC −𝑙 
Exponential (𝜆) 0.1656 1.0054 <0.001 100.073 101.7625 49.0367 

Weibull (𝛼, 𝜆) 0.2269 1.3197 0.2634 67.1666 68.38797 31.5833 

Gamma (𝛼, 𝜆) 0.1699 1.0277 <0.001 63.6594 67.03721 29.8297 

GE (𝛼, 𝜆) 0.1355 0.8585 0.6813 62.3528 65.73065 29.1764 

Lindley (𝜆) 0.1757 1.0574 <0.001 93.5442 95.23313 45.7721 

GL (𝛼, 𝜆) 0.1426 0.8935 0.6353 62.7239 66.10172 29.3619 

PL (𝛼, 𝜆) 0.2408 1.3958 0.2769 68.4038 71.78163 32.2019 

EPL (𝛼, 𝛽, 𝜆) 0.0920 0.6611 0.8071 62.6354 67.70209 28.3177 

OLLL (𝛼, 𝜆) 0.1846 1.1252 0.6368 66.5583 69.93611 31.2791 

OLLPL (𝛼, 𝛽, 𝜆) 0.1280 0.8207 <0.001 67.4507 72.51735 30.7253 

OLLW (α, β, λ) 0.1880 1.1172 <0.001 99.3256 101.0145 48.6628 



Pak.j.stat.oper.res.  Vol.21  No. 2 2025 pp 83-117  DOI: https://doi.org/10.18187/pjsor.v21i2.4591 

 

  
A Novel Insurance Claims (Revenues) Xgamma Extension: Distributional Risk Analysis Utilizing Left-Skewed Insurance Claims and Right-Skewed Reinsurance Revenues Data with Financial PORT-VaR Analysis 95 

 

XGamma (𝜆) 0.1463 0.9454 0.7812 67.4612 72.52785 30.7306 

OLLX (𝛼, 𝜆) 0.1934 1.1668 0.5767 66.7475 70.12532 31.3737 

NOLLX (𝛼, 𝛽, 𝜆) 0.0875 0.6888 0.5691 64.2617 69.32842 29.1308 

GOLLX (𝛼, 𝛽, 𝜆) 0.0554 0.4338 0.8421 57.1990 62.26565 25.5995 

 

Table 7: Third data set. 

2.968 4.229 6.560 6.662 7.110 8.608 8.851 9.763 9.773 10.578 

19.136 30.112 37.386 48.442 54.145 57.337 57.637 70.175 79.333 85.283 

 

Table 8: Estimation results for the third data. 

Model �̂� (SE) �̂� (SE) �̂� (SE)  

Exponential (𝜆) 0.0326 (0.0072) -- -- 

Weibull (𝛼, 𝜆) 31.619 (6.9578) 1.0753 (0.1914) -- 

Gamma (𝛼, 𝜆) 1.1439 (0.3219) 0.0372 (0.0130) -- 

GE (𝛼, 𝜆) 0.0355 (0.0100) 1.1482 (0.3444) -- 

Lindley (𝜆) 0.0631 (0.0099) -- -- 

GL (𝛼, 𝜆) 0.0476 (0.0123) 0.6017 (0.1776) -- 

PL (𝛼, 𝜆) 0.1438 (0.0615) 0.7713 (0.1145) -- 

EPL (𝛼, 𝛽, 𝜆) 2.3754 (3.1450) 0.2506 (0.2034) 37.2465 (136.3805) 

OLLL (𝛼, 𝜆) 0.0708 (0.0143) 0.6895 (0.1320) -- 

OLLPL (𝛼, 𝛽, 𝜆) 0.0025 (0.0011) 1.9451 (0.1276) 0.28144 (0.06742) 

OLLW (α, β, λ) 37.796 (7.7066) 0.3207 (0.1719) 2.95583 (1.35545) 

XGamma (𝜆) 0.0894 (0.0121) -- -- 

OLLX (𝛼, 𝜆) 0.1044 (0.0192) 0.5965 (0.1172) -- 

NOLLX (𝛼, 𝛽, 𝜆) 0.4704 (0.0072) 4.0062 (1.1416) 0.0783 (0.01965) 

GOLLX (𝛼, 𝛽, 𝜆) 0.4558 (0.0135) 44.757 (0.1074) 0.0898 (0.01656) 

 

Table 9: Fitting results for the third data 

Model 𝑊∗ 𝐴∗ p-value AIC BIC −𝑙 
Exponential (𝜆) 0.1624 0.9269 0.3072 178.9763 179.9721 88.4881 

Weibull (𝛼, 𝜆) 0.1633 0.9322 0.1872 180.8145 182.8062 88.4072 

Gamma (𝛼, 𝜆) 0.3401 2.1121 <0.001 180.7582 182.7491 88.3791 

GE (𝛼, 𝜆) 0.1625 0.9274 0.1828 180.7681 182.7592 88.3839 

Lindley (𝜆) 0.1684 0.9648 0.0168 182.6236 183.6192 90.3117 

GL (𝛼, 𝜆) 0.1682 0.9639 0.1621 181.3835 183.3753 88.6917 

PL (𝛼, 𝜆) 0.1649 0.9432 0.2013 181.1429 183.1344 88.5714 

EPL (𝛼, 𝛽, 𝜆) 0.1402 0.8048 0.4017 182.2363 185.2235 88.1181 

OLLL (𝛼, 𝜆) 0.1571 0.8936 0.2255 180.0585 182.0499 88.0292 

OLLPL (𝛼, 𝛽, 𝜆) 0.1884 1.0923 0.0162 179.0443 182.0315 86.5221 

OLLW (α, β, λ) 0.1927 1.1207 0.0035 189.4791 190.4748 93.7395 

XGamma (𝜆) 0.1383 0.8122 0.0904 180.3212 183.3084 87.1605 

OLLX (𝛼, 𝜆) 0.1758 1.0144 0.1905 182.4126 184.4041 89.2063 

NOLLX (𝛼, 𝛽, 𝜆) 0.0484 0.3450 0.7199 173.3923 176.3772 83.6950 

GOLLX (𝛼, 𝛽, 𝜆) 0.0439 0.3049 0.9322 172.3996 175.3868 83.1998 

 

 

Table 10: Fourth data set. 

0.036 0.058 0.061 0.074 0.078 0.086 0.102 0.103 0.114 0.116 

0.148 0.183 0.192 0.254 0.262 0.379 0.381 0.538 0.570 0.574 

0.590 0.618 0.645 0.961 1.228 1.600 2.006 2.054 2.804 3.058 

3.076 3.147 3.625 3.704 3.931 4.073 4.393 4.534 4.893 6.274 

6.816 7.896 7.904 8.022 9.337 10.94 11.02 13.88 14.73 15.08 
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Table 11: Estimation results for the fourth data. 

Model �̂� (SE) �̂� (SE) �̂� (SE)  

Exponential (𝜆) 0.2991 (0.0423) -- -- 

Weibull (𝛼, 𝜆) 2.5312 (0.5717) 0.6612 (0.0747) -- 

Gamma (𝛼, 𝜆) 0.5454 (0.0907) 0.1631 (0.0413)  

GE (𝛼, 𝜆) 0.1941 (0.0431) 0.5369 (0.0901) -- 

Lindley (𝜆) 0.4988 (0.0513) -- -- 

GL (𝛼, 𝜆) 0.2965 (0.0541) 0.4112 (0.0711) -- 

PL (𝛼, 𝜆) 0.9276 (0.1224) 0.5813 (0.0623) -- 

EPL (𝛼, 𝛽, 𝜆) 1.4774 (1.1987) 0.429 (0.2545) 1.8308 (2.2588) 

OLLL (𝛼, 𝜆) 0.6262 (0.0968) 0.5216 (0.0665) -- 

OLLPL (𝛼, 𝛽, 𝜆) 0.7447 (0.2284) 0.8552 (0.2494) 0.6254 (0.2244) 

OLLW (α, β, λ) 2.6514 (0.6030) 0.5267 (0.1766) 1.1408 (0.3271) 

XGamma (𝜆) 0.6173 (0.0585) -- -- 

OLLX (𝛼, 𝜆) 0.7413 (0.1028) 0.5582 (0.0711) -- 

NOLLX (𝛼, 𝛽, 𝜆) 2.7791 (0.0039) 1.1906 (0.2029) 0.1042 (0.01760) 

GOLLX (𝛼, 𝛽, 𝜆) 2.7795 (0.0040) 8.3478 (0.0357) 0.1288 (0.01514) 

 

Table 12: Fitting results for the fourth data 

Model 𝑊∗ 𝐴∗ p-value AIC BIC −𝑙 
Exponential (𝜆) 0.1503 0.9602 0.0004 222.6857 224.5977 110.3428 

Weibull (𝛼, 𝜆) 0.1522 0.9543 0.3643 208.7286 212.5527 102.3643 

Gamma (𝛼, 𝜆) 0.1893 1.2320 <0.001 208.8735 212.6975 102.4367 

GE (𝛼, 𝜆) 0.1470 0.9418 0.2346 208.7449 212.5691 102.3725 

Lindley (𝜆) 0.1721 1.1110 <0.001 242.3559 244.2679 120.178 

GL (𝛼, 𝜆) 0.1714 1.1139 0.1255 211.9627 215.7868 103.9814 

PL (𝛼, 𝜆) 0.1564 0.9829 0.3462 209.4877 213.3117 102.7438 

EPL (𝛼, 𝛽, 𝜆) 0.1600 0.9954 0.4904 211.1786 216.9147 102.5893 

OLLL (𝛼, 𝜆) 0.1405 0.9487 0.1451 208.5306 212.3547 102.2653 

OLLPL (𝛼, 𝛽, 𝜆) 0.1697 1.0956 0.0150 210.2107 215.9468 102.1054 

OLLW (α, β, λ) 0.1204 0.8183 0.1954 208.1783 213.9144 101.0892 

XGamma (𝜆) 0.1590 1.0604 <0.001 233.9803 235.8923 115.9902 

OLLX (𝛼, 𝜆) 0.1449 0.9939 0.1035 208.1222 211.9462 102.0611 

NOLLX (𝛼, 𝛽, 𝜆) 0.0463 0.3487 0.9171 198.7472 204.4833 96.3736 

GOLLX (𝛼, 𝛽, 𝜆) 0.0541 0.4351 0.9752 198.9925 204.7286 96.49627 

 

Table 13: LR test and its related results. 

Data and Models↓ Hypotheses→ Hypotheses LR p-value 

The 1st data set    

NOLLX versus X-gamma 𝐻₀: 𝛼 = 𝛽 = 1 36.346 <0.001 

NOLLX versus OLLX 𝐻₀: 𝛼 = 1 9.5644 0.0012 

NOLLX versus exponentiated XGamma 𝐻₀: 𝛽 = 1 11.968 0.0005 

 

The 2nd data set 

   

NOLLX versus XGamma 𝐻₀: 𝛼 = 𝛽 = 1 46.12661 <0.001 

NOLLX versus OLLX 𝐻₀: 𝛼 = 1 11.54856 0.0006 

NOLLX versus exponentiated XGamma 𝐻₀: 𝛽 = 1 8.141115 0.0043 

 

The 3rd data set 

   

NOLLX versus X-Gamma 𝐻₀: 𝛼 = 𝛽 = 1 21.07938 <0.001 

NOLLX versus OLLX 𝐻₀: 𝛼 = 1 12.01295 0.0005 

NOLLX versus exponentiated XGamma 𝐻₀: 𝛽 = 1 14.64287 0.0001 

 

The 4th data set 
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NOLLX versus XGmma 𝐻₀: 𝛼 = 𝛽 = 1 38.98778 <0.001 

NOLLX versus OLLX 𝐻₀: 𝛼 = 1 11.12962 0.0008 

NOLLX versus exponentiated XGamma 𝐻₀: 𝛽 = 1 12.47517 0.0004 

 

 

 
Figure 8: The fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth 

panels) for all competitive distributions for first data set. 
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Figure 9: The fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth 

panels) for all competitive distributions for second data set. 

 

 

 

 

 
Figure 10: The fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth 

panels) for all competitive distributions for third data set. 
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Figure 11: The fitted PDFs (the first and the second panels) and fitted CDFs (the third and the fourth 

panels) for all competitive distributions for fourth data set. 

 

5. Risk analysis under the insurance claims and reinsurance revenues data sets 

This section discusses the insurance claims and reinsurance firm revenue in the American insurance sector. In the 

historical insurance actual data, the temporal growth of claims over time for each relevant exposure (or origin) period 

is typically presented as a triangle. The exposure period may be thought of as the year the insurance policy was bought 

or the time frame in which the loss occurred. That the genesis time need not be annual is clear. For instance, origin 

periods could be monthly or quarterly. The term "claim age" or "claim lag" refers to the length of time that an origin 

period took to emerge. To representing uniform business lines, division levels, or dangers, data from various 

insurances is routinely integrated. In this article, we look at the insurance claims payment triangle using a U.K. Motor 

Non-Comprehensive account as a first real example. We pick the practical genesis period of 2007 to 2013 (see 

Charpentier (2024) and also (see Korkmaz et al. (2017, 2018), Khedr et al. (2023) and Ibrahim et al. (2023, 2025), 

Shrahili et al. (2021), Mohamed et al. (2022) and Mohamed et al. (2024) for more analysis). The claims data is 

presented in the insurance claims payment data frame in the same way that a database would typically store it. The 

first column contains the development year, the incremental payments, and the origin year, which spans from 2007 to 

2013. It's vital to remember that a probability-based distribution was initially used to analyze this data on insurance 

claims. 

 

The second example relates to data on reinsurance revenue, which is currently represented as a monthly time series of 

data. Fortunately, our data are current time series data with a start date of February 2015 and a finish date of April 

2020, the data is available at https://data.world/datasets/insurance. The information on insurance claims and 

reinsurance revenues must be looked at first. Real data can be examined using numerical and graphical methods. We 

cover a variety of graphical approaches, such as the skewness-kurtosis plot (also known as the Cullen and Frey plot), 

for examining early fits of theoretical distributions such the normal, logistic, uniform, exponential, beta, lognormal, 
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and Weibull. For more accuracy, the bootstrapping results are used and plotted. Cullen and Frey's graphic only 

compares distributions in the space of the squared skewness, kurtosis, while being an excellent depiction of the 

properties of the distributions. Other graphical tools include the NKDE approach for examining the initial shape of 

the empirical hazard rate function, the box plot for identifying the extreme reinsurance revenues, and TTT plot for 

examining the initial shape of the empirical hazard rate function. Table 14 gives summary statistics for the insurance 

claims and reinsurance revenue data. 

 

 

In this application, we discuss many graphical methods for analyzing early fits of theoretical distributions such the 

normal, logistic, uniform, exponential, beta, lognormal, and Weibull, such as the skewness-kurtosis plot (also known 

as the Cullen and Frey plot). The bootstrapping findings are applied and displayed for more accuracy. The picture by 

Cullen and Frey is a superb representation of the characteristics of the distributions, however it only compares 

distributions in the space of the squared skewness, kurtosis. Other graphical techniques include the TTT plot for 

assessing the initial form of the empirical hazard rate function, the "box plot" for finding the extreme reinsurance 

revenues, and the NKDE approach. 

 

 

The Cullen and Frey plot for the data of the insurance claims is shown in Figure 12 (see right panel). The Cullen and 

Frey plot for the data of reinsurance revenues is shown in Figure 12 (see left panel). The NKDE plot for the data of 

the insurance claims is shown in Figure 13 (top left panel).  Figure 13 (2nd plot) displays the Q-Q plot for the data of 

the insurance claims. The TTT plot for the data of the insurance claims data is shown in Figure 13 (the 3rd plot), and 

Figure 13 (the bottom right panel) displays a box plot of the data for insurance claims. The NKDE plot for the data of 

reinsurance revenues is shown in Figure 14 (top left figure).  Figure 14 (2nd plot) displays the Q-Q plot for the data of 

the reinsurance revenues. The TTT plot for the data of the reinsurance revenues data is shown in Figure 14 (the 3rd 

plot), and Figure 14 (the bottom right panel) displays a box plot of the data for reinsurance revenues. Due to Figure 

13 (top left figure), the insurance claims data are left skewed, where the skewness= −0.748278  and the kurtosis= 

2.7884640 . No extreme observations are spotted based on Figure 13 (top right and bottom right plots) due to the 

insurance claims data. Further, Figure 13 (3rd plot) shows that the HRF for the insurance claims data is monotonically 

increasing HRF. Due to Figure 14 (top left figure), the reinsurance revenues data are not very skewed and are close to 

being symmetric, they are of course not completely symmetrical, where the skewness=0.2668196 and the 

kurtosis=2.264141. No extreme observations are spotted based on Figure 14 (top right and bottom right plots) due to 

the reinsurance revenues data. Further, Figure 14 (3rd plot) shows that the HRF for the reinsurance revenues data is 

monotonically increasing. 

 

In this application, we are in the process of a time series of the revenues of reinsurance companies, and we are very 

interested in knowing the shape of the spread by knowing the extent to which the values of the time series are 

interconnected with their previous values, and therefore we have drawn the scattergram at lag 𝑘 =  1. The scattergram 

is a diagram that shows points referencing two different variables. Two variables are observed and plotted on a graph 

to make a scattergram. The resulting display illustrates how the variables are related. Where the points are most closely 

grouped together, the link is stronger. Statistical surveys or laboratory test results are occasionally represented using 

scattergrams. The terms scatter plot, scatter diagram, scatter chart, and scatter graph can all be used to refer to a 

scattergram. Figure 15 (first row) shows the scattergrams of the insurance claims data. Figure 15 (second row) shows 

the scattergrams of the reinsurance revenues data.  

 

Moreover, we offer the autocorrelation function (ACF), The autocovariance function (ACOF) and PACF. The ACF 

shows how the correlation between any two signal values changes as their separation changes. The theoretical ACF 

provides no information about the process's frequency content; instead, it measures the stochastic process memory in 

the time domain, it offers some details regarding the distribution of hills and valleys on the surface. The ACOF is 

defined as the sequence of covariances of a stationary process. The theoretical ACF is given in Figure 16 (tope left 

plot), the ACOF in Figure 16 (top middle plot) and theoretical PACF in Figure 16 (the 2nd plot) for the insurance 

claims data data under 𝑙𝑎𝑔 =  𝑘 =  1. The theoretical ACF is given in Figure 16 (3 𝑟𝑑  plot), the ACOF in Figure 16 

(bottom middle plot) and theoretical PACF in Figure 16 (the 4th plot) for the reinsurance revenues data under 𝑙𝑎𝑔 =
 𝑘 =  1.  
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Table 14: Summary statistics. 

Statistic Value 

 Insurance claims Reinsurance revenue 

Mean and Variance 7.6858930,0.5444321 32360452,1.355245×10¹⁴ 

Kurtosis and Skewness 2.7884640, −0.748278 2.264141,0.2668196 

Dispersion index 0.07083524 (< 1) 4187967 (> 1) 

Min and Max 5.828946,8.745603 14021480,58756474 

Length and Median 28,7.740188 64,32360452 

Quantiles (0.25%,0.75%) (7.169353,8.281252) (22426547,39929985) 

 

 
Figure 12: Cullen and Frey plot under the insurance claims (left) reinsurance revenues (right) data sets. 
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Figure 13: NKDE plot, Q-Q plot, TTT plot and box plot for the insurance claims data. 

 

 

 
Figure 14: NKDE plot, Q-Q plot, TTT plot and box plot for the reinsurance revenues data. 
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Figure 15: The scattergrams of the insurance claims data (first row) 

And the scattergrams of the reinsurance revenues data (second row). 
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Figure 16: The ACF, ACVF and PACF of the insurance claims data (first row)  

and the ACF, ACVF and PACF of the reinsurance revenues data (second row). 

 

For the two-insurance data, we propose an application for risk analysis using VaR, TVaR, TV, and TMV metrics. The 

risk analysis is done for some confidence levels (CLs)  

𝜌 = 50%, 40%, 30%, 20%, 10%, 5%, 1%. 
For the insurance claims data: The five measures are estimated for the GOLLX and XGamma models, the XGamma 

model is the baseline model for this application. Table 15 reports the KRIs for the GOLLX and XGamma models. For 

the  GOLLX model, the quantity VaR (𝑋|𝜌,𝑉)  ranges from 1.260268| 𝜌 = 50%  to 5.852501| 𝜌 = 1% , TVaR (𝑋|𝜌,𝑉)  

ranges from 2.981853| 𝜌 = 50%  to 6.463228| 𝜌 = 1% , TV (𝑋|𝜌,𝑉)  ranges from 3.891189| 𝜌 = 50%  to 20.37185| 

𝜌 = 1%  and TMV (𝑋|𝜌,𝑉)  ranges from 6.678482| 𝜌 = 50%  to 25.81649| 𝜌 = 1% .   For the XGamma model, VaR 

(𝑋|𝜌,𝜆)  ranges from 0.6484999| 𝜌 = 50%  to 1.534491| 𝜌 = 1% , TVaR (𝑋|𝜌,𝜆)  ranges from 2.397684| 𝜌 = 50%  

to 3.240351| 𝜌 = 1% ,  TV (𝑋|𝜌,𝜆)  ranges from 3.641414| 𝜌 = 50%  to 4.046323| 𝜌 = 1% , and TMV (𝑋|𝜌,𝜆, 0.95)  

ranges from 5.8570282| 𝜌 = 50%  to 7.084358| 𝜌 = 1% .  For the reinsurance revenues data: The five measures are 

estimated for the GOLLX and XGamma models, the XGamma model is the baseline model for this application. Table 

16 reports the KRIs for the GOLLX and XGamma models for the reinsurance data. For the  GOLLX model, the 

quantity VaR (𝑋|𝜌,𝑉)  ranges from 2.464745| 𝜌 = 50%  to 4.979179| 𝜌 = 1% , TVaR (𝑋|𝜌,𝑉)  ranges from 4.336615| 

𝜌 = 50%  to 4.988936| 𝜌 = 1% , TV (𝑋|𝜌,𝑉)  ranges from 38.98669| 𝜌 = 50%  to 71.73617| 𝜌 = 1%  and TMV 

(𝑋|𝜌,𝑉)  ranges from 41.37397| 𝜌 = 50%  to 73.13830| 𝜌 = 1% .  For the XGamma model, VaR (𝑋|𝜌,𝜆)  ranges from 

2.0433| 𝜌 = 50%  to 3.37588| 𝜌 = 1% , TVaR (𝑋|𝜌,𝜆)  ranges from 4.127986| 𝜌 = 50%  to 4.70335| 𝜌 = 1% ,  TV 

(𝑋|𝜌,𝜆)  ranges from 35.48| 𝜌 = 50%  to 48.2822| 𝜌 = 1% , and TMV (𝑋|𝜌,𝜆, 0.95)  ranges from 37.8352| 𝜌 = 50%  

to 50.57139| 𝜌 = 1% .  In general, we find the following outcomes for the two models: 

 

VaR(𝑋|𝜌=50%) <. . . < VaR(𝑋|𝜌=1%),TVaR(𝑋|𝜌=50%) <. . . < TVaR(𝑋|𝜌=1%), 

 

TV(𝑋|𝜌=50%) <. . . < TV(𝑋|𝜌=1%),TMV(𝑋|𝜌=50%) <. . . < TMV(𝑋|𝜌=1%)|𝜋=0.95, 

and 
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EL(𝑋|𝜌=50%) > EL(𝑋|𝜌=40%) >. . . > EL(𝑋|𝜌=1%), 

It is significant to notice that the mean excess loss function's value, if one exists, has fallen, which may be an indication 

that reinsurance companies will reach their anticipated profits in the following years. It is significant to observe that 

the mean excess loss function value has become negative, which may be an indication that reinsurance companies 

may reach their anticipated earnings in the following years.  

 

In addition, the outcomes of the comparison between the GOLLX and XGamma models are as follows: 

•  ∀   𝜌  : VaR (𝑋|𝜌,𝑉)  for  GOLLX model > VaR (𝑋|𝜌,𝜆)  for XGamma model. 

•  ∀   𝜌  : TVaR (𝑋|𝜌,𝑉)  for  GOLLX model > TVaR (𝑋|𝜌,𝜆)  for XGamma model. 

•  ∀   𝜌  : TV (𝑋|𝜌,𝑉)  for  GOLLX model > TV (𝑋|𝜌,𝜆)  for XGamma model. 

•  ∀   𝜌  : TMV (𝑋|𝜌,𝑉 , 0.95)  for  GOLLX model > TMV (𝑋|𝜌,𝜆, 0.95)  for XGamma model. 

•  ∀   𝜌  : VaR (𝑋|𝜌) < TVaR (𝑋|𝜌) < TMV (𝑋|𝜌)   .  

 

For the insurance claims data:  ∀   𝜌 , EL (𝑋|𝜌,𝑉)  is evaluated where for the GOLLX model, t the EL (𝑋|𝜌)  decreases 

as  𝜌  increases and it started with 1.721585 |𝜌=50%  and ended with 0.61073 |𝜌=1%.  For the XGamma model the EL 

(𝑋|𝜌,𝜆)  decreases as  𝜌  increases and it started with 1.749184 |𝜌=50%  and ended with 1.705860 |𝜌=1%.  EL (𝑋|𝜌,𝑉)  

for the GOLLX model < EL (𝑋|𝜌,𝜆)  for the XGamma model  ∀   𝜌 . For the reinsurance revenues data:  ∀   𝜌 , EL 

(𝑋|𝜌,𝑉)  is evaluated where for the GOLLX model, the EL (𝑋|𝜌)  decreases as  𝜌  increases and it started with 1.8719 

|𝜌=50%  and ended with 0.00976 |𝜌=1%.  For the XGamma model the EL (𝑋|𝜌,𝜆)  decreases as  𝜌  increases and it 

started with 02.084683 |𝜌=50%  and ended with 1.327465 |𝜌=1%.  EL (𝑋|𝜌,𝑉)  for the GOLLX model < EL (𝑋|𝜌,𝜆)  for 

the XGamma model  ∀   𝜌 . For  𝜌 = 50% , EL (𝑋|𝜌,𝑉)  for the GOLLX model = 1.8718700. For the insurance claims 

and reinsurance revenues, the mean excess losses under the new model are often lower than their comparable ones 

under the baseline model. Figure 17 reports the plots of the VaR, TVaR, TV and TMV and the corresponding Cullen 

and Frey for the new model under the insurance claims. Figure 18 reports the plots of the VaR, TVaR, TV and TMV 

and the corresponding Cullen and Frey for the new model under the the reinsurance revenues. The first row of each 

plot provides a graphical comparison between GOLLX and XGamma models. Based on Figure 17 and Figure 18 the 

GOLLX model has a heavier tail than the XGamma distribution for all KRIs. Therefore, when measuring risk and 

issues of disclosure, we prefer the model with has a heavier tail. 

 

 

Table 15: KRIs under the insurance claims data. 

 𝜌 VaR(𝑋|𝜌,𝑉) TVaR(𝑋|𝜌,𝑉) TV(𝑋|𝜌,𝑉) TMV(𝑋|𝜌,𝑉) EL(𝑋|𝜌,𝑉) 

GOLLX 50% 1.260268 2.981853 3.891189 6.678482 1.721585 

 40% 1.665983 3.363419 4.132600 7.289390 1.697436 

 30% 2.189041 3.846229 4.570144 8.187866 1.657188 

 20% 2.926251 4.502942 5.538943 9.764937 1.576691 

 10% 4.186518 5.521718 8.872839 13.95091 1.335200 

 5% 5.446786 6.299004 16.40810 21.88669 0.8522177 

 1% 5.852501 6.463228 20.37185 25.81649 0.6107266 

       

XGamma 50% 0.6484999 2.397684 3.641414 5.857028 1.749184 

 40% 0.7832417 2.527119 3.686861 6.029637 1.743877 

 30% 0.8987206 2.637725 3.729751 6.180988 1.739004 

 20% 0.990413 2.725322 3.766610 6.303601 1.734909 

 10% 1.188957 2.914258 3.855771 6.577241 1.725301 

 5% 1.334489 3.052050 3.930112 6.785656 1.717561 

 1% 1.534491 3.240351 4.046323 7.084358 1.705860 

 

Table 16: KRIs under the reinsurance revenues data. 

 𝜌 VaR(𝑋|𝜌,𝑉) TVaR(𝑋|𝜌,𝑉) TV(𝑋|𝜌,𝑉) TMV(𝑋|𝜌,𝑉) EL(𝑋|𝜌,𝑉) 

GOLLX 50% 2.464745 2.464745 2.464745 2.464745 2.464745 

 40% 2.944219 2.944219 2.944219 2.944219 2.944219 

 30% 3.293023 3.293023 3.293023 3.293023 3.293023 
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 20% 4.097732 4.097732 4.097732 4.097732 4.097732 

 10% 4.697656 4.697656 4.697656 4.697656 4.697656 

 5% 4.965314 4.965314 4.965314 4.965314 4.965314 

 1% 4.979179 4.979179 4.979179 4.979179 4.979179 

       

XGamma 50% 2.043302 2.043302 2.043302 2.043302 2.043302 

 40% 2.248476 2.248476 2.248476 2.248476 2.248476 

 30% 2.464745 2.464745 2.464745 2.464745 2.464745 

 20% 2.693378 2.693378 2.693378 2.693378 2.693378 

 10% 3.020090 3.020090 3.020090 3.020090 3.020090 

 5% 3.283922 3.283922 3.283922 3.283922 3.283922 

 1% 3.375880 3.375880 3.375880 3.375880 3.375880 

 

 
Figure 17: VaR, TVaR, TV and TMV and the corresponding Cullen and Frey for the insurance claims. 

 

 
Figure 18: VaR, TVaR, TV and TMV and the corresponding Cullen and Frey for the reinsurance revenues. 
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6. Simulation design and results for estimation of VaR 

This section entails a simulation study to compare the performance of the proposed GOLLX distribution with the 

existing XGamma distribution of Sen et al. (2016). The comparison would be done in two stages. Firstly, we compare 

the estimation of the parameter  𝜆  using the maximum likelihood estimation technique from the XGamma distribution 

and the proposed GOLLX distribution. Secondly, we assess the performance of the proposed GOLLX distribution in 

estimating high quantiles (i.e. VaR) in relation to the existing XGamma distribution. In this subsection, we provide 

simulation results for estimating high quantiles (VaR). Samples are generated from a mixture of exponential and 

gamma distributions to obtain samples from the XGamma and GOLLX distributions. Here, the inverses of the 

distribution’s functions are obtained numerically and the estimation of parameters in both cases are done using the 

ML method. We vary the common shape parameter,  𝜆 (𝜆 = 0.5,  0.75,  1,  3.00,  6.00)  to both distributions, sample 

size and the quantile level,  𝑞 (𝑞 = 0.95,0.99,  0.999).  The number of repetitions is fixed at  ℏ = 1000.  Since the 

results did not differ in terms of the pattern of the performance at different quantile levels, for brevity and ease of 

presentation, we present the results for  𝑞 = 0.99  only. The results for the estimation of quantiles for samples 

generated from the GOLLX distribution are presented in Table 17, Table 18, Table 19, Table 20 and Table 21 for 

corresponding values of the shape parameter 𝜆.  Note that the other parameters of the GOLLX are held constant:  𝛼 =
9,   𝛽 = .51,   𝜆 = 0.5.  It can be seen from these figures that the GOLLX estimation of the high quantile (VaR) yields 

lesser MSE and bias values than the XGamma estimator except for the case where  𝜆 = 0.50.  In the case of samples 

generated from XGamma distribution, Table 17, Table 18, Table 19, Table 20, the GOLLX estimator of VaR appears 

unstable for 𝜆 ≤ 0.75.  However, it possesses lesser bias and MSE for  0.75 < 𝜆 ≤ 3.00.  In addition, the GOLLX 

estimator is competitive in terms of bias for  𝜆 = 6.00.  Generally, as  𝜆  increases the bias and MSE values decrease 

in the results from XGamma and GOLLX distributions. However, empirical consistency was not uniformly achieved 

in each of these distributions. Therefore, from these results, the GOLLX provides a viable estimator of the VaR (high 

quantiles) for samples generated from the GOLLX distribution and competitive in the case of samples from the 

XGamma distribution. 

 

Table 17: Results for samples generated with 𝜆 = 0.50. 

 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

Estimator Bias, MSE Bias, MSE Bias, MSE 

XGamma 12.6304,159.81 12.6202,159.4601 12.6229,159.4492 

GOLLX 16.4123,2977.60 16.2713,2984.6024 20.8420 5623.9821 

 

Table 18: Results for samples generated with 𝜆 = 0.75. 

 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

Estimator Bias, MSE Bias, MSE Bias, MSE 

XGamma 2.0861,4.3375 2.0789,4.3348 2.0695,4.2900 

GOLLX −0.8759,0.7692 −0.8744,0.7676 −0.8771,0.7697 

 

Table 19: Results for samples generated with 𝜆 = 1. 

 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

Estimator Bias, MSE Bias, MSE Bias, MSE 

XGamma 2.0861,4.3375 2.0789,4.3348 2.0695,4.2900 

GOLLX −0.8759,0.7692 −0.8744,0.7676 −0.8771,0.7697 

 

Table 20: Results for samples generated with 𝜆 = 3. 

 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

Estimator Bias, MSE Bias, MSE Bias, MSE 

XGamma 1.1272,1.2890 1.1514,1.3300 1.1485,1.3216 

GOLLX −0.2685,0.0888 −0.2600,0.1238 −0.2339,0.1819 

 

Table 21: Results for samples generated with 𝜆 = 6. 

 𝑛 = 100 𝑛 = 500 𝑛 = 1000 

Estimator Bias, MSE Bias, MSE Bias, MSE 

XGamma 0.6152,0.3842 0.6226,0.3887 0.6223,0.3877 

GOLLX 0.5135,30.7312 0.2477,2.4120 0.2393,0.9564 
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8. PORT-VaR analysis  

In our analysis of extreme financial insurance peaks, we integrate and compare the PORT-VaR methodology with the 

traditional VaR estimation. The PORT-VaR approach, grounded in extreme value theory, offers a dynamic threshold-

based framework for identifying rare but high-impact financial outliers. By contrasting it with the more conventional 

VaR model, known for its static quantile-based cutoff, we aim to assess the precision and responsiveness of each 

method in capturing tail-risk behavior specific to the asymmetrical nature of our dataset, characterized by left-skewed 

insurance claim losses and right-skewed reinsurance revenue gains. This comparison underscores the importance of 

tailoring risk quantification tools to accommodate skewed distributions inherent in insurance and reinsurance data 

structures. 

 

Table 22 presents the results of the PORT-VaR analysis applied to insurance claims data, expressed in billion USD. 

As the CL increases from 55% to 95%, the VaR threshold decreases steadily, from 7.73 to 6.40 billion, indicating a 

shift in the quantile-based boundary for identifying tail events. Correspondingly, the number of claims exceeding each 

threshold grows from 15 to 26, reflecting the expected increase in tail density as the cut-off descends into deeper 

quantiles. This behavior suggests a moderate concentration of extreme losses in the upper tail, with a gradually 

thickening tail profile that aligns with the left-skewed nature of insurance claim distributions observed in the study. 

 

The PORT-VaR analysis reveals a gradual but consistent increase in the number of extreme claims as the confidence 

level rises, signaling a moderately fat-tailed loss distribution. Insurance firms should calibrate their capital reserves to 

account for this growing tail risk, particularly under stress scenarios beyond the 90% confidence level.  Given that 

traditional static VaR may underrepresent true exposure in the upper tail, especially for skewed claim distributions, 

insurers should adopt dynamic, quantile-adjusted thresholds like PORT-VaR for real-time claims surveillance and 

early warning systems.  The detection of increasingly frequent peaks above the VaR threshold suggests that extreme 

losses are not isolated anomalies. Insurers should incorporate heavy-tail modeling into underwriting strategies to avoid 

systematic underestimation of high-impact claim events.  With the steepest rise in risk concentration observed between 

the 80–95% confidence levels, insurers may consider structuring reinsurance treaties (e.g., excess-of-loss or stop-loss 

agreements) to attach near these thresholds, ensuring coverage activates when peak claim exposures become 

statistically probable.  

 

Figures 19 and 20 provide graphical reinforcement for the quantitative insights presented in Table 22 regarding the 

PORT-VaRq analysis of insurance claims. Specifically, Figure 19 illustrates the histograms of the claim’s distribution 

across varying confidence levels, with superimposed VaR thresholds and highlighted peaks. These visual cues reveal 

a progressive accumulation of claims in the upper-left tail, consistent with the increasing number of peaks reported in 

Table 22 as the VaRq threshold lowers. Complementarily, Figure 20 visualizes the density curves, offering a clearer 

view of the tail thickness and how claim values cluster beyond specific quantiles. 

 

Table 22: PORT-VaR analysis for insurance claims in billion USD. 

CL VaR Number of Peaks Above VaR 

55% 7.726563 15 

60% 7.604576 17 

65% 7.503069 18 

70% 7.339545 19 

75% 7.169353 21 

80% 7.092463 22 

85% 7.092463 23 

90% 6.737170 25 

95% 6.399212 26 

 

Table 23 summarizes the same PORT-VaR procedure, but for reinsurance revenues, reported in USD. Here, a more 

dynamic pattern emerges: the VaR thresholds drop significantly from approximately 30.6 million USD at the 55% 

level to about 15.3 million USD at the 95% level. In tandem, the number of revenue observations exceeding the VaR 

grows rapidly from 35 to 61. This increase is not only sharper but more sustained across confidence levels than in the 
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insurance claims case. The results highlight a heavier and more active upper tail in the revenue distribution, supporting 

the paper’s characterization of right-skewed reinsurance income, where a substantial portion of gains is concentrated 

in relatively few, high-value outliers.  

 

The reinsurance revenue data demonstrates a sharp and continuous increase in the number of extreme gains across all 

confidence levels, indicating a highly skewed and volatile income profile. Reinsurers should account for this 

variability when forecasting revenue and assessing profitability under uncertainty.  The presence of a high frequency 

of extreme revenue peaks suggests that standard pricing models may fail to capture the nonlinear accumulation of 

gains. Reinsurers are advised to implement pricing mechanisms that dynamically adjust based on real-time tail 

behavior and peak clustering patterns.  Given the amplified exposure to large, discrete inflows, firms should consider 

deploying flexible capital allocation strategies that can rapidly respond to windfall scenarios without distorting 

solvency assessments or internal return targets.  Since the PORT-VaR approach provides granular insights into the 

threshold at which large revenues emerge, reinsurance companies can use this data-driven intelligence to fine-tune the 

design of retrocession contracts, adjust risk appetite profiles, and strategically select portfolios with favorable 

skewness properties.   

 

On the other hand, Figures 21 and 22 correspond to the PORT-VaRq analysis of reinsurance revenues as reported in 

Table 23. Figure 21 displays the histograms with revenue data, emphasizing the significant presence of high-value 

outliers above the VaRq threshold. This visually aligns with the higher peak counts across confidence levels in Table 

23. Figure 22 presents density plots that further affirm the right-skewed structure of the revenue distribution, 

highlighting a heavier upper tail and more frequent extreme values—critical observations that validate the quantitative 

escalation in peaks and the need for adaptive risk strategies. 

 

Table 23: PORT-VaR analysis for reinsurance revenues in USD. 

CL VaR  Number of Peaks Above VaR 

55% 30643375 35 

60% 29529133 38 

65% 27936937 41 

70% 24892526 45 

75% 22426547 48 

80% 21160380 51 

85% 18970872 54 

90% 16143451 59 

95% 15265431 61 
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Figure 19: Histograms with VaR and peaks under the insurance claims. 
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Figure 20: Densities with VaR and peaks under the insurance claims. 
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Figure 21: Histograms with VaR and peaks under the reinsurance data. 
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Figure 22: Densities with VaR and peaks under the reinsurance data. 

 

8. Concluding remarks and discussion 

The continuous probability distributions can be successfully utilized to characterize and evaluate the risk exposure in 

applied actuarial analysis. Actuaries often prefer to convey the level of exposure to a certain hazard using merely a 

numerical value, or at the very least, a small number of numbers. In this paper, a new applied probability model was 

presented and used to model six different sets of data. About estimating the risks that insurance companies are exposed 

to and the revenues of the reinsurance process, we have analyzed and studied data on insurance claims and data on 

reinsurance revenues as an actuarial example. These actuarial risk exposure functions, sometimes referred to as main 

risk actuarial indicators, are unquestionably a result of a particular model that can be explained. Five crucial actuarial 

indicators are used in this study to identify the risk exposure in insurance claims and reinsurance revenues. We develop 

a new XGamma model specifically for this application. The parameters were estimated using the maximum-likelihood 

technique, maximum product spacing, and least square estimation. Monte Carlo simulation research is conducted 

under a specific set of conditions and controls. Additionally, five risk indicators -value-at-risk, tail-variance, tail value-

at-risk, tail mean-variance, and mean of the excess loss function- were utilized to explain the risk exposure in the 
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context of data on insurance claims and reinsurance revenue. The peak-over-random-threshold mean-of-order-p 

approach and value-at-risk estimate are considered and contrasted through controlled and comprehensive groups of 

simulation studies under certain conditions. For the insurance claims data under the new model, the following results 

can be shown: 

I. The quantity VaR (𝑋|𝜌,𝑉)  ranges from 1.260268| 𝜌 = 50%  to 5.852501| 𝜌 = 1% . However, for the baseline 

model, VaR (𝑋|𝜌,𝜆) ∈ ( 0.6484999| 𝜌 = 50%  , 1.534491| 𝜌 = 1%).  

II. TVaR (𝑋|𝜌,𝑉)  ranges from 2.981853| 𝜌 = 50%  to 6.463228| 𝜌 = 1% . However, for the baseline model, TVaR 

(𝑋|𝜌,𝜆)   ∈  (2.397684| 𝜌 = 50%  , 3.240351| 𝜌 = 1% ). 

III. TV (𝑋|𝜌,𝑉)  ranges from 3.891189| 𝜌 = 50%  to 20.37185| 𝜌 = 1% . However, for the baseline model, TV (𝑋|𝜌,𝜆)   

∈  (3.641414| 𝜌 = 50%  , 4.046323| 𝜌 = 1% ). 

IV. TMV (𝑋|𝜌,𝑉)  ranges from 6.678482| 𝜌 = 50%  to 25.81649| 𝜌 = 1% . However, for the baseline model, TMV 

(𝑋|𝜌,𝜆 , 0.95)   ∈  (5.8570282| 𝜌 = 50% , 7.084358| 𝜌 = 1% ). 

 

For the reinsurance revenues data under the new model, the following results can be highlighted: 

I. The quantity VaR (𝑋|𝜌,𝑉)  ranges from 2.464745| 𝜌 = 50%  to 4.979179| 𝜌 = 1% . However, for the baseline 

model, VaR (𝑋|𝜌,𝜆) ∈ ( 2.0433| 𝜌 = 50% , 3.37588| 𝜌 = 1%) . 

II. TVaR (𝑋|𝜌,𝑉)  ranges from 4.336615| 𝜌 = 50%  to 4.988936| 𝜌 = 1% . However, for the baseline model, TVaR 

(𝑋|𝜌,𝜆)   ∈  (4.127986| 𝜌 = 50%  , 4.70335| 𝜌 = 1% ). 

III. TV (𝑋|𝜌,𝑉)  ranges from 38.98669| 𝜌 = 50%  to 71.73617| 𝜌 = 1% . However, for the baseline model, TV (𝑋|𝜌,𝜆)   

∈  (35.48| 𝜌 = 50%  to 48.2822| 𝜌 = 1% ). 

IV. TMV (𝑋|𝜌,𝑉)  ranges from 41.37397| 𝜌 = 50%  to 73.13830| 𝜌 = 1% . However, for the baseline model, TMV 

(𝑋|𝜌,𝜆 , 0.95)   ∈  (37.8352| 𝜌 = 50%  , 50.57139| 𝜌 = 1% ). 
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