
Pak.j.stat.oper.res.  Vol.21 No. 1 2025 pp 33-37  DOI: http://dx.doi.org/10.18187/pjsor.v21i1.4577 

 

  
Consistency Issues in Skew Random Fields: Investigating Proposed Alternatives and Identifying Persisting Problems 33 

 

 

 

 

Consistency Issues in Skew Random Fields: 

Investigating Proposed Alternatives and Identifying 

Persisting Problems 
 

Mehrdad Taghipour1, Mohammad Mehdi Saber2,*, M. I. Khan3  

Mohamed S. Hamed4,5 and Haitham M. Yousof5 
 

* Corresponding Author 

 

  
1Department of Statistics, Faculty of Sciences, University of Qom, Qom, Iran; m.taghipour@qom.ac.ir 
2Department of Statistics, Higher Education Center of Eghlid, Eghlid, Iran; mohammadmehdisaber@gmail.com 
3Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, KSA; 

khanizhar@iu.edu.sa 
4Department of Business Administration, Gulf Colleges, KSA; mssh@gulf.edu.sa 
5Department of Statistics, Mathematics and Insurance, Benha University, Egypt; 

haitham.yousof@fcom.bu.edu.eg 

 

Abstract  

 

Multiple researchers have proposed skew random fields derived from multivariate skew distributions, yet the 

consistency of these fields has been questioned. Mahmoudian (2018) and Saber et al. (2018) have put forth 

alternative suggestions to address these concerns. In our study, we identify that the random fields outlined by 

Mahmoudian (2018) continue to demonstrate consistency issues, suggesting a flaw in their definition. Finally we 

propose a skew random field and apply it to spatial prediction. 

 

Key Words: Random field, Multivariate closed skew-normal distribution, Multivariate unified skew-normal 

distribution, spatial prediction.  

 

1. Introduction 

Random fields (RFs) have gained popularity in various scientific fields over the last decade, such as physics 

(dynamics, ergodic theory), biology (computational molecular, structural, ecology), control theory of complex 

networks, computer vision, and data science. When we need to specify the joint distribution for an arbitrary number 

of variables, it is essential to establish a suitable random field. For instance, to calculate the conditional expectations 

of field variables at the interpolation location of observed data, spatial or temporal interpolation methods are 

commonly used. To perform these calculations, it is essential to know the common distribution of the observed 

variables at the desired location. Typically, finite-dimensional distributions form the basis of such required random 

fields, and multivariate distributions are defined based on this requirement. The Gaussian random field (GRF) is the 

first and most widely used random field, which can be applied to symmetrically and normally distributed data. 

However, there are cases where we need a Skew random field (SRF), which requires a multivariate log distribution to 

be defined. 

 

Kim and Mallick (2004) introduced the skewed normal random field (SNRF) based on the multivariate skewed normal 

(SN) distribution. Allard and Naveau (2007) developed the closed skew normal (CSN) random field using the CSN 

multivariate distribution. Zairefard and Khalidi (2013) determined a second-order stationary random field called the 

Unified Skew-Normal (SUN) based on the multivariate distribution of the SUN. These distributions, including SN, 

CSN, and SUN, have been widely applied in various fields of applied problems, and their usage is still increasing. 

Saber et al. (2018) demonstrated that some SRFs containing SNRF, CSNRF (closed skew-normal random field), and 

USNRF (Unified Skew-Normal Random Field) are not well-defined. Thus, reconsideration is necessary when using 

these RFs in spatial analysis. Mahmoudian (2018) proposed a family of random fields called SGRF, which 

incorporates changes in the SN, CSN, and SUN distributions. However, our study indicates that the SNRF, CSNRF, 

and USNRF recommended by Mahmoudian (2018) are still not well-defined. 
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The article is organized as follows: Section 2 introduces the multivariate distributions of SN, CSN, and SUN. In 

Section 3, we explore the SRF defined by Mahmoudian (2018) and find that it is not well-defined, making it 

inappropriate for spatial and spatiotemporal data modeling. A well-defined skew random field is proposed in Section 

4. This random field is applied to spatial prediction problem.  

 

2. A review of distributions 

In this section, as a reminder, we will begin by examining the multivariate distributions of SN, CSN, and SUN, and 

highlight the characteristics of their joint and marginal distributions. 

 

2.1. Multivariate SN distribution 

Let 𝑿 = (𝑋1, … , 𝑋𝑝)′ be a p-dimensional continuous random vector from the distribution of SN, denoted by 𝑿 ∼

𝑆𝑁𝑝(𝝁, 𝜮, 𝜶). The probability density function (PDF) of the random variable X is defined as: 

𝑓(𝒙) = 2𝜙𝑝(𝒙; 𝝁, 𝚺)Φ1(𝜶′𝝎−𝟏(𝒙 − 𝝁)), 𝒙 ∈ ℛ𝑝                                                                (2.1) 

Here, 𝜙𝑛(𝒙; 𝝁, 𝚺) represents the pdf of a p-dimensional normal distribution with mean 𝝁 ∈ 𝑅𝑝 and positive definite 

dispersion matrix 𝚺, while Φ1(. ) denotes the cumulative distribution function (cdf) of the standard normal distribution. 

The diagonal matrix 𝝎 is formed by the standard deviation of 𝚺. Additionally, the moment-generating function can 

be derived from the following relationship, (Azzalini, A., Dalla-Valle, A. (1996)) 

𝑀𝑿(𝒕) = 2𝑒𝑥𝑝 (𝒕′𝝁 +
1

2
𝒕′𝜮𝒕)𝛷1(𝝃∗(𝜶)𝜶′𝑯𝝎𝒕), 𝒕 ∈ ℛ𝑝                                                         (2.2) 

where 𝜉∗(𝜶) = √1 + 𝜶′𝑯𝜶 and 𝑯 = 𝝎−𝟏𝚺𝝎−𝟏 is the correlation matrix associated with 𝚺. 

2.2. Multivariate CSN distribution 

Let 𝑿 = (𝑋1, … , 𝑋𝑝)′ be a continuous random vector with p dimensions, drawn from the CSN distribution denoted 

𝑿 ∼ 𝐶𝑆𝑁𝑝,𝑞(𝝁, 𝜮, 𝑫, 𝝂, 𝜣). The pdf of 𝑿  is given by: 

𝑓𝑿(𝒙) = 𝜙𝑝(𝒙; 𝝁, 𝜮)
 𝛷𝑞(𝑫(𝒙−𝝁);𝝂,𝜣)

𝛷𝑞(𝟎;𝝂,𝜣+𝑫 𝜮𝑫′)
, 𝒙 ∈ 𝑅𝑝,                                                          (2.3) 

Here, 𝑝 and 𝑞 are both greater than or equal to 1, 𝑫 is a 𝑞 × 𝑝 matrix that defines the correlation structure, and 

𝛷𝑞(𝒙; 𝝂, 𝚯) represents the 𝑞 -dimensional normal cumulative distribution function with mean ν ∈ 𝝂 ∈ 𝑅𝑝 and 

dispersion matrix Θ. The CSN distribution is frequently used in multivariate data analysis due to its flexible 

framework for modeling correlation structures. For more information on this distribution and its applications, please 

refer to Gonzalez-Farias et al. (2004). This CSN distribution is closed under marginalization. Consider the partition 

𝐗′ = (𝐗𝟏
′ , 𝐗𝟐

′ ) with dim(𝑿1) = 𝑝1, dim(𝑿2) = 𝑝2, 𝑝1 + 𝑝2 = 𝑝 and the corresponding partition of the parameters 

(𝝁, 𝜮, 𝑫) such that 𝝁 = (𝝁1
𝝁2

), Σ = (
Σ11 Σ12

Σ21 Σ22
), and 𝐃 = (𝐃1 𝐃2). Then, the marginal distribution of 𝑿1 is given by 

𝑿1~𝐶𝑆𝑁𝑝1,𝑞(𝝁1, 𝜮11, 𝑫1
∗ , 𝝂, 𝜣1

∗ ),                                                             (2.4) 

Where 𝐃1
∗ = 𝐃1 + 𝐃2 𝚺21𝚺11

−𝟏, 𝚯1
∗ = 𝚯 + 𝐃2 𝚺22.1𝐃2

′ and 𝚺22.1 =  𝚺22−𝚺21𝚺11
−𝟏𝚺12.  

For more details on this result, please see González-Farías et al. (2004)  

2.3 Multivariate SUN distribution 

A random variable 𝑿 is said to have a SUN distribution with parameters 𝑝, 𝑚, 𝝁, 𝜮, ∆, 𝝂 and 𝜞, denoted 𝑿 ∼
𝑆𝑈𝑁𝑝,𝑚(𝝁, 𝚺, 𝚫, 𝝂, 𝜞), if its pdf is given by 

𝑓(𝒙) =
𝜙𝑝(𝒙;𝝁,𝜮)

𝛷𝑚(𝟎;𝝂,𝜞)
𝛷𝑚(𝜟′ 𝜮−1(𝒙 − 𝝁); 𝝂, 𝜞 − 𝜟′𝜮−1𝜟),                                        (2.5) 

where Δ is a 𝑝 × 𝑚 correlation matrix and 𝜞 is an 𝑚 × 𝑚 matrix. 

If we let 𝚯 = 𝜞 − 𝜟′Σ𝜟′' and 𝚪 = 𝜟 𝜮𝚫′, the SUN and CSN are equivalent. 

In practice, the SUN and CSN are used in a variety of statistical models to describe random variables that exhibit 

certain characteristics. For example, they may be used in models that involve correlated random variables or 

variables with heavy tails. We can use the same partition as the CSN distribution for 𝐗′ = (𝐗𝟏
′ , 𝐗𝟐

′ ) with dim(𝑿1) =
𝑝1, dim(𝑿2) = 𝑝2, 𝑝1 + 𝑝2 = 𝑝, along with the corresponding partition of the parameters  

(𝛍, 𝚺, 𝚫, 𝝂, 𝑿1~𝑆𝑈𝑁𝑝1,𝑚(𝜇1, Σ11, D1, 𝝂, 𝚪).                                                          (2.6) 

 

where 𝜇1 represents the mean of 𝑿1, Σ11 represents the covariance matrix of 𝑿1, D1 is a  𝑝1 × 𝑚 correlation matrix 

and 𝚪 is an 𝑚 × 𝑚 matrix. This marginal distribution can be useful in modeling certain types of data, such as 

correlated variables with heavy tails. (Zareifard, H. and Khaledi, M.J. (2013)). 

 

3. New defined RFs and their problem. 
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This section demonstrates that the Skew random fields (SRFs) defined in Mahmoudian (2018) are not well-defined. 

3.1. The SNRF 

Mahmoudian (2018) introduced a skewed normal random field (SNRF) based on the multivariate skewed normal 

(SN) distribution. This distribution is defined by a novel representation given as: 

𝑓(𝒚) = 2𝜙𝑛(𝒚; 𝝁, 𝜔𝟐𝑯)𝛷1 (
𝜹′𝑯−1(𝒚−𝝁)

𝜔√1−𝜹′𝑯−1𝜹
)                                                              (3.1)                              

where 𝜹 =
𝑯𝜶

√1+𝜶′𝑯𝜶 
.                                                                                   (3.2) 

By substituting (3.2) into the pdf (3.1) and performing some computations, we obtain: 
𝜹′𝑯−1(𝒚−𝝁)

𝜔√1−𝜹′𝑯−1𝜹
=

𝜶′(𝒚−𝝁)

𝜔
.                                                                                    (3.3) 

Thus, the finite-dimensional distribution of this SNRF takes the form: 

𝑓(𝒚) = 2𝜙𝑛(𝒚; 𝝁, 𝜔𝟐𝑯)𝛷1 (
𝜶′(𝒚−𝝁)

𝜔
).                                                                   (3.4) 

This distribution family represents a wider range of the distribution family used by Kim and Malik in 2004 to construct 

their field. To be more precise, by replacing the vector 𝜶 with the vector 𝛼𝟏𝑛 in the final equation, we can obtain the 

same field as the one created by Kim and Malik. However, as emphasized in Mahmoudian's (2018) research, the field 

constructed by Kim and Malik in 2004 exhibits an inconsistency problem. Therefore, its more comprehensive variation 

also faces the same issue of inconsistency. 

 

3.2. CSN RF 

Mahmoudian (2018) has claimed that a valid closed skew-normal random field (CSNRF) is defined as: 

𝐶𝑆𝑁𝑛,𝑛 (𝝁, 𝜮,
𝜆

√1+𝜆2
𝜮−

1

2, 𝟎,
1

1+𝜆2 𝑰𝑛)                                                               (3.5) 

However, regardless of the parameters of this RF, this definition is incorrect. Suppose 𝑿 = (𝑋1, … , 𝑋10)′ is a 

realization of the CSNRF in (3.5). Under this assumption, we have 𝑿 ∼ 𝐶𝑆𝑁10,10(. ). Consider the partition 𝐗′ =

(𝐗𝟏
′ , 𝐗𝟐

′ ) with dim(𝑿1) = dim(𝑿2) = 5. By using (2.2), we can show that 𝑿1 ∼ 𝐶𝑆𝑁5,10(. ), while according to (3.5), 

𝑿1 ∼ 𝐶𝑆𝑁5,5(. ). Furthermore, it is important to note that the definition (3.5) is more general than the definition of 

CSNRF by Rimstad and Omre (2014). They explored the impact of the spatial correlation structure and demonstrated 

that the absence of true stationary in the SRF can lead to the parameters of the marginal distribution being influenced 

by the correlation structure across the entire study area. Hence, the spatial correlation structure can influence the 

skewness parameters in the marginal distribution. 

 

3.3. SUN RF 

Mahmoudian (2018) defined a univariate skew normal random field (SUNRF) as shown below and claimed its 

validity: 

𝑆𝑈𝑁𝑛,𝑛(𝝁, 𝜔𝟐𝑯, 𝛿𝑯
1

2, 𝟎, 𝑰𝑛).                                                                       (3.6) 

However, we reject this claim based on the same reasoning as in section 3.2. To illustrate, let X be a realization of 

SUNRF in (2.5) with p = 10, which gives us 𝑿 ∼ 𝑆𝑈𝑁10,10(. ). Now, let us consider the partition 𝐗′ = (𝐗𝟏
′ , 𝐗𝟐

′ ) such 

that dim(𝑿1) = dim(𝑿2) = 5. Using (2.6), we obtain 𝑿1 ∼ 𝑆𝑈𝑁5,10(. ), while according to (3.6), 𝑿1 ∼ 𝑆𝑈𝑁5,5(. ). 

4. Application 

According to Sahu et al. (2003), the pdf of the GSN distribution is given by  

𝑓(𝒙) = 2𝑝𝜙𝑝(𝒙; 𝝁, 𝚺 + 𝑫2)Φ𝑝(𝑫(𝚺 + 𝑫2)−1(𝒙 − 𝝁); 𝟎, ∆), 𝒙 ∈ ℛ𝑝 

where 𝑫 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝) is the diagonal matrix introducing skewness through   

𝝀 ∈ ℛ𝑝, Δ = 𝐼𝑝 − 𝑫(𝚺 + 𝑫2)−1𝑫 and Φp(. , 𝛎, 𝚫) is the cdf of N𝑝(𝛎, 𝚫). 

 

Unlike other skewed distributions, the skewness in the GSN distribution is introduced through the product of the 

Gaussian probability density function and the Gaussian cumulative distribution function. When a certain parameter λ 

is not equal to zero, the variance of the Gaussian pdf increases, and the values are distorted to capture skewness. GSN 

distribution is denoted by 𝐺𝑆𝑁𝑝(𝝁, 𝜮, 𝝀) and its moment-generating function is as follows: 

𝑀𝑋(𝑡) = 2𝑝 exp {𝒕𝝁 +
1

2
𝒕′(𝚺 + 𝑫2)𝒕} Φp(𝑫𝒕)      𝒕 ∈ ℛ𝑝, 

where 𝜙𝑝(. ) is the cdf of N𝑝(, ). let 𝑿 ∼ 𝐺𝑆𝑁𝑝(𝝁, 𝜮, 𝝀) and consider the partition 𝑿𝑇 = (𝑿1
𝑇 , 𝑿2

𝑇) with 𝑑𝑖𝑚(𝑿1) = 𝑝1, 

dim(𝑿2) = 𝑝2 = 𝑝 − 𝑝1 and the corresponding partition of the parameters (𝛍, 𝚺, 𝝀). Then 𝑿1 ∼ 𝐺𝑆𝑁𝑝1
(𝛍1, 𝚺11, q).      
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Let X (𝒕1), … X(𝒕𝑛) be the observations from a Gaussian Spatial Network (GSN) random field {𝑿(𝒕): 𝒕 ∈ 𝐷 ⊆ 𝑅𝑑  }  at 

n locations (𝒕1, … , 𝒕𝑛). To predict 𝑋 (𝒕0)  at a new location 𝒕0,  based on the observations 𝐗 = (X (𝒕1), … X(𝒕𝑛)), we 

define the predictor 𝐗∗ = (X (𝒕0), 𝐗𝑇)𝑇as follows. We have 𝐗∗ ∼ GSN𝑛+1(𝑭∗𝜷, 𝚺∗, 𝝀), where 𝑭∗ = (𝒇 (𝒕0), 𝑭𝑇)𝑇 , , 

𝑭 = [𝑓𝑗(𝒕𝑖)]
𝑛×𝑟

 as known regression functions (covariates), 𝜷 as regression coefficients, 𝜮∗ =
𝐶∗

𝑞
− 𝐹∗𝛽 𝛽𝑇𝐹∗𝑇

 as the 

spatial covariance matrix for all observations and predictions, 𝒄 = (𝐶0𝑖)𝑛×1, C as the covariance matrix, and 𝐶𝑖𝑗 as the 

covariance between observations 𝑖 and 𝑗. 

 

We are focusing on a stationary Gaussian process characterized by a stationary spatial covariance function C(h) =
𝜎2𝜌(ℎ, 𝜽). Here, 𝜌(. , 𝜽) represents a known correlation function, while θ denotes the spatial correlation parameter, 

and 𝜎2 signifies the variance of the random field. In practical applications, both θ and 𝜎2 can be determined through 

variogram estimation based on available data, without making any assumptions about their distributions. 

Consequently, the sole remaining unknown parameter is 𝜷, which is estimated using the maximum likelihood method.    

 

4.1.      Simulation  

As there is no closed form for X (𝑡0)|𝐗 , the Metropolis-Hastings algorithm is employed to produce a sample from 

𝑋(𝑡0)|X. The proposal distribution 𝑔𝑋0
(𝒙): 𝑁(𝑋0, 𝑏1

2 ) in the Metropolis-Hasting algorithm is applied, resulting in an 

approximation of E(𝑋(𝒔0)|𝑋) ≅
1

𝑀
∑ 𝑋𝑗

𝑀
𝑗=1 . To further analyze this, a simulation study with 100 realizations was 

conducted. A stationary GSN RF with a power exponential covariance function 𝐶(|𝒉|) = 𝜎2exp (−|𝒉|𝑝/𝜂) was used 

on a regular 500×500 lattice with parameters 𝜷 = (5,2,7), (𝑓1(𝒔i), 𝑓2(𝒔i), 𝑓3(𝒔i))
𝑇

= (
|𝒔i|+√|𝒔i|

|𝒔i|+1
,

|𝒔i|

|𝒔i|+2
,

√|𝒔i|

√|𝒔i|+3
)

𝑇

, 𝜎2 =

1, 𝜂 = 4 and 𝑝 = 1.35. 

 

For the parameter 𝝀 = (
𝜆1 𝑱70

𝜆2 𝑱30
), values of 𝜆1 = 2, 𝜆2 = −3  were considered, and 𝑱𝑚 is an m-dimensional vector 

with all components set to 1. This simulation was repeated 500 times, and two data sets were randomly chosen for 

further analysis. The Histogram and Normal Q-Q plot of the simulated data in Figure 1 reveal a resemblance to the 

GSN distribution, showcasing characteristics such as skewness, heavy tails, and a departure from a Gaussian 

distribution. 

 
Figure 1. The Histogram and Normal Q-Q plot of the simulated data 

  



Pak.j.stat.oper.res.  Vol.21 No. 1 2025 pp 33-37  DOI: http://dx.doi.org/10.18187/pjsor.v21i1.4577 

 

  
Consistency Issues in Skew Random Fields: Investigating Proposed Alternatives and Identifying Persisting Problems 37 

 

To determine the values of 𝜷̂, 𝜎̂2, 𝜂̂, 𝑝̂, 𝜆̂1 and 𝜆̂2, parameter estimation has been repeated 15,000 times and the average 

of these estimates is obtained. The values of the estimates, along with the bias and mean squared error (MSE) of the 

estimators, are presented in Table 1, where 𝜷 = (5,2,7), (𝑓1(𝒙i), 𝑓2(𝒙i), 𝑓3(𝒙i))
𝑇

= (
|𝒙i|+√|𝒙i|

|𝒙i|+1
,

|𝒙i|

|𝒙i|+2
,

√|𝒙i|

√|𝒙i|+3
)

𝑇

, 𝜎2 =

1, 𝜂 = 4 and 𝑝 = 1.35. For parameter of 𝝀 we consider 𝝀 = (
𝜆1 𝑱70

𝜆2 𝑱30
) where 𝜆1 = 2, 𝜆2 = −3. 

Table 1: Results for parameter estimation 

Estimator value bias MSE 

𝛽̂1 4.90 0.0587 0.0614 

𝛽̂2 1.85 0.0485 0.0519 

𝛽̂3 9.05 -0.0478 0.0369 

𝜎̂2 1.14 0.0808 0.0578 

𝜂̂ 3.98 0.0832 0.0619 

𝑝̂ 1.42 0.0454 0.0069 

𝜆̂1 1.80 -0.0848 0.0566 

𝜆̂2 -2.74 0.0677 0.0371 

 

5. Discussion and Conclusion 

In this article, we demonstrate that certain SRFs defined by Mahmoudian (2018), are not well-defined, despite his 

claims to the contrary based on Kolmogorov's existence theorem. Although we presented evidence that three SRFs 

(namely SNRF, CSNRF, and SUNRF) defined by Mahmoudian (2018) are not well-defined, we identified two SRFs 

that are suitable for valid applications. These are the Generalized Asymmetric Laplace RF (GALRF), which was 

defined by Saber et al. (2018), and the Generalized Skew-Normal Distributed RF (GSNRF), introduced by 

Mahmoudian (2018). For heavy-tailed data, we recommend using the GALRF, while for light-tailed data, the GSNRF 

model is preferable. Finally, we showed that our claim was correct with a simulated example. 
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