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Abstract

This article introduces a novel family of skew distributions namely bimodal Tanh skew normal (BTSN)
distributions, which incorporates a new skew function with the help of hyperbolic tangent function. This
new distribution is designed to accommodate data sets with two modes. Besides, the article presents various
essential mathematical properties, such as moments, moment generating function, characteristic function,
mean deviation, characterizations and the method for maximum likelihood estimation of this distribution.
A simulation study is also conducted using Metropolis–Hastings algorithm to examine the behavior of the
obtained parameters. Furthermore, the practical utility of this new distribution is demonstrated through
a real life application involving a specific data set. To assess the suitability of the BTSN distribution, the
article employs Akaike information criterion (AIC) and Bayesian information criterion (BIC). Finally, a
likelihood ratio test is conducted to distinguish between the new model and the existing competing models.
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1 Introduction

Though the Gaussian distribution is an important and widely used model of probability distribution, in many
practical scenarios the normal distribution may not accurately represent the data when the data appears to
be asymmetric or with heavy tails. In order to tackle these type of issues, Azzalini (1985) proposed the skew
normal (SN) distribution. The pdf of skew normal distribution is

f(x;λ) = 2ϕ(x)Φ(λx), x ∈ R, λ ∈ R, (1)
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where, ϕ(·), Φ(·) are the probability density function (pdf) and cumulative distribution function (cdf) of
standard normal distribution respectively. The additional parameter λ is also known as asymmetry param-
eter regulates the asymmetry in the distribution. Undoubtedly the said distribution was a path-breaking
introduction towards the families of probability distribution with asymmetric behavior. It is elaborately used
in the areas like financial risk management, epidemiology, climate science, environmental studies, biomedi-
cal research, quality Control and manufacturing, insurance companies etc. Later on, numerous families of
skew distributions were developed by adopting the idea of this ground-breaking distribution. Some perfect
examples of those distributions are skew logistic distribution (Nadarajah, 2009), skew laplace distribution
(Aryal and Nadarajah, 2005), skew uniform distribution (Nadarajah and Aryal, 2004), skew-t distribution
(Theodossiou, 1998) etc. Following the skew normal distribution (Azzalini, 1985), continuous research stud-
ies have been carried out by many researchers to develop some new directions towards the domain of skew
distribution. For example Chakraborty et al. (2012) introduced a new skew logistic distribution using a
new skew function which isn’t a cdf. Similarly, using hyperbolic tangent function Mahmoud et al. (2020)
discussed a new class of skew normal distribution namely Tanh skew normal distribution. The pdf of Tanh
skew normal distribution is given by

f(x;λ) = 2ϕ(x)G(λx); x ∈ R, λ ∈ R, (2)

where, G(λx) =
1

2

(
1 + Tanh

[λx
2

])
and G(x) +G(−x) = 1.

Nevertheless, the primary goal of many of the previous works were to improve unimodal skew distribution
models for diverse applications. However, there are number of practical applications exists in the literature
which provides the sufficient evident of data having more than one mode. For example Lim et al. (2002) and
Rushforth et al. (1971) showed the presence of bimodality in Blood Glucose distribution. Ochab-Marcinek
and Tabaka (2010) found that when the concentration of inducers varies, the gene expression may alternate
between being unimodal and bimodal. On the other hand Duarte et al. (2018) discussed alternative methods
for crop insurance pricing based on parametric distributions reflecting the skewness as well as bimodality
of the data. Lima et al. (2002) showed the nanostructured coatings having a bimodal distribution in their
Weibull plots. Besides, McGee et al. (2011) found the presence of bimodality in twitter handling while
Li et al. (2017) showed an bimodal distributional pattern in the posting rates of reviewers. Additionally,
beyond the works mentioned, numerous real-life scenarios illustrate both the applications and necessity of
data exhibiting bimodality.

In the present context, researchers appear to be increasingly focused on exploring probability distribution
models that exhibit both unimodality and bimodality, as well as trimodality and multimodality. There are
several authors recently suggesting families of distributions for modelling data that exhibit bi-modality. Elal-
Olivero et al. (2020) proposed several bimodal symmetric as well as asymmetric distribution adding some
new parameters to the Azzalini’s SN (Azzalini, 1985) model. During the study, Elal-Olivero et al. (2020)
introduced a novel family of skew distribution for supporting bimodal data namely two parameter bimodal
skew normal distribution with the pdf

f(x;α, λ) = 2
1 + αx2

1 + α
ϕ(x)Φ(λx); x ∈ R, λ ∈ R,α ≥ 0, (3)

Besides alpha skew normal (Elal-Olivero, 2010), alpha skew logistic (Hazarika and Chakraborty, 2014), alpha
skew laplace (Harandi and Alamatsaz, 2013), generalised alpha skew normal (Sharafi et al., 2017) etc. are
some noticeable model of probability distributions which allow to fit data with uni-bimodality character.
Additionally, using Balakrishnan (Arnold et al., 2002) mechanism some new model of skew probability
distribution were proposed which includes Balakrishnan alpha skew normal distribution (Hazarika et al.,
2020), Balakrishnan alpha skew logistic distribution (Shah et al., 2020a), Balakrishnnan alpha skew laplace
distribution Shah et al. (2020c) etc.

Nonetheless, there are also some examples of research studies that took into account the bimodal behaviour
of the data sets, such as the Balakrishnan log alpha skew normal distribution (Shah et al., 2020b), Bimodal
skew-symmetric normal distribution (Harandi and Alamatsaz, 2013), skew bimodal distribution proposed by
Braga et al. (2018) and many more.

Furthermore alpha beta skew normal distribution was another new family of skew distribution introduced
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by Shafiei et al. (2016) which was able to fit data up to three modes. Alpha beta skew logistic distribution
(Esmaeili et al., 2020) and alpha beta skew generalized t distribution (Lak et al., 2019) were another two
models under the same umbrella for fitting the data up to three modes. Additionally, some new classes of
flexible skewed models were proposed by Mart́ınez-Flórez et al. (2022) allowing to fit data up to trimodality.
Following this idea there are some other research works were carried out resulting the models like trimodal
skew logistic distribution (Pathak et al., 2023) , flexible alpha skew normal distribution (Das et al., 2023)
etc.

In this article a novel family of skew distribution is introduced using the hyperbolic tangent (Tanh) function
instead of cdf of normal distribution. This new distribution is an extension of Tanh skew normal distribution
(Mahmoud et al., 2020) which allows to fit data with bimodality. Additionally, the adaptability as well as
usefulness of the new model is checked through real life data set.

The rest of the article is organized as follows: In Section 2 the new family of skew normal distribution
is introduced which is an extension of Tanh skew normal (Mahmoud et al., 2020) distribution. Some
Pictorial visualizations of the new distribution along with its special cases are also included in this section.
Furthermore, Some important mathematical properties of the distribution are discussed in Section 3. Section
4 is responsible for the characterizations of the new distribution via truncated moments while the parameter
estimation is included in Section 5. Section 6 is devoted to the simulation results and Section 7 provides the
real life application to check the flexibility as well as adaptability of the new distribution. On the other hand
results of the hypothesis testing are summarized in the Section 8. Finally, Section 9 includes the article.

2 Bimodal Tanh Skew Normal Distribution

A novel extension of the Tanh skew normal distribution is introduced in this section along with the discussion
of some significant mathematical properties.

Definition

The random variable X is said to follow the bimodal Tanh skew normal (BTSN) distribution if its probability
density function (pdf) is given as

f(x;λ, α) =
1 + αx2

C(α)
ϕ(x)G(λx), x ∈ R, λ ∈ R,α ≥ 0 (4)

where, C(α) is the normalizing constant and it is calculated as C(α) = (1 + α). It is denoted as X ∈
BTSN(α, λ). The skew function G(λx) is defined using the Tanh and obtained as

G(λx) =
1

2

(
1 + Tanh

[λx
2

])
, (5)

where, λ is the asymmetry parameter. Mahmoud et al. (2020) showed that using the Taylor series expansion,
the skew function G(λx) can be rewritten as

G(λx) =


∑∞

k=0(−1)k exp(−kλx), x ≥ 0,∑∞
k=0(−1)k exp((k + 1)λx), x < 0,

(6)

for λ > 0. While for λ < 0, it was written as

G(−λx) =


∑∞

k=0(−1)k exp((k + 1)λx), x ≥ 0,∑∞
k=0(−1)k exp(−kλx), x < 0.

(7)
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Hence, the density function of the BTSN distribution can be obtained as,

f(x;α, λ) =



1 + αx2

C(α)
√
2π

exp
(
− x2

2

)∑∞
k=0(−1)k exp(−kλx), x ≥ 0,

1 + αx2

C(α)
√
2π

exp
(
− x2

2

)∑∞
k=0(−1)k exp((k + 1)λx), x < 0,

(8)

for λ > 0. And for λ < 0,

f(x;α, λ) =



1 + αx2

C(α)
√
2π

exp
(
− x2

2

)∑∞
k=0(−1)k exp((k + 1)λx), x ≥ 0,

1 + αx2

C(α)
√
2π

exp
(
− x2

2

)∑∞
k=0(−1)k exp(−kλx), x < 0,

(9)

2.1 Properties of BTSN distribution

(i) If λ = 0, then X ∼ two parameter bimodal normal distribution (Elal-Olivero et al., 2020).

(ii) If α = 0, then X ∼ Tanh skew normal Distribution (Mahmoud et al., 2020).

(iii) If α = 0, λ = 0, then X ∼ N(0,1).

(iv) If α → ∞, then X ∼ bimodal Tanh skew normal Distribution with the pdf

f(x;λ) = x2ϕ(x)
[
1 + Tanh

(λx
2

)]
(v) If λ → ∞, then X ∼ two parameter bimodal normal distribution (Elal-Olivero et al., 2020).

(vi) If X ∼ BTSN(α, λ), then −X ∼ BTSN(−α,−λ).

2.2 Plots of density function

The plot of density function of BTSN(α, λ) distribution for different values of α and λ are illustrated
in Figure 1. From the figure it may be visualized that with different choices of the parameters, the said
distribution may possess at most two modes. It is also observed that when λ = 0, then the density function
yield symmetric bimodal behavior (fig: 1(c)). On the other hand, the density function becomes unimodal
when α = 0, λ = 0 and asymmetric normal when α = 0 (fig: 1(d)). Besides, from the fig: 1(a), it may be
observed that the density function exhibits high peak to the left tail with increasing value of α with fixed
value of λ(< 0). Similarly, fig: 1(b) depicts that the density function exhibits high peak to the right tail
with increasing value of α with fixed λ(> 0).

3 Mathematical Properties

This section includes some important mathematical properties of the BTSN(α, λ) distribution as well as
related results. These properties includes moment generating function, rth order moment, mean deviation,
characterizations etc. Besides cumulative distribution function (cdf) of the novel distribution is calculated.

Lemma 3.1. Let, X ∼ BTSN(α, λ), then the cdf of X is obtained as
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(a) (b)

(c) (d)

Figure 1: Plots of the probability density function of BTSN(α, λ) for different choices of α and λ

Case I: When λ > 0,

F (X) =



1

C(α)
√
2π

∑∞
k=0(−1)k

[(
2 exp

(
k2λ2

2

)√
π

2

((
1− Φ(kλ)

)
−
(
1− Φ(x+ kλ)

)))
+ α

(
1

2

(
− 2kλ+ exp

(
k2λ2

2

)
√
2π
(
1 + k2λ2

)
Φ(kλ) + exp

(
−x(x+ 2kλ)

2

)
(
2kλ− 2x− exp

(
(x+ kλ)2

2

)√
2π
(
1 + k2λ2

)
(
2(1− Φ(x+ kλ)− 1)

))))]
, x ≥ 0,

1

C(α)
√
2π

∑∞
k=0(−1)k

[(
exp

(
(k + 1))2λ2

2

)√
π

2

(
2
(
1−

Φ (x− (1 + k)λ)
)))

+
α

2

(
exp

(
(k + 1))2λ2

2

)
(

− 2 exp

(
(x− (1 + k)λ)2

2

)
(x+ λ+ kλ) +

√
2π
(
1 + (k + 1)2λ2

)
(2 (1− Φ (x− (1 + k)λ)))

))]
, x < 0,

(10)

Proof: Using the expression of density function mentioned on (8), the results for the cdf of the distribution
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(for x ≥ 0) is given as,

F (x) =

∫ x

0

1 + αx2

C(α)
√
2π

exp
(
− x2

2

) ∞∑
k=0

(−1)k exp(−kλx)dx

=
1

C(α)
√
2π

∞∑
k=0

(−1)k
∫ x

0

(
1 + αx2

)
exp

(
−x2

2
− kλx

)
dx

=
1

C(α)
√
2π

∞∑
k=0

[∫ x

0

exp

(
−x2

2
− kλx

)
dx+ α

∫ x

0

x2 exp

(
−x2

2
− kλx

)
dx

]

=
1

C(α)
√
2π

∞∑
k=0

[I1 + αI2]

Now, using the method of integration by parts I1 and I2 are calculated and hence the final results of the cdf
is obtained as

F (x) =

∑∞
k=0(−1)k

C(α)
√
2π

[(
2 exp

(
k2λ2

2

)√
π

2

((
1− Φ(kλ)

)
−
(
1− Φ(x+ kλ)

)))

+ α

(
1

2

(
− 2kλ+ exp

(
k2λ2

2

)√
2π
(
1 + k2λ2

)
Φ(kλ) + exp

(
−x(x+ 2kλ)

2

)
(
2kλ− 2x− exp

(
(x+ kλ)2

2

)√
2π
(
1 + k2λ2

) (
2(1− Φ(x+ kλ)− 1)

))))]
.

Similarly, for x < 0, the results for the cdf is obtained as

F (x) =

∑∞
k=0(−1)k

C(α)
√
2π

[(
exp

(
(k + 1))2λ2

2

)√
π

2

(
2
(
1− Φ (x− (1 + k)λ)

)))

+
α

2

(
exp

(
(k + 1))2λ2

2

)(
− 2 exp

(
(x− (1 + k)λ)2

2

)
(x+ λ+ kλ)+

√
2π
(
1 + (k + 1)2λ2

)
(2 (1− Φ (x− (1 + k)λ)))

))]
.

Case II:When λ < 0,

F (X) =



1

C(α)
√
2π

∑∞
k=0(−1)k

[(
2 exp

(
((1 + k)λ)2

2

)√
π

2

(
Φ(1 + k)λ+Φ(x− (1 + k)λ)

))

+α

(
x+ kλ− exp

(
−x2

2
+ (1 + k)λx

)
(x+ λ+ kλ) + exp

(
((1 + k)λ)2

2

)
√

π

2

(
1 + ((1 + k)λ)2

) (
Φ((1 + k)λ) + Φ (x− (1 + k)λ)

))]
, x ≥ 0,

1

C(α)
√
2π

∑∞
k=0(−1)k

[(
2 exp

(
((kλ)2

2

)√
π

2
(1− Φ(x− kλ))

)
α

(
1

2
exp

(
−x (x+ 2kλ)

2

)
(
− 2x+ 2kλ+ exp

(
(x+ kλ)2

2

)√
2π
(
1 + k2λ2

)
(1− Φ(x+ kλ))

))]
, x < 0.

(11)

In this context, the density function expression for the BTSN distribution mentioned in equation (9) will be utilized,
and the subsequent steps in the proof will follow a similar approach as in Case I.
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Remark 1:
Throughout this paper, unless otherwise specified, the statistical results for the assumption λ > 0 will be considered
because for the corresponding results of λ < 0, −X has the pdf f(x) = 2ϕ(x)G(−λx).

Lemma 3.2. If X ∼ BTSN(α, λ) then the rth order moment of the distribution is obtained as

E(Xr) = 2

r

2

[
1√
2
Γ

(
1 + r

2

)(
HF (1) + (−1)rHF (2) + (1 + r)α

(
HF (3)

+ (−1)rHF (4)
))

+ λΓ
(
1 +

r

2

)(
− kHF (5)− αk(2 + r)HF (6)

+ (−1)1+r(1 + k)
(
HF (7) + (2 + r)HF (8)

))]
, (12)

where, HF (·) is the Kummer confluent hypergeometric functions (Gasaneo et al., 2001) which is defined as 1F1(b, c, x) =∑∞
m=0

(b)mxm

(c)mm!
. More specifically it is referred here as

HF (1) = 1F1

[
1 + r

2
,
1

2
,
(kλ)2

2

]
, HF (2) = 1F1

[
1 + r

2
,
1

2
,
((k + 1)λ)2

2

]
,

HF (3) = 1F1

[
3 + r

2
,
1

2
,
(kλ)2

2

]
, HF (4) = 1F1

[
3 + r

2
,
1

2
,
((k + 1)λ)2

2

]
,

HF (5) = 1F1

[
1 +

r

2
,
3

2
,
(kλ)2

2

]
, HF (6) = 1F1

[
2 +

r

2
,
3

2
,
(kλ)2

2

]
,

HF (7) = 1F1

[
2 + r

2
,
3

2
,
((1 + k)λ)2

2

]
, HF (8) = 1F1

[
1 + r

2
,
3

2
,
((1 + k)λ)2

2

]
.

Proof:

E(Xr) =

∫ ∞

−∞
xrf(x)dx

=

∫ 0

−∞
xrf(x)dx+

∫ ∞

0

xrf(x)dx

= I3 + I4 (13)

Now,

I3 =

∫ 0

−∞
xrf(x)dx =

∫ 0

−∞
xr 1 + αx2

C(α)
√
2π

exp
(
− x2

2

) ∞∑
k=0

(−1)k exp((k + 1)λx)dx

=

∑∞
k=0(−1)k

C(α)
√
2π

[∫ 0

−∞
xr exp

(
−x2

2
λ(k + 1)x

)
dx

+ α

∫ 0

−∞
xr+2 exp

(
−x2

2
λ(k + 1)x

)
dx

]

Using the expressions mentioned in the Section 2.3 of (Prudnikov et al., 1986), the results for the integration are
evaluated and I3 is obtained as

I3 =

∑∞
k=0(−1)r+k

C(α)
√
2π

[
1√
2
Γ

(
1 + r

2

)(
HF (2) + (1 + r)αHF (4)

)
− (1 + k)λΓ

(
1 +

r

2

)(
HF (7) + (2 + r)αHF (8)

)]
.

Again,

I4 =

∫ ∞

0

xrf(x)dx =

∫ ∞

0

xr 1 + αx2

C(α)
√
2π

exp
(
− x2

2

) ∞∑
k=0

(−1)k exp(−kλx)dx.
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Similarly the calculation of I3, Using the expressions mentioned in the Section 2.3 of (Prudnikov et al., 1986), the
results for the I4 is obtained as

I4 =

∑∞
k=0(−1)k

C(α)
√
2π

[
1√
2
Γ

(
1 + r

2

)(
HF (1) + (1 + r)αHF (3)

)
−

√
2kλΓ

(
1 +

r

2

)(
HF (5) + (2 + r)αHF (9)

)]
,

where, HF (9) = 1F1

[
4 + r

2
,
3

2
,
(kλ)2

2

]
.

Using the results of I3 and I4 in (13), the rth order moment is derived as

E(Xr) =

∑∞
k=0(−1)k2

r

2

C(α)
√
2π

[
1√
2
Γ

(
1 + r

2

)(
HF (1) + (−1)rHF (2) + (1 + r)α

(
HF (3) + (−1)rHF (4)

))

+ λΓ
(
1 +

r

2

)(
− kHF (5)− αk(2 + r)HF (6) + (−1)1+r(1 + k)

(
HF (7) + (2 + r)HF (8)

))]
.

Remark 2:
From the equation (12), the first four moments of X can be obtained as

E[X] =

∑∞
k=0(−1)k

C(α)
√
2π

λ

2

[
−

√
2πkE(1) (A(1))− 2α(2k + 1)λ+

√
2π

(
kE(1) (A(1))

Φ1(λ) + E(2)(1 + k)
(
α
(
(k + 1)2λ2 + 3

)
+ 1
)
Φ2(λ)

)]
,

E[X2] =

∑∞
k=0(−1)k

2C(α)
√
2π

[
E(1)

√
2πA(2)− 2(2k + 1)λ

(
1 + α

((
k2 + k + 1

)
λ2 + 5

))
+

√
2π

(
− E(1)A(1)Φ1(λ) + E(2)

(
1 + 3α+ (k + 1)2λ2α+ (k + 1)4λ4

)
Φ2(λ)

)]
,

E[X3] =

∑∞
k=0(−1)k

C(α)
√
2π

λ

2

[
− E(1)

√
2πkA(3)− 2(2k + 1)λ

(
1 + α

(
(2k(k + 1) + 1)λ2 + 9

))
+

√
2π

(
E(1)kA(3)Φ1(λ) + E(2)(k + 1)

(
15α+ α(k + 1)4λ4 + (10α+ 1)(k + 1)2λ2 + 3

)
Φ2(λ)

)]
,

E[X4] =

∑∞
k=0(−1)k

C(α)
√
2π

λ

2

[
(2k + 1)λ

(
− 33α+ α

(
−
(
k(k + 1)

(
k2 + k + 3

)
+ 1
))

λ4 − (14α+ 1)
(
k2 + k + 1

)
λ2 − 5

)
+ E(1)

√
π

2
A(4) +

√
π

2

(
− E(1)A(4)Φ1(λ) + E(2)

(
15α+ (15α+ 1)(k + 1)4λ4 + 3(15α+ 2)λ2

(k + 1)2 + 3α+ (k + 1)6λ6
)
Φ2(λ)

)]
.

Where, E(1) = exp

(
k2λ2

2

)
, E(2) = exp

(
(k + 1)2λ2

2

)
, Φ1(λ) = 2(Φ(kλ) − 1), Φ2(λ) = 1 − Φ((1 + k)λ), A(1) =[

α
(
k2λ2 + 3

)
+ 1
]
, A(2) =

[
3α + αk4λ4 + (6α + 1)k2λ2 + 1

]
, A(3) =

[
15α + αk4λ4 + (10α + 1)k2λ2 + 3

]
and

A(4) =
[
15α+ αk6λ6 + (15α+ 1)k4λ4 + 3(15α+ 2)k2λ2 + 3

]
.

Additionally, the variance of BTSN(α, λ) also can be calculated using the above special results which involve very
complicated mathematical form. So for some particular values of the parameter, mean and variance of the said
distribution are calculated and listed in Table 1.
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Table 1: Mean and Variance of BTSN(α, λ) distribution for difrerent values of parameter

λ → -1 -2 1 3 5
α ↓ E(X) V ar(X) E(X) V ar(X) E(X) V ar(X) E(X) V ar(X) E(X) V ar(X)

0 -0.4132 0.8293 -0.6057 0.6331 0.4132 0.8293 0.6890 0.5253 0.7514 0.4354
1 -0.7641 1.4161 -1.0296 0.9399 0.7641 1.4162 1.1171 0.7521 1.1685 0.6346
2 -0.8810 1.5538 -1.1709 0.9590 0.8810 1.5538 1.2597 0.7432 1.3075 0.6204
3 -0.9395 1.6174 -1.2416 0.9584 0.9395 1.6173 1.3311 0.7282 1.3770 0.6039
4 -0.9745 1.6503 -1.2839 0.9516 0.9746 1.6502 1.3739 0.7124 1.4187 0.5873

Lemma 3.3. Let, X ∼ BTSN(α, λ), then the Moment Generating Function (mgf) of X is given as

MX(t) =

∑∞
k=0(−1)k

C(α)
√
2π

[
α(t− kλ)− α(kλ+ λ+ t) + exp

(
1

2
(t− kλ)2

)√
π

2

(
α+ α(t− kλ)2 + 1

)
2Φ(t− kλ)

+ exp

(
1

2
(t+ λ+ kλ)2

)√
π

2

(
α+ α(kλ+ λ+ t)2 + 1

)(
1− Φ(t+ λ+ kλ)

)]
. (14)

Proof:

MX(t) = E(ext) =

∫ ∞

−∞
extf(x)dx

=

∫ 0

−∞
extf(x)dx+

∫ ∞

0

extf(x)dx

= I5 + I6

Now,

I5 =

∫ 0

−∞
extf(x)dx

=

∫ 0

−∞
ext

1 + αx2

C(α)
√
2π

exp
(
− x2

2

) ∞∑
k=0

(−1)k exp((k + 1)λx)dx

=

∑∞
k=0(−1)k

C(α)
√
2π

∫ 0

−∞
(1 + αx2) exp(−x2

2
+ xt+ λx(k + 1))dx

=

∑∞
k=0(−1)k

C(α)
√
2π

[∫ 0

−∞
exp((−x2

2
+ xt+ λx(k + 1))dx+ α

∫ 0

−∞
x2 exp((−x2

2
+ xt+ λx(k + 1))dx

]

So, I5 can be written as,

I5 =

∑∞
k=0(−1)k

C(α)
√
2π

[
I15 + I25

]
.

Now, I15 is calculated with the help of the results involved in the moment generating function Tanh skew normal
distribution (Mahmoud et al., 2020). For the remaining part of the integration, the method of integration by parts
is employed. Consequently, the results for I5 is determined as

I5 =

∑∞
k=0(−1)k

C(α)
√
2π

[
− α(kλ+ λ+ t) + exp

(
1

2
(kλ+ λ+ t)2

)√
π

2

(
α+ α(kλ+ λ+ t)2 + 1

)(
1− Φ(t+ λ+ kλ)

)]
.

Again,

I6 =

∫ ∞

0

extf(x)dx

=

∑∞
k=0(−1)k

C(α)
√
2π

∫ ∞

0

(1 + αx2) exp(−x2

2
+ xt+ λx(k + 1))dx
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In a similar manner to the procedure for computing I5, the integration for I6 is also performed, resulting in the
determination of the outcomes for I6 as

I6 =

∑∞
k=0(−1)k

C(α)
√
2π

[
α(t− kλ) + exp

(
1

2
(t− kλ)2

)√
π

2

(
α+ α(t− kλ)2 + 1

)
2Φ(t− kλ)

]
.

By combining the outcomes of both I5 and I6, the ultimate results for the moment generating function (MGF) are
derived as

MX(t) =

∑∞
k=0(−1)k

C(α)
√
2π

[
α(t− kλ)− α(kλ+ λ+ t) + exp

(
1

2
(t− kλ)2

)√
π

2

(
α+ α(t− kλ)2 + 1

)
2Φ(t− kλ)

+ exp

(
1

2
(t+ λ+ kλ)2

)√
π

2

(
α+ α(kλ+ λ+ t)2 + 1

)(
1− Φ(t+ λ+ kλ)

)]
.

Corollary 3.3.1. By substituting (it) instead of t in equation (14), the characteristic function of the BTSN(λ, α)
distribution can be computed. Consequently, the characteristic function is determined as

ϕX(t) =

∑∞
k=0(−1)k

C(α)
√
2π

[
α(it− kλ)− α(kλ+ λ+ it) + exp

(
1

2
(it− kλ)2

)√
π

2

(
α+ α(it− kλ)2 + 1

)
2Φ(it− kλ)

+ exp

(
1

2
(it+ λ+ kλ)2

)√
π

2

(
α+ α(kλ+ λ+ it)2 + 1

)(
1− Φ(it+ λ+ kλ)

)]
. (15)

Lemma 3.4. Let, X ∼ BTSN(α, λ), then the Mean Deviation of X about mean (µ) is given as

µ(x) =

∑∞
k=0(−1)k

C(α)
√
2π

[
exp

(
(k + 1)λµ− µ2

2

)(
α
(
(k + 1)2λ2 + 2

)
+ 1
)
−

√
2π exp

(
1

2
(k + 1)2λ2

)
(
1− Φ(λ+ kλ− µ)

)(
(k + 1)λ

(
α
(
(k + 1)2λ2 + 3

)
+ 1
)
− µ

(
α+ α(k + 1)2λ2 + 1

) )
+

1

2
exp

(
−1

2
µ(2kλ+ µ)

)(
− 2α

(
k2λ2 + 2

)
− 2 + 2

√
2π exp

(1
2
(kλ+ µ)2

)(
αµ+

αk3λ3 + αk2λ2µ+ 3αkλ+ kλ+ µ
)
(1− Φ(kλ+ µ))

)]
(16)

Proof:

µ(x) =

∫ µ

−∞
(µ− x)f(x)dx+

∫ ∞

µ

(µ− x)f(x)dx

= I7 + I8.

Now,

I7 =

∫ µ

−∞
(µ− x)f(x)dx

=

∫ µ

−∞
(µ− x)

1 + αx2

C(α)
√
2π

exp
(
− x2

2

) ∞∑
k=0

(−1)k exp((k + 1)λx)dx

=

∑∞
k=0(−1)k

C(α)
√
2π

[∫ µ

−∞
µ
(
1 + αx2) exp((k + 1)λx− x2

2

)
dx−

∫ µ

−∞
x
(
1 + αx2) exp((k + 1)λx− x2

2

)
dx

]

=

∑∞
k=0(−1)k

C(α)
√
2π

[
I17 − I27

]

For calculating the integration I17 and I27 involved in the above calculation, method of integration by parts is employed.
Thus the integration are calculated and the putting the results I7 can be obtained as follows
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I7 =

∑∞
k=0(−1)k

C(α)
√
2π

[(
− αµ(kλ+ λ+ µ) exp

(
(k + 1)λµ− µ2

2

)
+ (1− Φ(λ+ kλ− µ))

√
2πµ

(
α+ α(k + 1)2λ2 + 1

))

−

(
− exp

(
(k + 1)λµ− µ2

2

)(
α
(
(k + 1)2λ2 + (k + 1)λµ+ µ2 + 2

)
+ 1
)
+ (1 + k)

√
2πλ

(
α
(
(k + 1)2λ2 + 3

)
+ 1
)

(
1− Φ(λ+ kλ− µ)

)
exp

(
1

2
(k + 1)2λ2

))]

Therefore,

I7 =

∑∞
k=0(−1)k

C(α)
√
2π

[(
α
(
(k + 1)2λ2 + 2

)
+ 1
)
exp

(
(k + 1)λµ− µ2

2

)
−

√
2π
(
(k + 1)λ

(
α
(
(k + 1)2λ2 + 3

)
+ 1
)

−
(
µ
(
α+ α(k + 1)2λ2 + 1

) ))(
1− Φ(λ+ kλ− µ)

)]
.

Similarly,

I8 =

∫ ∞

µ

(µ− x)f(x)dx

=

∑∞
k=0(−1)k

C(α)
√
2π

[
1

2
exp

(
−1

2
µ(2kλ+ µ)

)(
− 2α

(
k2λ2 + 2

)
+ exp

(1
2
(kλ+ µ)2

)
2
√
2π
(
αµ+ αk3λ3 + αk2λ2µ+

3αkλ+ kλ+ µ
)(

1− Φ(kλ+ µ)
)
− 2

)]
.

Now, combining the I7 and I8, final results of the mean deviation about mean is obtained as

µ(x) =

∑∞
k=0(−1)k

C(α)
√
2π

[
exp

(
(k + 1)λµ− µ2

2

)(
α
(
(k + 1)2λ2 + 2

)
+ 1
)
−

√
2π exp

(
1

2
(k + 1)2λ2

)
(
1− Φ(λ+ kλ− µ)

)(
(k + 1)λ

(
α
(
(k + 1)2λ2 + 3

)
+ 1
)
− µ

(
α+ α(k + 1)2λ2 + 1

) )
+

1

2
exp

(
−1

2
µ(2kλ+ µ)

)(
− 2α

(
k2λ2 + 2

)
− 2 + 2

√
2π exp

(1
2
(kλ+ µ)2

)(
αµ+

αk3λ3 + αk2λ2µ+ 3αkλ+ kλ+ µ
)
(1− Φ(kλ+ µ))

)]

Corollary 3.4.1. Replacing µ by M in equation (17), the expression for the mean deviation about median (M)
can be obtained.

4 Characterizations Results

In this section the characterizations of the BTSN distribution via two truncated moments are discussed. For these
characterizations, the cdf need not to have a closed form.

4.1 Characterizations based on two truncated moments

This sub-section addresses the characterization of BTSN distribution, relying on the connection between two trun-
cated moments. The characterization leverage Lemma 4.1.1 from Glänzel (1987), as presented below. Notably, the
outcome remains valid even if H is not a closed interval. This characterization exhibits stability in terms of weak
convergence, as detailed in reference (Glanzel, 1990).

Lemma 4.1.1. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for some d < e
(d = −∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the distribution
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function F and let k and h be two real functions defined on H such that

E [k (X) | X ≥ x] = E [h (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that k, h ∈ C1 (H), η ∈ C2 (H) and F is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that the equation ηh = k has no real solution in the
interior of H. Then F is uniquely determined by the functions k, h and η , particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u)h (u)− k (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ =
η′ h

η h − k
and C is the normalization constant,

such that
∫
H
dF = 1.

Proposition 4.1.1. Let the random variable X : Ω → R be continuous, and let h (x) =
1

[(1 + αx2)G(λx)]
and

k (x) = h (x)Φ(x) for x ∈ R. Then, the density of X is given in (4) if and only if the function η defined in Lemma
4.1.1 is

η (x) =
1

2
{1 + Φ(x)} , x ∈ R.

Proof: If X has pdf (4), then

(1− F (x))E [h (X) | X ≥ x] =
1

C(α)
{1− Φ(x)} , x ∈ R,

and

(1− F (x))E [k (X) | X ≥ x] =
1

2C(α)

{
1− Φ2(x)

}
, x ∈ R,

and hence,

η(x) =

1

2C(α)

{
1− Φ2(x)

}
1

C(α)
{1− Φ(x)}

=
1

2
{1 + Φ(x)} .

So, finally,

η (x)h (x)− k (x) =
1

2
h (x) {1− Φ(x)} > 0 for x ∈ R.

Conversely, if η has the above form, then

s′ (x) =
η′ (x)h (x)

η (x)h (x)− k (x)
=

ϕ(x)

1− Φ(x)
,

So,
s (x) = − log {1− Φ(x)} , x ∈ R.

In view of Lemma 4.1.1, X has pdf (4) .

Corollary 4.1.1 If X : Ω → R is a continuous random variable and h (x) is as in Proposition 4.1.1 Then, X
has pdf (4) if and only if there exist functions k and η defined in Lemma 4.1.1 satisfying the following first order
differential equation

η′ (x)h (x)

η (x)h (x)− k (x)
=

ϕ(x)

1− Φ(x)
.

Corollary 4.1.2 The general solution of the above differential equation is

η (x) = {1− Φ(x)}−1

[
−
∫

ϕ(x) (h (x))−1 k (x) +D

]
,

where D is a constant. A set of functions satisfying this differential equation is presented in Proposition 4.1.1 with
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D =
1

2
. Clearly, there are other triplets (h, k, ξ) satisfying the conditions of Lemma 4.1.1.

5 Parameter Estimation

5.1 Location and Scale Extension

If X ∼ BTSN(α, λ), then the location and scale extension of X is defined as Y = µ+Xβ. As a result, a location-scale
generalised bimodal tanh skew normal distribution gets generated, and its pdf is represented as Y ∼ BTSN(µ, β, α, λ).

f(y;α, λ, µ, β) =


1 + α

(
y − µ

β

)2

1 + α


exp

(
− (y − µ)2

2β2

)
β
√
2π

1 + Tanh

[λ(y − µ

β

)
2

] (17)

where, y ∈ R, µ ∈ R, λ ∈ R, α ≥ 0 and β > 0.

5.2 Maximum Likelihood Estimation

Assume that y1, y2, ...yn is a random sample of size n that chosen from the BTSN(µ, β, α, λ) distribution. Then, for
the set of parameters θ = (µ, β, α, λ), the log-likelihood function is given by

l(θ) =− n log(1 + α)− n

2
log(2π)− n log(β) +

n∑
i=1

[
1 + α

(
yi − µ

β

)2]
−

n∑
i=1

(
yi − µ

β

)2

−
n∑

i=1

[
1 + exp

(
− λ

(
yi − µ

β

))]
. (18)

Now, differentiating the equation (19) with respect to the set of parameters,

∂l(θ)

∂µ
=

λ

β

n∑
i=1

A(yi;µ, β, λ)[
1 +A(yi;µ, β, λ)

] +

n∑
i=1

(
yi − µ

β

)
− 2α

β2

n∑
i=1

yi − µ

C(yi;µ, β, α)
,

∂l(θ)

∂β
= −n

β
−

n∑
i=1

(yi − µ)2

β3
− λ

β2

n∑
i=1

yi − µ[
1 +B(yi;µ, β, λ)

] ,
∂l(θ)

∂λ
=

1

β

n∑
i=1

yi − µ[
1 +B(yi;µ, β, λ)

] ,
∂l(θ)

∂α
= − n

1 + α
+

1

β2

n∑
i=1

(yi − µ)2

C(yi;µ, β, α)
.

Where, A(yi;µ, β, λ) = exp

(
−λ(yi − β)

β

)
, B(yi;µ, β, λ) = exp

(
λ(yi − β)

β

)
and

C(yi;µ, β, α) =

(
1 + α

(
yi − µ

β

)2
)
.

The calculation of the above equation isn’t mathematically sound. Therefore, using the numerical maximisation
method of equation (19) with respect to the set of parameters, θ = (µ, β, α, λ), the maximum likelihood estimator
for the parameters is derived. The GenSA packages in R-software is used for the process.

6 Simulation Study

A simulation study is conducted to assess the effectiveness of maximum likelihood estimates for the parameters of
the BTSN(µ, β, α, λ) model. The Metropolis-Hastings (M-H) algorithm is employed to generate a set of random
numbers. During the study, process is replicated 10,000 times, incorporating three distinct sample sizes (n = 100,
300, and 500). The algorithm(s) for generating the random samples are given in the Appendix. Subsequently, the
maximum likelihood estimates were computed for each generated sample using the GenSA package in the R software.
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Finally, the estimated statistics are presented in terms of biases and mean square errors (MSEs) of the estimates and
the formula are given by

Bias(θ̂) = E(θ̂)− θ and MSE(θ̂) = V (θ̂) +Bias(θ̂)
2

Where, θ̂ = (µ̂, β̂, α̂, λ̂)

From the results in Table 2 − 7, it is observed that the maximum likelihood estimators (MLEs) effectively estimate
the model parameters. Besides the results also showed that with an increase in sample size, the bias and mean-square
error of the MLEs decrease which indicates the asymptotic consistency of the MLEs’ of BTSN(µ, β, α, λ) distribution.

Table 2: Results of Simulation
µ = 0, β = 1

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 -0.0653 0.0500 -0.0706 0.0450 -0.0555 0.0489 -0.0433 0.0398
300 -0.0421 0.0410 -0.0408 0.0411 0.0299 0.0401 0.0421 0.0233
500 0.0337 0.0329 0.0159 0.0207 -0.0167 0.0178 -0.0092 0.0162

-1 100 -0.0480 0.0325 -0.0898 0.0580 -0.0757 0.0427 -0.0853 0.0642
300 -0.0465 0.0249 -0.0657 0.0610 -0.0461 0.0321 0.0598 0.0489
500 -0.0176 0.0198 0.0340 0.0431 0.0329 0.0184 -0.0360 0.0309

0.5 0 100 0.0456 0.0399 -0.0875 0.0855 -0.0707 0.0498 -0.0695 0.0450
300 -0.0258 0.0253 0.0654 0.0754 -0.0462 0.0356 0.0472 0.0370
500 0.0123 0.0169 0.0310 0.0451 0.0320 0.0123 -0.0340 0.0229

1 100 0.0732 0.0369 -0.0849 0.0459 -0.0647 0.0532 -0.0870 0.0755
300 0.0449 0.0478 0.0560 0.0307 0.0434 0.0454 -0.0610 0.0720
500 -0.0189 0.0167 -0.0267 0.0188 -0.0355 0.0169 0.0309 0.0465

2 100 -0.0547 0.0483 0.0750 0.0637 -0.0855 0.0730 0.0459 0.0301
300 0.0289 0.0460 -0.0522 0.0480 0.0578 0.0496 -0.0470 0.0239
500 0.0190 0.0172 -0.0397 0.0323 -0.0336 0.0339 -0.0153 0.0176

Table 3: Results of Simulation
µ = 0, β = 1

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 0.0802 0.0650 -0.0477 0.0618 -0.0766 0.0419 -0.0670 0.0539
300 0.0549 0.0466 0.0501 0.0203 0.0498 0.0440 -0.0439 0.0407
500 -0.0368 0.0348 -0.0357 0.0199 -0.0150 0.0247 0.0359 0.0300

-1 100 -0.0455 0.0300 0.0763 0.0420 0.0754 0.0482 -0.0716 0.0451
300 0.0469 0.0230 -0.0548 0.0299 -0.0460 0.0355 -0.0418 0.0424
500 -0.0144 0.0179 -0.0240 0.0233 - 0.0333 0.0163 0.0149 0.0201

1.5 0 100 -0.0916 0.0450 -0.0557 0.0462 0.0632 0.0393 0.0875 0.0654
300 0.0410 0.0465 -0.0460 0.0421 0.0499 0.0388 -0.0547 0.0456
500 -0.0140 0.0098 0.0326 0.0170 -0.0198 0.0100 0.0335 0.0357

1 100 -0.0490 0.0355 -0.0871 0.0685 0.0691 0.0532 -0.0900 0.0435
300 -0.0245 0.0264 -0.0698 0.0640 -0.0461 0.0330 0.0468 0.0365
500 0.0143 0.0109 0.0348 0.0400 0.0332 0.0109 -0.0190 0.0198

2 100 0.0523 0.0407 -0.0490 0.0378 -0.0491 0.0357 -0.0666 0.0458
300 - 0.0290 0.0311 -0.0467 0.0219 0.0254 0.0266 0.0448 0.0444
500 -0.0197 0.0198 0.0192 0.0157 -0.0166 0.0101 -0.0100 0.0204

Table 4: Results of Simulation
µ = 0, β = 1

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 0.0540 0.0215 -0.0644 0.0545 -0.0466 0.0321 -0.0588 0.0498
300 -0.0471 0.0244 0.0467 0.0360 -0.0424 0.0231 0.0430 0.0233
500 -0.0155 0.0165 -0.0319 0.0120 -0.0093 0.0165 -0.0266 0.0189

-1 100 0.0490 0.0447 -0.0800 0.0497 0.0645 0.0444 0.0754 0.0630
300 -0.0407 0.0294 0.0460 0.0397 0.0348 0.0423 -0.0529 0.0484
500 0.0163 0.0155 -0.0290 0.0187 -0.0159 0.0314 -0.0367 0.0318

2.0 0 100 -0.0489 0.0308 -0.0616 0.0449 -0.0809 0.0434 0.1021 0.0500
300 -0.0455 0.0274 -0.0432 0.0490 0.0561 0.0317 -0.0629 0.0497
500 0.0112 0.0189 0.0330 0.0357 -0.0200 0.0180 0.0358 0.0357

1 100 0.1097 0.0602 0.0729 0.0468 0.0801 0.0480 -0.0687 0.0505
300 0.0654 0.0497 -0.0427 0.0234 0.0487 0.0333 0.0450 0.0315
500 -0.0207 0.0344 -0.0268 0.0187 -0.0255 0.0131 -0.0300 0.0197

2 100 -0.1008 0.0587 -0.0465 0.0351 0.0580 0.0490 0.0658 0.0456
300 -0.0459 0.0478 -0.0320 0.0250 0.0438 0.0230 -0.0391 0.0378
500 0.0298 0.0257 0.0097 0.0131 -0.0261 0.0181 -0.0209 0.0217

7 Real Life Application

This section examines the applicability of the novel probability distribution using one real life data set. A compara-
tive analysis between the newly introduced model along with several alternative model of distributions is conducted.
Those alternative models include normal distribution N(µ, β2), skew normal distribution SN(µ, β, λ) proposed by
(Azzalini, 1985), Tanh skew normal distribution TSN(µ, β, λ) introduced by (Mahmoud et al., 2020) and alpha skew
normal distribution ASN(µ, β, α) given by (Elal-Olivero, 2010) ,two parameter bimodal skew normal distribution
BSN(µ, β, λ, α) proposed by Elal-Olivero et al. (2020) and alpha beta skew normal distribution ABSN(µ, β, α, b)
introduced by Shafiei et al. (2016). The value of the fitted models has been calculated using maximum likelihood
techniques using the GenSA package in R software. Additionally, in order to compare the models, the Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC) are taken into consideration.
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Table 5: Results of Simulation
µ = 1, β = 1.5

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 0.0456 0.0287 - 0.0650 0.0409 0.0655 0.0529 -0.0491 0.0328
300 -0.0317 0.0240 -0.0391 0.0355 -0.0487 0.0399 0.0420 0.0250
500 0.0197 0.0154 0.0287 0.0207 -0.0349 0.0387 -0.0212 0.0163

-1 100 -0.0659 0.0507 0.0699 0.0453 0.0704 0.0470 0.1201 0.0802
300 0.0424 0.0367 -0.0484 0.0311 0.0537 0.0230 0.0600 0.0457
500 -0.0333 0.0108 -0.0281 0.0203 -0.0298 0.0257 -0.0215 0.0398

0.5 0 100 -0.0621 0.0487 -0.0490 0.0323 0.0759 0.0638 -0.0652 0.0597
300 -0.0301 0.0374 0.0427 0.0259 -0.0520 0.0480 -0.0409 0.0357
500 0.0237 0.0311 -0.0230 0.0178 0.0361 0.0398 -0.0329 0.0233

1 100 -0.0680 0.0537 -0.1000 0.0611 -0.0536 0.0244 -0.0623 0.0455
300 0.0451 0.0385 -0.0620 0.0468 -0.0397 0.0237 -0.0491 0.0331
500 0.0344 0.0190 -0.0397 0.0420 0.0190 0.0107 0.0280 0.0297

2 100 0.0608 0.0409 -0.0459 0.0377 0.0619 0.0420 0.0658 0.0444
300 -0.0337 0.0323 0.0408 0.0262 -0.0400 0.0364 -0.0457 0.0293
500 0.0259 0.0307 0.0190 0.0203 -0.0283 0.0190 0.0250 0.0398

Table 6: Results of Simulation
µ = 1, β = 1.5

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 0.0421 0.0268 0.0541 0.0412 -0.0488 0.0398 0.1501 0.0930
300 -0.0400 0.0259 -0.0432 0.0308 -0.0435 0.0259 -0.0498 0.0390
500 0.0164 0.0176 -0.0109 0.0200 -0.0216 0.0185 -0.0347 0.0245

-1 100 0.0721 0.0622 0.0687 0.0431 0.0645 0.0511 0.1109 0.0530
300 -0.0567 0.0423 -0.0391 0.0395 -0.0481 0.0364 -0.0640 0.0568
500 0.0360 0.0211 0.0297 0.0200 -0.0320 0.0258 -0.0340 0.0222

1.5 0 100 -0.0658 0.0334 0.0618 0.0432 -0.0400 0.0371 -0.0499 0.0389
300 0.0437 0.0288 -0.0307 0.0320 -0.0418 0.0260 -0.0452 0.0256
500 -0.0206 0.0139 0.0211 0.0317 0.0100 0.0254 0.0161 0.0285

1 100 0.0523 0.0413 -0.0701 0.0600 -0.0568 0.0410 -0.0398 0.0256
300 -0.0471 0.0345 0.0567 0.0413 -0.0430 0.0360 0.0410 0.0297
500 -0.0209 0.0233 -0.0397 0.0355 0.0245 0.0254 -0.0169 0.0161

2 100 -0.0560 0.0437 0.0659 0.0298 -0.1021 0.0732 0.0566 0.0464
300 -0.0403 0.0398 -0.0430 0.0271 0.0666 0.0459 -0.0453 0.0363
500 -0.0147 0.0267 -0.0256 0.0298 -0.0394 0.0357 -0.0149 0.0236

Illustration 1.

For this illustration, a data set of failure times of 84 Aircraft Windshield (El-Bassiouny et al., 2015) is considered.
here, Table 8 reflects the maximum likelihood estimate of the fitted models along with their corresponding log-
likelihood, AIC and BIC. On the other hand Figure 2 depicts the performance as well as behaviour of the fitted
models. According to the Table 8, value of AIC and BIC of BTSN(µ, β, α, λ) distribution is less than that of the
other rival distributions. Additionally, Figure 2 reflects the good fit of the BTSN(µ, β, α, λ) distribution. Thus,
it may be concluded that the Bimodal Tanh Skew Normal distribution provides better fits for the data set under
consideration.

8 Hypothesis Testing

In this section, to discriminate between some nested models like N(µ, β), SN(µ, β, λ), TSN(µ, β, λ) ASN(µ, β, α)
and BTSN(µ, β, α, λ) Likelihood Ratio (LR) test is deployed. The test statistics as well as the null hypothesis are
as follows:

(i) To discriminate N(µ, β) and BTSN(µ, β, α, λ) distribution, the null hypothesis H0 : α = 0, λ = 0 have to test

Figure 2: Plots of observed and expected densities of some distributions for 84 Aircraft Windshield.

A Bimodal Extension of the Tanh Skew Normal Distribution: Properties and Applications 547



Pak.j.stat.oper.res. Vol.20 No. 3 2024 pp 533-551 DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4563

Table 7: Results of Simulation
µ = 1, β = 1.5

µ β λ α
α λ n Bias MSE Bias MSE Bias MSE Bias MSE

-2 100 0.0520 0.0410 -0.0771 0.0661 0.0598 0.0400 0.0497 0.0354
300 0.0421 0.0331 -0.0501 0.0410 -0.0434 0.0339 -0.0424 0.0254
500 -0.0239 0.0255 0.0337 0.0300 -0.0278 0.0257 -0.0236 0.0168

-1 100 -0.0477 0.0209 0.1089 0.0630 0.0699 0.0501 -0.0401 0.0311
300 0.0417 0.0245 -0.0570 0.0408 -0.0491 0.0345 0.0324 0.0251
500 -0.0161 0.0100 -0.0348 0.0332 0.0327 0.0288 0.0098 0.0100

2.0 0 100 -0.0609 0.0400 0.0898 0.0547 -0.0541 0.0353 -0.0493 0.0349
300 -0.0409 0.0330 -0.0574 0.0390 0.0293 0.0278 -0.0250 0.0257
500 0.0281 0.0197 -0.0270 0.0215 -0.0187 0.0155 0.0173 0.0189

1 100 -0.0407 0.0350 0.0631 0.0359 - 0.0760 0.0494 0.0501 0.0630
300 0.0424 0.0255 0.0299 0.0308 -0.0540 0.0329 -0.0490 0.0343
500 -0.0090 0.0102 -0.0180 0.0167 -0.0233 0.0201 -0.0390 0.0240

2 100 -0.0621 0.0533 0.0702 0.0423 0.0568 0.0498 0.0609 0.0370
300 0.0497 0.0412 -0.0499 0.0369 -0.0457 0.0367 - 0.0422 0.0362
500 -0.0364 0.0345 -0.0245 0.0201 0.0119 0.0249 0.0090 0.0209

Table 8: MLE’s, log-likelihood, AIC and BIC for failure times of 84 Aircraft Windshield.

Distributions µ β λ α b logL AIC BIC
N(µ, β) 2.5626 1.1066 – – – -129.22 262.44 267.30
SN(µ, β, λ) 1.8669 1.3071 0.8933 – – -129.19 264.38 271.67
TSN(µ, β, λ) 1.6001 1.4666 2.4493 – – -129.27 264.54 271.83
ASN(µ, β, α) 2.7018 1.1065 – 0.1268 – -129.21 264.42 271.71
BSN(µ, β, λ, α) 0.5617 1.4314 2.9474 3.4591 – -128.77 265.54 275.26
ABSN(µ, β, α, b) 2.2303 0.7229 – 0.3515 -0.2561 -126.71 261.42 271.15
BTSN(µ, β, α, λ) 2.9751 0.8479 -0.6080 0.8442 – -124.56 257.12 266.84

against the alternative hypothesis H1 : α ̸= 0, λ ̸= 0 and the test statistic is

−2 log(LR) =− 2[logL(µ̂1, β̂1, α = 0, λ = 0|x)

− logL(µ̂2, β̂2, α̂2, λ̂2)] ∼ χ2
2,

where, µ̂1, β̂1 and µ̂2, β̂2, λ̂2, α̂2 are the MLEs’ of N(µ, β) and BTSN(µ, β, α, λ) distribution and r = 2
(difference between the numbers of parameters).

(ii) To discriminate SN(µ, β, λ) and BTSN(µ, β, α, λ) distribution, the null hypothesis H0 : α = 0 have to test
against the alternative hypothesis H1 : α ̸= 0 and the test statistic is

−2 log(LR) =− 2[logL(µ̂1, β̂1, λ̂1, α = 0|x)− logL(µ̂2, β̂2, α̂2, λ̂2)] ∼ χ2
1,

where, µ̂1, β̂1, λ̂1 and µ̂2, β̂2, λ̂2, α̂2 are the MLEs’ of SN(µ, β, λ) and BTSN(µ, β, α, λ) distribution and r = 1
(difference between the numbers of parameters).

(iii) To discriminate TSN(µ, β, λ) and BTSN(µ, β, α, λ) distribution, the null hypothesis H0 : α = 0 have to test
against the alternative hypothesis H1 : α ̸= 0 and the test statistic is

−2 log(LR) =− 2[logL(µ̂1, β̂1, λ̂1, α = 0|x)− logL(µ̂2, β̂2, α̂2, λ̂2)] ∼ χ2
1,

where, µ̂1, β̂1, λ̂1 and µ̂2, β̂2, λ̂2, α̂2 are the MLEs’ of TSN(µ, β, λ) and BTSN(µ, β, α, λ) distribution and
r = 1 (difference between the numbers of parameters).

(iv) To discriminate ASN(µ, β, α) and BTSN(µ, β, α, λ) distribution, the null hypothesis H0 : λ = 0 have to test
against the alternative hypothesis H1 : λ ̸= 0 and the test statistic is

−2 log(LR) =− 2[logL(µ̂1, β̂1, α̂1, λ = 0|x)− logL(µ̂2, β̂2, α̂2, λ̂2)] ∼ χ2
1,

where, µ̂1, β̂1, α̂1 and µ̂2, β̂2, λ̂2, α̂2 are the MLEs’ of TSN(µ, β, λ) and BTSN(µ, β, α, λ) distribution and
r = 1 (difference between the numbers of parameters).

From the table 9 it can be noted that the value of the LR test statistics is higher than the tabulated critical value
at the 5% level of significance for the entire null hypothesis. Consequently, it is established that, given the proposed
models, the BTSN distribution was the best fit according to the criteria used.

9 Conclusion

This article introduces a groundbreaking family of continuous probability distributions known as the Bimodal Tanh
Skew Normal (BTSN). Unlike traditional distributions, the BTSN model is specifically designed to adeptly cap-
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Table 9: The value of the likelihood ratio test for the respective hypotheses of of 84 Aircraft
Windshield.

Hypothesis LR value df Critical values at 5 %
H0 : α = 0, λ = 0 Vs H1 : α ̸= 0, λ ̸= 0 9.32 2 5.99
H0 : α = 0 Vs H1 : α ̸= 0 9.26 1 3.84
H0 : α = 0 Vs H1 : α ̸= 0 9.42 1 3.84
H0 : λ = 0 Vs H1 : λ ̸= 0 9.30 1 3.84

ture data characterized with two modes. The article meticulously delves into various essential statistical properties
inherent to the BTSN distribution, shedding light on its mathematical properties and providing a comprehensive
understanding of its behavior. The study employs the Maximum Likelihood method to rigorously examine the chal-
lenges associated with estimating the distribution’s parameters, offering insights into the precision and reliability of
parameter estimation techniques within the BTSN framework. Furthermore to examine the behavior of the estimated
parameter, a simulation study is performed using Metropolis Hastings algorithm and it is found that the estimated
parameters are asymptotically consistent with the increasing number of sample sizes. To assess the distribution’s
versatility and comparative performance, the article conducts extensive studies comparing BTSN with rival distribu-
tions. By utilizing a real-life dataset, the research demonstrates the superior flexibility of the BTSN distribution in
comparison to other competing models, showcasing its ability to effectively accommodate diverse patterns in empir-
ical data. Finally, a Likelihood Ratio (LR) test is executed to discern and establish distinctions between the BTSN
distribution and other rival distributions, providing a robust statistical assessment of the uniqueness and suitability
of the proposed model in relation to its counterparts.

Appendix

The MH algorithm for generating random samples:

� Consider BTSN as target density denoted as f .

� Consider normal distribution as proposal density denoted as g.

� Initialize y0 (an arbitrary value).

For each iteration i from 1 to N ,

� Generate x∗ from g.

� Compute acceptance ratio r =
f(x∗)

f(yt)
× g(yt)

g(x∗)
.

� Generate a uniform random number u.

� If u < min(1, r), then accept x∗ (yt+1 = x∗); otherwise yt+1 = yt.

� Store the accepted sample.

� Discard the first N − n sample values (Burn-in values) and use the rest sample value as filtered sample.
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