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Abstract  
Acceptance sampling plans (ASP) are needed in areas where 100% inspection is impractical or expensive. They 
help ensure product quality meets requirements, reduce inspection costs, and prevent nonconforming goods from 
reaching customers. Well-planned ASP offer an efficient and dependable way to maintain quality control in 
manufacturing procedures and supply chains. The Gamma Lindley Distribution (GaLD) is used to design 
acceptance sampling plans in this study when the life test is truncated at a pre-specified time. The mean is used as 
the quality parameter. The smallest sample size is required to guarantee that the desired life mean is reached at the 
consumer's specified risk. In addition to the producer's risk, the operating characteristic values of the sample plans 
are presented. To evaluate the suggested sampling plans, a real data from the first failure of 20 electric carts utilized 
for internal transportation and delivery in a big manufacturing facility is provided. 
 
Key Words: Gamma Lindley distribution; Truncated lifetime test; Acceptance sampling plan; Characteristic 
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1. Introduction 

(Zeghdoudi & Nedjar, 2016) introduced a new distribution, named Gamma Lindley Distribution which is based on 
mixing of two commonly used distributions, the Gamma(2,θ) with probability density function (pdf) 
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, respectively. The pdf of the Gamma Lindley distributed random variable X is given by  
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. For the lifetime distribution 

under examination, the mean serves as a quality level. The rth moment of X is given by 
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Figure 1 presents some pdf plots of the GaLD for some parameter values. It is obvious that the pdf of the GaLD 
has many shapes as decreasing and increasing-decreasing, enhancing its adaptability to fit real data sets. In general, 
the distribution is skewed to the right and the plot peak depends on the parameter values, which is more peak for larger 
values of the parameters. 
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Figure 1. The pdf plots of the GaLD for some parameters 
 

(Zeghdoudi & Nedjar, 2016) derived some properties of the distribution as the mean, variance, stochastic 
ordering, and maximum likelihood estimators of the distribution parameters. As a modification of GaLD. The 
corresponding cumulative distribution function (cdf) of the pdf in (1) is 
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The mode of the GaLD is given by 
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(Beghriche & Zeghdoudi, 2019) suggested size-biased Gamma Lindley Distribution as a generalization of the GaLD. 
Moreover, (Nedjar & Zeghdoudi, 2016) introduced more properties of the GaLD and showed that its quantile function 
has the form 
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where 1W−  denotes negative branch of Lambert W function. The moments estimate of the GaLD parameters are 
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respectively, where m is the first-moment m and 2s is the variance. 
 

Following are the reliability and hazard rate functions for the GaLD, respectively as 
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Figures 2 and 3 show the reliability and hazard function plots of the GaLD for some parameters. It can be seen 
that the reliability function is decreasing for all parameter values. The hazard function of the distribution is increasing, 
approaching 5 when 6, 7θ β= = , while it goes to 0.4 for 0.6, 0.7θ β= = . 
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Figure 2. The reliability plots of the GaLD for some parameters 

 
  

  
Figure 3. The hazard plots of the GaLD for some parameters 

 
Manufacturers and producers evaluate the quality of a batch or lot of items using acceptance sampling plans 

as part of their quality control operations. When it is impractical or too expensive to inspect each individual item in 
the batch, these plans are used. The fundamental concept behind acceptance sampling plans is to check a random 
sample of the lot's products and base your choice on the sample's quality as to whether or not to accept the full batch. 
The choice is typically made using pre-established criteria and statistical techniques, with an emphasis on the amount 
of defective goods discovered in the sample. These strategies have been widely employed to assure product 
consistency and superior quality while lowering inspection costs in a variety of industries, including factories, 
medicines, electronic devices, and food production. There are different types of ASP, such as the single ASP, double 
ASP, Group ASP, repetitive ASP, etc. In the current work, we are interested in a single ASP when the product's 
lifetime follows the GaLD and the mean is the quality parameter. 
 For examples about ASP, (Epstein, 1954) was the first to suggest single sampling plans for truncated life 
tests for mean utilizing exponential distribution. (Baklizi & El Masri, 2004) suggested ASP in terms of truncated life 
tests for the Birnbaum Saunders model. (M. A. Khan & Islam, 2013) suggested ASP for reliability test for alpha 
distributed lifetime. (A. I. Al-Omari, 2015) introduced new ASP for generalized inverted exponential distribution. 
(Aslam et al., 2015) considered ASP for multi-stage process based on time-truncated test for Weibull distribution. (A. 
I. Al-Omari et al., 2018) offered ASP for the Marshall-Olkin Esscher transformed Laplace model. (A. I. Al-Omari, 
2018a) suggested ASP in terms of truncated life tests for the Sushila distribution. (Gogah & Al-Nasser, 2018) 
considered median ranked ASP for exponential distribution. (A. Al-Omari et al., 2019) proposed ASP for Rama 
distribution. (Shongwe & Malela-Majika, 2020) investigated a new variable sampling size to monitor the process 
mean of auto correlated observations. (Adil Hussain et al., 2021) suggested mean ranked ASP under exponential 
distribution. (Alomani & Al-Omari, 2022) introduced single ASP based on truncated lifetime tests for two-parameter 
Xgamma distribution with real data application. (Nassr et al., 2022) suggested ASP for the three-parameter inverted 
Topp–Leone model. (Jayalakshmi & Vijilamery, 2022) considered ASP for truncated life tests based on percentiles 
using Gompertz Fréchet distribution. (Al-Nasser & Alhroub, 2022) proposed new ASP using hypergeometric theory 
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for finite population under Q-Weibull distribution. (Kaviyarasu & Sivakumar, 2022) considered Bayesian repetitive 
group sampling plan for quality determination in pharmaceutical products.. New ASP by considering lifetime of 
products following the half logistic-Marshall Olkin Lomax distribution is studied by (Lishamol Tomy & Meenu Jose, 
2022). (M. Z. Khan et al., 2022) proposed fuzzy ASP for transmuted Weibull distribution. (Obulezi et al., 2023) 
suggested single ASP for Zubair-Exponential model.  

In general, waiting until every product fails before inspecting it can be time-consuming. In order to save money 
and effort, it is typical to end a life test at a certain time 0t . These tests aim to determine a specific mean life, 0µ with 

a probability of at least *P the consumer's level of confidence, among other things, and to set a confidence limit on 

that mean life. When the actual mean life of the goods does not fall below the predetermined value 0µ  (consistent 

with the hypothesis 0 0:H µ µ≥ ), a lot is deemed to be good. The lot will only be accepted if the observed number of 

failures falls within a predetermined acceptance number c. If there are more failures than this amount, the test can be 
stopped at time 0t  and the lot can be rejected. The issue under consideration is obtaining the smallest sample size m 

required to guarantee a particular mean lifetime. The probability that a good lot will be rejected for a specific 
acceptance sampling plan and an unsatisfactory lot will be accepted are, respectively, the consumer's risk and the 
producer's risk. 

The single ASP for the well-known GaLD based on truncated life tests have not been investigated. In the paper, 
the problem will be addressed. The rest of this paper is structured as follows: Section 2 comprises a description of 
acceptance sampling plans based on the GaLD and the minimum sample size, operating characteristic values and the 
producer’s risk are studied. Section 3 contains the numerical results and illustrative examples. In Section 4, we offered 
two real-world examples to demonstrate the implementation of the proposed time-truncated ASP under the Gal 
distribution.  Section 5 contains the paper's conclusion. 
 
 2. Design of the Sampling Plan 
 
This section outlines the proposed single acceptance sampling plan strategy and the parameters that associated along 
with it. Assume that the lifetimes of the submitted products follow the GaLD shown in (1). A multiple of the specified 
mean lifetime should be used as the termination time, 0 0t dµ= , where d is a constant that is positive.  The following 

sums up the ASP: 
(1) Choose a size m random sample, and test it for the specified amount of time 0t . 

(2) A lot may be approved if c or fewer failures are discovered throughout the test time t, according to the 
acceptance number c. 

(3)The ratio 0/t µ , where 0µ  is the previously given average lifetime. 

The methods for determining the producer's risk, the operational characteristic values, and the minimum sample 
size are illustrated in the subsections that follow. 

3.1. Minimum sample size 

Fix the customer risk first, and the chance of accepting a corrupt lot should not be greater than *1 P− . An inadequate 
lot is one in which the proper mean lifetime is less than the prescribed mean lifetime of 0µ . Thus, *P  is a confidence 

level in the sense that the probability of rejecting a lot with 0µ µ<  is at least *P . For a given *P  value, our sampling 

plan is distinguished by ( )0, , /m c t µ . In this case, we take a lot of indefinitely large size so that the theory of binomial 

distribution can be used, and accepting or rejecting the lot is comparable to accepting or rejecting hypothesis 

0 0:H µ µ≥ . Given *P ( )*0 1P< < , the 0/t µ  ratio, and an acceptance number c, we must determine the lowest 

positive integer m that allows us to affirm that 0µ µ≥  if the number of failures experienced over time t does not 

exceed c, with a confidence level of *P . The smallest positive integer, m, that fulfills the following inequality is the 
necessary sample size,  
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according to the design of the suggested sampling plans, where 0( ; , )p F t θ β=  is the probability of detecting a failure 

before time 0t , and it is expressed by 
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If there are c or fewer failures is reported, one can deduce with probability *p  from (4) that ( ) ( )0; ;F t F tµ µ≤  

which infers 0µ µ≥ . The smallest values of m adequate (4) are obtained for  *P = 0.75, 0.90, 0.95, 0.99, 

0/ 0.628,t µ =  0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 , 0,1,...,10c = , 8,β = and 2θ =  are showed in Table 

1. The ratio d used here is in line with the relevant tables of (Kantam et al., 2001), (A. I. Al-Omari, 2018b), and 
(Baklizi & El Masri, 2004). 

3.2. Operating characteristic function

 The operating characteristic function (OCF) in acceptance sampling is a mathematical function that reflects the 
probability of approving a batch or lot of products under a particular sampling plan. The OCF is a fundamental tool 
for assessing the effectiveness of an acceptance sampling plan. For the acceptance sampling plan ( )0, , /m c t µ , the 

OCF is as 

 ( )
0

( ) 1
c

m ii

i

m
p p pL

i
−

=

 
= − 

 
  (6) 

where the function ( )0; , ,p F t µ θ β=  is considered as a function of µ . For a particular *P = 0.75, 0.90, 0.95, 0.99, 

0 0/ 0.628,t µ =  0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 , c and n are selected based on their operational 

characteristics. Table 2 shows the values of the operational characteristics as a function of 0/µ µ  for a few sample 

plans with 8,β =  and 2θ = . 

 
 
3.3 Producer's risk 
The producer's risk is the possibility of rejecting a terrific lot ( )0µ µ> . We are curious as to what value of 0/µ µ  

will guarantee that the producer's risk is at most λ  for the proposed sampling strategy and a given value for the 

producer's risk λ . Because p is a function of 0/µ µ , as demonstrated in (5), 0/µ µ  is the minimum positive number 

for which p supports the inequality: 

1

!
(1 ) .

!( )!

m
i m i

i c
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p p

i m i
λ−

= +

− ≤
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For a specific acceptance sampling plan ( )0, , /m c t µ  with the stated confidence level * ,P the smallest 

values of 0/µ µ  accomplishing (7) are displayed in Table 3 for 0.05λ = , 8,β =  and 2θ =  in the GaLD. 

 
4. Discussion and illustrations 
For the purposes of this paper, let us assume that the lifetime follows the GaLD. The OCF values, the lowest difference 
between the reported and real mean lifespans, and the smallest sample size needed to guarantee that the mean lifespan 

exceeds a probability *P are all provided in Tables 1-3. 
Take into account a scenario where a researcher needs to verify that the product will have a lifespan average 

of at least 1000 hours with probability that * 0.75P =  (the consumer’s risk is *1 0.25P− = ), and the experimenter 
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would like to end the experiment at 628t =  hours. Now, for an acceptance number 6c = , from Table 1, the essential 

sample size matching to the values of * 0.75P = , and 0/ 0.628t µ =  is 22.m = As a result, the 22m =  units must be 

tested. If no more than 6 failures out of the 22 units are detected throughout 1000 hours, the experimenter may decide 

with a confidence level of * 0.75P =  that the mean lifetime is at least 1000 hours. Figure 4 shows the minimum sample 

size plots for * 0.75P = , 0.90, 0.95, 0.99 based on the proposed ASP for the GaL distribution with parameters 8,β =  

and 2θ = . Figure 4 revealed that the minimum sample size plots are decreasing in  0/ 0.628t µ = ,…,4.217. 

For a given sampling plan ( )022, 6, / 0.628m c t µ= = =  under the GaL distribution the OCF values from 

Table 2 are: 
 

0/µ µ  2 4 6 8 10 12 

( )L p  0.95418 0.99982 1 1 1 1 

PR 0.04582 0.00018 0 0 0 0 
 

This demonstrates that the producer's risk is around 0.04582 if the true mean life is twice the prescribed mean 
life 0( / 2)µ µ = , and it is zero for 0/ 6µ µ ≥ . Figure 5 presents the OCF plots for * 0.75,P = 90, 95, 0.99, 6c = , 

when 8, 2β θ= =  in the GaLD, and it is worth noting that the OCF plots increase as the mean ratio values 0/µ µ  

increase. 
Table 3 shows the smallest value of 0/µ µ  for numerous values of c and  0/µ µ  so that the producer's risk 

does not exceed 0.05. As a result of the example mentioned above, we acquire the value 0/ 1.91t µ = . That is, the 

product must have an average life of 1.91 times the stipulated average life of 1000 hours in order to be accepted with 
a probability of at least 0.95, which indicates that if 0 01.91 / 0.628 3.0414t tµ ≥ × = × =  3041.4 hours, then with sample 

size 22m =  and 6c = , the lot will be refused with a probability of 0.05 or less. The true average life needed to 

transship 95% of the lots is shown in Table 3. 

 
Figure 4: The minimum sample size plots for * 0.75P = , 0.90, 0.95, 0.99 based on the proposed ASP for the 

GaLD with 8,β =  and 2θ = . 
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Table 1. Minimum sample sizes of the proposed ASP with 8, 2β θ= =  in the GaLD 

*P  c 
  

0/t µ     

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 
0.75 0 4 2 2 1 1 1 1 1 

 1 7 4 3 3 2 2 2 2 
 2 10 6 5 4 3 3 3 3 
 3 13 8 6 5 4 4 4 4 
 4 16 10 8 7 6 5 5 5 
 5 19 12 9 8 7 6 6 6 
 6 22 14 11 9 8 7 7 7 
 7 25 16 12 11 9 8 8 8 
 8 28 18 14 12 10 9 9 9 
 9 31 20 15 13 11 10 10 10 
 10 34 22 17 15 12 11 11 11 

0.90 0 6 3 2 2 1 1 1 1 
 1 9 6 4 3 3 2 2 2 
 2 13 8 6 5 4 3 3 3 
 3 17 10 8 6 5 4 4 4 
 4 20 12 9 8 6 5 5 5 
 5 23 14 11 9 7 6 6 6 
 6 27 17 13 10 8 8 7 7 
 7 30 19 14 12 9 9 8 8 
 8 33 21 16 13 11 10 9 9 
 9 36 23 17 15 12 11 10 10 
 10 39 25 19 16 13 12 11 11 

0.95 0 7 4 3 2 2 1 1 1 
 1 11 7 5 4 3 2 2 2 
 2 15 9 7 5 4 3 3 3 
 3 19 12 8 7 5 5 4 4 
 4 23 14 10 8 6 6 5 5 
 5 26 16 12 10 8 7 6 6 
 6 29 18 14 11 9 8 7 7 
 7 33 20 15 13 10 9 8 8 
 8 36 22 17 14 11 10 9 9 
 9 39 24 18 15 12 11 10 10 
 10 43 27 20 17 13 12 11 11 

0.99 0 11 6 4 3 2 2 1 1 
 1 15 9 6 5 3 3 2 2 
 2 20 12 8 7 5 4 4 3 
 3 24 14 10 8 6 5 5 4 
 4 28 17 12 10 7 6 6 5 
 5 32 19 14 11 8 7 7 6 
 6 35 21 16 13 10 8 8 7 
 7 39 24 17 14 11 9 9 8 
 8 43 26 19 16 12 11 10 9 
 9 46 28 21 17 13 12 11 11 
 10 50 30 23 19 14 13 12 12 
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Table 2. OCF values of the proposed ASP with 6c = , 8, 2β θ= =  in the GaLD 

P*  m 0/t µ  
  

0/µ µ     

2 4 6 8 10 12 
0.75 22 0.628 0.96318 0.99987 1 1 1 1 

 14 0.942 0.95418 0.99982 1 1 1 1 
 11 1.257 0.93377 0.99968 0.99999 1 1 1 
 9 1.571 0.93485 0.99964 0.99999 1 1 1 
 8 2.356 0.78397 0.99693 0.99990 0.99999 1 1 
 7 3.141 0.76173 0.99480 0.99980 0.99999 1 1 
 7 3.927 0.53369 0.97658 0.99871 0.99989 0.99999 1 
 7 4.712 0.33298 0.93347 0.99480 0.99945 0.99992 0.99999 

0.90 27 0.628 0.90148 0.99945 0.99999 1 1 1 
 17 0.942 0.87521 0.99923 0.99998 1 1 1 
 13 1.257 0.83625 0.99872 0.99997 1 1 1 
 10 1.571 0.87040 0.99902 0.99998 1 1 1 
 8 2.356 0.78397 0.99693 0.99990 0.99999 1 1 
 8 3.141 0.45271 0.97559 0.99882 0.99990 0.99999 1 
 7 3.927 0.53369 0.97658 0.99871 0.99989 0.99999 1 
 7 4.712 0.33298 0.93347 0.99480 0.99945 0.99992 0.99999 

0.95 29 0.628 0.86681 0.99913 0.99998 1 1 1 
 18 0.942 0.83942 0.99884 0.99997 1 1 1 
 14 1.257 0.77252 0.99778 0.99994 1 1 1 
 11 1.571 0.78530 0.99779 0.99994 1 1 1 
 9 2.356 0.59201 0.99030 0.99964 0.99997 1 1 
 8 3.141 0.45271 0.97559 0.99882 0.99990 0.99999 1 
 7 3.927 0.53369 0.97658 0.99871 0.99989 0.99999 1 
 7 4.712 0.33298 0.93347 0.99480 0.99945 0.99992 0.99999 

0.99 35 0.628 0.73496 0.99719 0.99991 0.99999 1 1 
 21 0.942 0.71094 0.99677 0.99990 0.99999 1 1 
 16 1.257 0.62817 0.99438 0.99982 0.99999 1 1 
 13 1.571 0.58198 0.99218 0.99974 0.99998 1 1 
 10 2.356 0.40713 0.97721 0.99902 0.99993 0.99999 1 
 8 3.141 0.45271 0.97559 0.99882 0.99990 0.99999 1 
 8 3.927 0.19664 0.90852 0.99315 0.99931 0.99990 0.99998 
 7 4.712 0.33298 0.93347 0.99480 0.99945 0.99992 0.99999 
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Table 3. The 0/µ µ for a lot's acceptance with 0.05 PR and 8, 2β θ= =  in the GaLD 

 
       0/t µ           

P*   c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 
0.75 0 11.655 10.482 13.987 10.789 16.180 21.571 26.969 32.360 

 1 4.121 4.062 4.308 5.384 5.599 7.464 9.331 11.197 
 2 2.928 2.956 3.382 3.444 3.756 5.007 6.259 7.511 
 3 2.450 2.499 2.574 2.664 2.994 3.991 4.990 5.987 
 4 2.190 2.248 2.447 2.672 3.358 3.428 4.286 5.143 
 5 2.025 2.086 2.119 2.329 2.955 3.067 3.834 4.600 
 6 1.910 1.974 2.094 2.091 2.674 2.812 3.516 4.218 
 7 1.825 1.890 1.903 2.157 2.466 2.622 3.278 3.933 
 8 1.760 1.824 1.905 1.997 2.305 2.473 3.092 3.710 
 9 1.708 1.772 1.775 1.870 2.177 2.353 2.942 3.529 
 10 1.665 1.729 1.786 1.931 2.071 2.254 2.817 3.381 

0.90 0 15.992 14.080 13.987 17.481 16.180 21.571 26.969 32.360 
 1 4.955 5.517 5.421 5.384 8.073 7.464 9.331 11.197 
 2 3.554 3.711 3.944 4.227 5.164 5.007 6.259 7.511 
 3 2.991 3.000 3.335 3.217 3.994 3.991 4.990 5.987 
 4 2.590 2.619 2.732 3.059 3.358 3.428 4.286 5.143 
 5 2.341 2.380 2.575 2.648 2.955 3.067 3.834 4.600 
 6 2.233 2.331 2.462 2.365 2.674 3.565 3.516 4.218 
 7 2.099 2.194 2.227 2.379 2.466 3.288 3.278 3.933 
 8 1.998 2.088 2.180 2.196 2.671 3.073 3.092 3.710 
 9 1.917 2.005 2.025 2.218 2.510 2.902 2.942 3.529 
 10 1.852 1.938 2.005 2.086 2.377 2.761 2.817 3.381 

0.95 0 18.100 17.483 18.788 17.481 26.215 21.571 26.969 32.360 
 1 5.739 6.181 6.426 6.775 8.073 7.464 9.331 11.197 
 2 3.944 4.059 4.463 4.227 5.164 5.007 6.259 7.511 
 3 3.245 3.457 3.335 3.712 3.994 5.325 4.990 5.987 
 4 2.870 2.962 2.999 3.059 3.358 4.477 4.286 5.143 
 5 2.564 2.654 2.784 2.942 3.493 3.939 3.834 4.600 
 6 2.355 2.443 2.633 2.617 3.136 3.565 3.516 4.218 
 7 2.255 2.289 2.377 2.586 2.874 3.288 3.278 3.933 
 8 2.133 2.172 2.310 2.381 2.671 3.073 3.092 3.710 
 9 2.037 2.079 2.142 2.218 2.510 2.902 2.942 3.529 
 10 1.995 2.069 2.109 2.232 2.377 2.761 2.817 3.381 

0.99 0 26.334 23.987 23.329 23.481 26.215 34.950 26.969 32.360 
 1 7.216 7.432 7.362 8.031 8.073 10.763 9.331 11.197 
 2 4.860 5.026 4.951 5.578 6.339 6.885 8.607 7.511 
 3 3.843 3.885 4.003 4.168 4.824 5.325 6.658 5.987 
 4 3.311 3.439 3.494 3.748 4.007 4.477 5.597 5.143 
 5 2.984 3.037 3.176 3.218 3.493 3.939 4.925 4.600 
 6 2.704 2.763 2.956 3.077 3.547 3.565 4.457 4.218 
 7 2.550 2.652 2.661 2.783 3.235 3.288 4.111 3.933 
 8 2.433 2.489 2.555 2.725 2.995 3.561 3.842 3.710 
 9 2.304 2.362 2.471 2.530 2.804 3.345 3.628 4.353 
 10 2.232 2.258 2.402 2.506 2.648 3.169 3.451 4.141 
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Figure 5. The OCF plots for * 0.75,P = 90, 95, 0.99, 6c =  for 8, 2β θ= =  in the GaLD 

 
5. Application of real data 
In this section, we will provide an example to demonstrate our recommended plan for industrial usage. The data set 
relates to the lifetime (measured in months) of 20 electric carts used for delivery and internal movement within a 
sizable industrial plant, where the values are 0.9, 1.5, 2.3, 6.2, 15, 16.3, 7.5, 8.3, 3.2, 3.9, 11.1, 12.6, 5.0, 10.4, 19.3, 
22.6, 24.8, 31.5, 38.1, 53. This data is considered by (Aslam et al., 2011) for an improved group acceptance sampling 
plan for Dagum distribution under percentiles lifetime.  (Lio et al., 2010) utilizing the Burr type XII percentiles for 
constructing ASP from truncated life tests. Table 4 provides the descriptive statistics for the data. Also, Figure 6 
presents the box, density, histogram and TTT plots based on the real data. 
 

Table 4: Descriptive statistics of the electric carts data set 
n Mean SD Median Min Max Range Skew Kurtosis SE 
20 14.68 13.66 10.75 0.9 53 52.1 1.25 0.86 3.06 

 
We evaluate the GaLD, Darna Distribution (DD) offered by (Shraa & Al-Omari, 2019), Length Biased Two 
Parameters Mirra Distribution (LBMD), and Power Length-Biased Suja Distribution (PLBSD) suggested by (A. I. Al-
Omari et al., 2019) distributions for this data. The pdfs of these competitor models are defined as follows: 
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The MLE approach is used to estimate parameters for all models based on voltage data. We calculate the 
MLEs of the models parameters with their standard errors (SE), and use various goodness of fit measures to determine 
which competitor has the best fit for the data set under consideration as Anderson-Darling statistics (AD), Cramér von 
Mises statistic (CVM), Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent AIC 
(CAIC), Hannan-Quinn information criterion (HQIC), Kolmogorov-Smirnov statistic (KS), with its p-value. These 
measures can be defined as: 
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where l  is the negative maximized log-likelihood, n is the sample size and η  is the number of parameters. The results 

are displayed in Table 5. The best distribution is indicated by lower AD, CVM, K-S, AIC, BIC, CAIC, HQIC for 
goodness of statistics. Among all other competitive models, it is to be noted that the GaLD has the lowest values of 
AD, CVM, AIC, BIC, CAIC, HQIC and K–S statistics with largest p-value.  As a result, it might be identified as the 
best model to fit the provided data set. 

  

  
Figure6: The box (a), density (b), histogram (c) and TTT (d) plots based on the real data 
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Table 5: The AIC, CAIC, BIC, HQIC, -2LL, KS, P-value based on the 
electric carts 
  Model  
Measures GaLD DD LBTMD  PLBSD 

AIC  151.2821 151.4540 153.9274 240.9003 
CAIC  151.9880 152.1598 154.6332 241.6062 

BIC  153.2736 153.4454 155.9188 242.8917 
HQIC  151.6708 151.8427 154.3161 241.2890 
CVM 0.0096 0.0076 0.0073 0.0110 

AD 0.0867 0.0724 0.0698 0.0993 
K-S 0.0517 0.0596 0.1403 0.0656 

P-Value 0.9999 0.9999 0.7756 0.9999 
- l  73.6411 73.7270 74.9637 118.4501 

 
Table 6: The MLEs of the model parameters with the corresponding Std. Dev. As well as the 
95% CI for the electric carts data 

Model MLE Std. Dev. Inf.95%CI Sup.95%CI 

GaLD β̂ = 0.1375 0.1689 -0.1935 0.4685 

θ̂ = 0.0938 0.0403 0.0147 0.1728 
DD α̂ = 1.4070 21.0631 -39.8759 42.6899 

θ̂ = 0.0962 1.4407 -2.7275 2.9200 
LBTMD α̂ = 0.0025 0.0034 -0.0040 0.0091 

θ̂ = 0.1667 0.0320 0.1038 0.2295 
PLBSD α̂ = 1.7860 0.2741 1.2487 2.3233 

β̂ = 0.4703 0.0571 0.3583 0.5821 

 

Based on this data set, the MLEs of the GaLD parameters as β̂ = 0.1375 and ̂θ = 0.0938. Tables 7-8 present the 

minimum sample sizes of the ASP using the electric carts data with  ̂β = 0.1375 and ̂θ = 0.0938,  for * 0.99P = . The 

estimated mean of the data is 9ˆ
ˆ ˆ ˆ2 ( 1)

14.672
ˆ ˆ ˆ( 1)

GaLD

β θ θ
θ β θ

µ + −= =
+

.  

Assume that 0 14.6729µ =  months represents the identified average lifetime, with testing time 0 13.8219t =  

months and it is required to accept or reject the lot. For the probability level of * 0.99P = , ratio 0 0 94/ 20.t µ = , 

minimum sample size 20n =  from Table 7 , the acceptance number is 6c = . Now, we can accept the lot with mean 

lifetime of 14.6729 with probability of 0.99 if there are 6 failures or less before 0 13.8219t = . New, as 12 failures 

occurred before the stipulated time, therefore, the lot will be rejected. The producers’ risk for the ASP 

( )020, 6, / 0.942n c t µ= = =  are 0.58139, 0.06667, 0.00985, 0.00209, 0.00058, 0.00019, which are decreasing in the 

0/µ µ  . 
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Table 7. Minimum sample sizes of the sampling plans based on electric carts data with  ̂β = 0.1375 and ̂θ = 0.0938 

in the GaLD for * 0.99P =  

 c 
  

0/t µ     

0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 
 0 8 6 4 3 2 2 2 1 

1 12 8 6 5 4 3 3 3 
2 16 11 8 7 5 4 4 4 
3 19 13 10 9 7 6 5 5 
4 23 16 12 10 8 7 6 6 
5 26 18 14 12 9 8 7 7 
6 29 20 16 13 10 9 8 8 
7 32 22 18 15 12 10 9 9 
8 35 24 19 16 13 11 10 10 
9 38 26 21 18 14 12 11 11 
10 40 28 23 19 15 13 13 12 

 

Table 8. OCF and PR values of the GaLD ASP  based on electric carts data with ̂β =

0.1375,θ̂ = 0.0938 for 6c =  and  * 0.99P =  

m 0/t µ  
  

0/µ µ     

2 4 6 8 10 12 
29 0.628 0.40932 0.92917 0.98926 0.99768 0.99935 0.99978 
 PR 0.59068 0.07083 0.01074 0.00232 0.00065 0.00022 

20 0.942 0.41861 0.93333 0.99015 0.99791 0.99942 0.99981 
 PR 0.58139 0.06667 0.00985 0.00209 0.00058 0.00019 

16 1.257 0.39114 0.92686 0.98907 0.99767 0.99935 0.99978 
 PR 0.60886 0.07314 0.01093 0.00233 0.00065 0.00022 

13 1.571 0.43350 0.93855 0.99123 0.99818 0.99950 0.99984 
 PR 0.56650 0.06145 0.00877 0.00182 0.00050 0.00016 

10 2.356 0.39954 0.92901 0.98961 0.99782 0.99940 0.99980 
 PR 0.60046 0.07099 0.01039 0.00218 0.00060 0.00020 
9 3.141 0.28534 0.88578 0.98111 0.99580 0.99881 0.99959 
 PR 0.71466 0.11422 0.01889 0.00420 0.00119 0.00041 
8 3.927 0.29597 0.88344 0.98028 0.99557 0.99874 0.99957 
 PR 0.70403 0.11656 0.01972 0.00443 0.00126 0.00043 
8 4.712 0.14838 0.77902 0.95373 0.98837 0.99646 0.99874 
 PR 0.85162 0.22098 0.04627 0.01163 0.00354 0.00126 

 
5. Conclusions 

The Gamma-Lindley distribution is used in this article to identify new ASPs for life experiments that are truncated at 
a predetermined time. The tables provide the minimal sample sizes required to determine a certain mean life of the 
test units. Calculated together with the operational characteristic function values are the associated producer risks. 
Using actual data from the initial failure of 20 electric carts used for delivery and internal movement within a sizable 
manufacturing facility, the benefit of the suggested ASPs is examined. The usefulness of the suggested GaLD 
acceptance sampling plans is proved in the study by the use of a real data set. Therefore, it is suggested that researchers 
utilize the new ASPs. Other ASPs, such as group ASP and double sampling plans for the mean as a quality parameter 
of other parameters can be considered as a future work. 
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