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Abstract

A novel discrete distribution with three parameters, referred to as the PoiNB distribution, is formulated
through the convolution of a Poisson variable and an independently distributed negative binomial random
variable. This distribution generalizes some well known count distributions and can be used for modelling
over-dispersed as well as equi-dispersed count data. Numerous essential statistical properties of this pro-
posed count model are thoroughly examined. Characterizations of this distribution in terms of conditional
expectation are studied in details. The estimation of the unknown parameters of this proposed distribution
is carried out using the maximum likelihood estimation approach. Additionally, we introduce a count re-
gression model based on the PoiNB distribution through the generalized linear model approach. Two real
life modelling applications demonstrate that the proposed distribution may prove to be useful for modelling
over-dispersed count data compared to its closest competitors.

Key Words: Negative-binomial distribution; Poisson distribution; Conway-Maxwell Poisson distribution;
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1. Introduction

The phenomenon of over-dispersion, where the variance of count data exceeds its mean, is a commonly dis-
cussed topic in literature. Over-dispersion is frequently encountered in various modelling applications and it
is encountered more often compared to the phenomena of under-dispersion and equi-dispersion. Numerous
count models have been proposed for over-dispersed data, reflecting the ongoing research interest in this
field (Wongrin and Bodhisuwan (2017), Moghimbeigi et al. (2008), Tapak et al. (2020), Wang et al. (2017),
Sarvi et al. (2019), Rodrigues-Motta et al. (2013), Campbell et al. (1999), Hassanzadeh and Kazemi (2016),
Moqaddasi Amiri et al. (2019), Tüzen et al. (2020), Bar-Lev and Ridder (2021), Altun (2020), and Wang
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et al. (2001)). The simplest and most common count data model is the Poisson distribution, known for
its equi-dispersion characteristic. However, this simplicity poses a limitation, leading to the development
of several alternative distributions that offer advantages over the classical Poisson model. Notable among
these alternatives are the hyper-Poisson (HP) (Bardwell and Crow, 1964), generalized Poisson distribution
(Jain and Consul, 1971), double-Poisson (Efron, 1986), weighted Poisson (Del Castillo and Pérez-Casany,
1998), weighted generalized Poisson distribution (Chakraborty, 2010), Mittag-Leffler function distribution
(Chakraborty and Ong, 2017), and the COM-Poisson distribution (Sellers and Shmueli, 2010), which gener-
alizes the Poisson distribution to accommodate over-dispersion.

The classical geometric and negative binomial models are also employed for over-dispersed count datasets.
The gamma mixture of the Poisson distribution generates the negative binomial distribution (Fisher et al.,
1943). Several extensions of the geometric distribution have been introduced for over-dispersed count data
modelling (Chakraborty and Bhati (2016), Chakraborty and Gupta (2015), Gómez-Déniz (2010), Jain and
Consul (1971), Makcutek (2008), Nekoukhou et al. (2012), Philippou et al. (1983), and Tripathi et al.
(1987)). Despite the prevalence of the negative binomial and COM-Poisson distributions, there remains
ample opportunity to develop new discrete distributions with simple structures and explicit interpretations
suitable for over-dispersed data.

Bourguignon and Weiß (2017) introduced the BerG distribution by combining a Bernoulli random variable
with a geometric random variable through convolution. Similarly, (Bourguignon et al., 2022) introduced
the BerPoi distribution using a comparable method, convolving a Bernoulli random variable with a Pois-
son random variable. The BerG distribution can effectively handle over-dispersed, under-dispersed, and
equi-dispersed data by blending the characteristics of Bernoulli and geometric distributions. On the other
hand, the BerPoi distribution is suitable for modelling under-dispersed and equi-dispersed data by merging
Bernoulli and Poisson distribution features.

More recently, Nandi et al. (2024) proposed the PoiG distribution, which combines a Poisson random variable
with a geometric random variable. The geometric distribution is known for over-dispersion, while the Poisson
distribution is equi-dispersed. Consequently, the PoiG distribution also exhibits over-dispersion due to the
convolution process. For Y following the PoiG(λ, θ) distribution, 0 < λ and 0 < θ < 1, the probability mass
function (pmf) of Y is given by

pY (y) =
θ(1− θ)y

Γ(y + 1)
exp

(
λθ

1− θ

)
Γ

(
y + 1,

λ

1− θ

)
, y = 0, 1, 2, ... . (1)

Although the negative binomial distribution is commonly used for modelling over-dispersed count data,
there is a need for better alternative models in statistical literature. This motivation led us to develop a
new distribution. Utilizing the simple and effective convolution approach mentioned above, we introduce
a novel over-dispersed count model called PoiNB. This new model is derived from the convolution of two
independent count random variables: Poisson and negative binomial.

The Poisson distribution, exhibiting equi-dispersion, and the negative binomial distribution, demonstrating
over-dispersion, result in the over-dispersion characteristic of the PoiNB model. This three-parameter dis-
tribution offers several advantages, including structural simplicity, easy comprehensibility compared to the
COM-Poisson distribution, and closed-form expressions for mean and variance. Unlike the COM-Poisson
distribution, the proposed distribution extends the Poisson, the geometric and the negative binomial distri-
butions.

Rest of the article is organized as follows. In Section 2, we present the PoiNB distribution. In Section 3,
we describe its important statistical properties such as recurrence relation, generating functions, moments,
dispersion index, reliability properties. In Section 4, we present the characterizations of the proposed dis-
tribution. In Section 5, we present the maximum likelihood methods of parameter estimation. In Section 6,
we introduce the count regression model based on the PoiNB distribution. In Section 7, two real datasets
are analyzed to illustrate the practical utility of the PoiNB distribution. We conclude the article with a few
limitations and future scopes of the current study.
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2. The PoiNB distribution

In this section, we introduce a novel discrete distribution that arises from the analysis of two separate,
independent discrete random variables Y1 and Y2. Let us denote the set of non-negative integers, {0, 1, 2, ...}
by N0. Also let, Y1 follow the Poisson distribution P (λ) where λ > 0 and Y2 follow the negative binomial
distribution NB(r, θ) where r ∈ N and 0 < θ < 1, respectively. Both the variables are restricted to non-
negative integer values. Consider, Y = Y1 + Y2. Then, the probability mass function (pmf) of Y is

pY (y) =

y∑
i=0

Pr(Y1 = i) Pr(Y2 = y − i)

=

y∑
i=0

e−λλi

i!

(
y − i+ r − 1

y − i

)
(1− θ)y−i

= e−λθr(1− θ)y
(
y + r − 1

y

)
1F1

(
−y; 1− r − y;

λ

1− θ

)
= e−λθr(1− θ)y

(r + y − 1)!

(r − 1)!y!
1F1

(
−y; 1− r − y;

λ

1− θ

)
, y = 0, 1, 2, ... . (2)

Here, 1F1(a, b, z) =
∑∞

k=0

(a)kz
k

(b)kk!
is Kummer’s confluent hypergeometric function Zarzo et al. (1995). It is

to be mentioned that (a)0 = 1 and (a)k = a(a + 1) . . . (a + k − 1). The pmf given in (2) is well defined
as a = −y and b − a = 1 − r are non-positive integers while z = λ/(1 − θ) is a real number. Being the
convolution of Poisson and negative binomial, this distribution is named the PoiNB distribution and we write
Y ∼ PoiNB(λ, r, θ), where λ > 0, θ ∈ (0, 1) , r ∈ N. From the formulation of the PoiNB(λ, r, θ) model, it is
very convenient to obtain its mean and variance explicitly. Note that,

µ = E(Y ) = E(Y1) + E(Y2) = λ+
r(1− θ)

θ
,

σ2 = V (Y ) = V (Y1) + V (Y2) = λ+
r(1− θ)

θ2
. (3)

Remark 1. The PoiNB(λ, r, θ) distribution behaves like the Poisson distribution with parameter λ, negative
binomial distribution with parameter r and p and geometric distribution with parameter θ as r → 0 or θ → 1,
λ→ 0, and λ→ 0 and r → 1, respectively.

Remark 2. Let C = e−λθr and G(y) =
(r + y − 1)!

(r − 1)!y!
1F1

(
−y; 1− r − y;

λ

1− θ

)
, then the pmf given in (2)

can be expressed as

pY (y) = C (1− θ)y G(y), y = 0, 1, 2, ... . (4)

The cumulative distribution function (cdf) of PoiNB distribution is

FY (y) = Pr(Y1 + Y2 ≤ y)

=

y∑
y1=0

FNB(y − y1)pY (y1)

=

y∑
y1=0

Iθ(r, y − y1 + 1)
e−λλy1

y1!
, (5)
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where, Ix(a, b) = B(x, a, b)/B(a, b) is the regularized incomplete beta function. The incomplete beta function
in the above expressions is given by

B(x, a, b) =

∫ X

0

ta−1(1− t)b−1dt.

From Remark 2, the cdf given in (5) can also be expressed as

FY (y) =

y∑
a=0

C (1− θ)aG(a) = C Q(y), y = 0, 1, 2, . . . (6)

where Q(y) =
∑y

a=0(1− θ)aG(a).

3. Properties of the PoiNB distribution

In this section, we explore several important statistical properties of the proposed PoiNB(λ, r, θ) distribu-
tion. Some of the distributional properties studied here are the recurrence relation, generating functions,
moments related concepts, index of dispersion and coefficient of variation.

3.1. Recurrence relation

The recurrence relation of the probability mass function’s assists in determining the probability mass at a
subsequent point based on the probability mass at a previous point. From the representation of the pmf in
(2),

pY (y + 1) = e−λθr(1− θ)y+1 (r + y)!

(r − 1)!(y + 1)!
1F1(−(y + 1);−r − y;

λ

1− θ
)

The ratio between two successive point is

pY (y + 1)

pY (y)
= (1− θ)

(r + y)

(y + 1)

1F1(−(y + 1);−r − y;
λ

1− θ
)

1F1(−y; 1− r − y;
λ

1− θ
)

.

3.2. Generating functions

If Y is the sum of independent random variables Y1 and Y2, then the probability generating function (pgf)
of Y , denoted as GY (s) with argument s, can be easily determined using the product of the pgfs of Y1 and
Y2, denoted as HY1

(s) and HY2
(s), respectively.

HY (s) = HY1(s)HY2(s).

This approach is applicable for obtaining the moment generating function (mgf) and the characteristic
function (cf) as well. It is important to note that the probability generating functions (pgfs), moment
generating functions (mgfs), and characteristic functions (cfs) for both the Poisson distribution (Y1) and the
negative binomial distribution (Y2) are readily available. For Y ∼ PoiNB(λ, r, θ), pgf of Y is given by

HY (s) =
θreλ(s−1)

(1− (1− θ)s)r
.
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Figure 1: Probability mass function of PoiNB(λ, r, θ) for different choices of λ, r and θ.

Figure 2: Cumulative distribution function of PoiNB(λ, r, θ) for different choices of λ, r and θ.
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The mgf of Y is obtained by replacing s by et

MY (t) =
θreλ(e

t−1)

(1− (1− θ)et)r
.

The cf of Y is

ϕY (t) =
θreλ(e

it−1)

(1− (1− θ)eit)r
.

3.3. Moments and related concepts

The kth order raw moment of Y ∼ PoiNB(λ, r, θ) can be obtained using the general expressions of the raw
moments of Y1 ∼ P (λ) and Y2 ∼ NB(r, θ) as follows.

E(Y k) = E

 k∑
j=0

(
k

j

)
Y1

jY2
k−j


=

k∑
j=0

(
k

j

)
E(Y1

j)E(Y2
k−j)

E(Y1
j) =

∞∑
y1=0

y1
j e−λλy1

y1!
= Bj(λ).

Here, Bn(α) denotes the ordinary Bell polynomial defined by

eα(e
t−1) =

∞∑
n=0

Bn(α)
tn

n!
.

For the definition of Bn(α) and the derivation of the jth order raw moment of the Poisson random variable
in terms of Bell polynomials, one may refer to the work of Kim et al. (2021).

Again,

E(Y2
k−j) =

∞∑
y2=0

(
y2 + r − 1

y2

)
y2

k−j θr(1− θ)y2 ,

Consider Nk−j(r, θ) =
∑∞

y2=0

(
y2+r−1

y2

)
y2

k−j , θr(1− θ)y2 . The general expressions for the raw moments of Y
is as follows

E(Y k) =

k∑
j=0

(
k

j

)
Bj(λ) Nk−j(r, θ). (7)

Let µ′
k denote the raw moment of order k, that is µ′

k = E(Y k). The explicit expressions of the first four
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moments are

µ′
1 = λ+

r(1− θ)

θ
,

µ′
2 =

1

θ2
[θ2λ(λ+ 1) + r2(1− θ)2 + r(1− θ)(2θλ+ 1)],

µ′
3 =

1

θ3
[λ(1 + λ(3 + λ))θ3 + r2(1− θ)2(1 + θ(3λ− 1)) + r(1− θ)(θ2(3λ(λ+ 1)− 1)+

3θλ+ θ + 1)], and

µ′
4 =

1

θ4
[λ(1 + λ(7 + λ(6 + λ)))θ4 + (1− θ)4r3 + (1− θ)2r2(θ2

(
6λ2 + 2λ− 3

)
+

4θλ+ 3) + r(1− θ)(2 + θ(4λ+ θ
(
4θλ2(λ+ 3)− 2θ + 2λ(3λ+ 5) + 1

)
))].

Using the above expressions of the first four raw moments, we can obtain the first four central moments of Y
explicitly. Let µk denote the central moment of order k, that is µk = E(Y − µ′

1)
k. The first central moment

is always 0. The explicit expressions of the next three central moments are

µ2 = λ+
r(1− θ)

θ2
,

µ3 =
1

θ3
[θ3λ+ (1− θ)3r3 −

(
θ3 − 3θ + 2

)
r2 + (θ − 2)θ2r + r], and

µ4 =
1

θ4
[θ4λ(1 + 3λ) + 3(θ − 1)4r4 − 3(θ + 1)(θ − 1)3r3+

((θ − 4)θ − 1)(θ − 1)2r2 + (θ − 1)r
(
θ2(2θ − 6λ− 1)− 2

)
].

The mean and variance of the PoiNB(λ, r, θ) distribution correspond to the first raw moment (µ′
1) and

second central moment (µ2), respectively. The skewness and kurtosis measures, expressed as µ3/µ
3/2
2 and

µ4/µ
2
2 respectively, can be directly derived from the central moments.

β1 =
µ2
3

µ3
2

=

(
θ3λ+ (θ − 1)3r3 −

(
θ3 − 3θ + 2

)
r2 + (θ − 2)θ2r + r

)2
(λθ2 + r(1− θ))

3

β2 =
µ4

µ2
2

=
1

(θ2λ− θr + r)
2 [θ4λ(3λ+ 1) + 3(1− θ)4r4 + 3(1 + θ)(1− θ)3r3+

((θ − 4)θ − 1)(1− θ)2r2 + (θ − 1)r
(
θ2(2θ − 6λ− 1)− 2

)
]

The 3-D surface plots of the measures of coefficient of skewness γ1 =
√
β1 and coefficient of kurtosis γ2 = β2−3

are presented in Figure (3) and Figure (4) , respectively. It is simple to verify that the PoiNB(λ, r, θ) is
positively skewed from Figure 3. When r increases and λ and θ get closer to zero, the distribution gets more
skewed. As λ and θ grow greater, the distribution gets closer to the symmetry. This can be easily verified
from the surface plots in the first and third column of Figure 3. From the second column, it appears that
the parameter r seems to have an opposite effect; for lower r, it approaches symmetry, while for larger r,
it exhibits more skewness. From Figure 4, it is clear that the PoiNB(λ, r, θ) distribution is leptokurtic.
Similar to the case of skewness, for larger values of λ and θ, and smaller values of r the PoiNB(λ, r, θ)
distribution approaches the mesokurtic characteristic. For smaller values of λ and θ, and greater values of
r, the PoiNB(λ, r, θ) distribution is highly leptokurtic in nature.

3.4. Index of dispersion and coefficient of variation

The index of dispersion (Hoel, 1943) is a statistical measure that describes the degree of variability or
dispersion in a dataset. It is used to assess the capability of a given distribution in modelling over-dispersed,
under-dispersed and equi-dispersed datasets. If the index of dispersion of a distribution exceeds unity, it
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Figure 3: Skewness of PoiNB(λ, r, θ) for different choices of λ, r and θ.

Figure 4: Kurtosis of PoiNB(λ, r, θ) for different choices of λ, r and θ.
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indicates that the distribution can effectively model over-dispersed datasets. Similarly, for index of dispersion
below 1 or equal to 1, it can effectively model under-dispersed or equi-dispersed datasets, respectively. The
dispersion index of Y ∼ PoiNB(λ, r, θ) is given by

DIY =
σ2

µ
= 1 +

r(1− θ)2

θ(λθ + r(1− θ))
. (8)

From the expression of DIY above, it follows that the PoiNB distribution is equi-dispersed when θ = 1 and
over-dispersed for all 0 < θ < 1 and r > 0. The coefficient of variation (cv) of PoiNB(λ, r, θ) distribution is
given by

cv =
σ

µ
× 100% =

√
λθ2 + r(1− θ)

λθ + r(1− θ)
× 100%.

3.5. Reliability properties

The corresponding survival function (sf), hazard rate function (hrf), and reverse hazard rate function (rhrf)
of Y ∼ PoiNB(λ, r, θ) are

SY (y) = 1− C Q(y − 1), (9)

hY (y) =
C (1− θ)y G(y)

1− C Q(y − 1)
, (10)

rY (y) =
C (1− θ)y G(y)∑y
a=0 C (1− θ)aG(a)

(11)

respectively. In the above expression, C = e−λθr, G(y) =
(r + y − 1)!

(r − 1)!y!
1F1(−y; 1 − r − y;

λ

1− θ
), and

Q(y − 1) =
∑y−1

a=0(1− θ)aG(a).

4. Characterizations

In this section, we present our characterizations of the PoiNB distribution: (i) In terms of the conditional
expectation of certain function of the random variable; (ii) Based on the reverse hazard function. The choice
of the function in (i) depends on the form of the pmf. We devote a subsection to each of (i) and (ii).

4.1. Based on conditional expectation

Proposition 1. Y is a random variable with pmf given in (4) if and only if

E
{
[G (y)]

−1 | Y ≤ k
}
=

1− (1− θ)
k+1

θ Q (k)
(12)

where G (y) and Q (k) are given in Remark 2 and equation (6), respectively.

Proof. If Y has pmf (4), then for k ∈ N∗, the left-hand side of (12) using finite geometric sum formula,
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will be

E
{
[G (y)]

−1 | Y ≤ k
}
= (F (k))

−1
k∑

y=0

C (1− θ)
y

=
C
(

(1−θ)k+1−1
(1−θ)−1

)
C Q (k)

=
1− (1− θ)

k+1

θ Q (k)
.

Conversely, if (12) holds, then

k∑
y=0

{
[G (y)]

−1
p (y)

}
= F (k)

(
1− (1− θ)

k+1

θ Q (k)

)
(13)

From (13) , we also have

k−1∑
y=0

{
[G (y)]

−1
p (y)

}
= F (k − 1)

(
1− (1− θ)

k

θ Q (k − 1)

)

= (F (k)− p (k))

(
1− (1− θ)

k

θ Q (k − 1)

)
. (14)

Now, subtracting (14) from (13) , yields

[G (k)]
−1
p (k)

= F (k)

{(
1− (1− θ)

k+1

θ Q (k)

)
−

(
1− (1− θ)

k

θ Q (k)

)}

+ p (k)

(
1− (1− θ)

k

θ Q (k − 1)

)
,

or

p (k)

{
1

G (k)
−

(
1− (1− θ)

k

θ Q (k − 1)

)}

= F (k)

{(
1− (1− θ)

k+1

θQ (k)

)
−

(
1− (1− θ)

k

θQ (k − 1)

)}
.

From the above equality, we have

p (k)

F (k)
=

(
1−(1−θ)k+1

θ Q(k)

)
−
(

1−(1−θ)k

θ Q(k−1)

)
1

G(k) −
(

1−(1−θ)k

θ Q(k−1)

)
= 1−

1
G(k) −

(
1−(1−θ)k+1

θ Q(k)

)
1

G(k) −
(

1−(1−θ)k

θ Q(k−1)

) ,

and after some simplification we arrive at

p (k)

F (k)
=

(1− θ)
k
G (k)

Q (k)
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which is the reverse hazard function corresponding to the pmf (4), so Y has pmf (4).

4.2. Based on reverse hazard rate function

Proposition 2. Let Y be a random variable. The pmf of Y is (4) if and only if its reverse hazard rate
function, rF given in (11), satisfies the difference equation

rF (k + 1)− rF (k)

=
(1− θ)

k+1
G (k + 1)∑k+1

y=0 (1− θ)
y
G (y)

− (1− θ)
k
G (k)∑k

y=0 (1− θ)
y
G (y)

, k ∈ N∗, (15)

with the initial condition rF (0) = 1.

Proof. If Y has pmf (4) , then clearly (15) holds. Now, if (15) holds, then for every y ∈ N , we have

y−1∑
k=0

{rF (k + 1)− rF (k)}

=

x−1∑
k=0


1

G(k) −
(

1−(1−θ)k+1

θ Q(k)

)
1

G(k) −
(

1−(1−θ)k

θ Q(k−1)

) −
1

G(k+1) −
(

1−(1−θ)k+2

θ Q(k+1)

)
1

G(k+1) −
(

1−(1−θ)k+1

θ Q(k)

)
 ,

or, using telescoping sum

rF (y)− rF (0) = −
1

G(y) −
(

1−(1−θ)y+1

θ Q(y)

)
1

G(y) −
(

1−(1−θ)y

θ Q(y−1)

) ,

or in view of the initial condition (rF (0) = 1)

rF (y) = 1−
1

G(y) −
(

1−(1−θ)y+1

θ Q(y)

)
1

G(y) −
(

1−(1−θ)y

θ Q(y−1)

) =
(1− θ)

y
G (y)

Q (y)
, y ∈ N∗,

which is the reverse hazard function corresponding to the pmf (4).

5. Parameter Estimation

Let Y = (Y1, Y2, . . . , Yn) denote a random sample of size n drawn from the PoiNB(λ, r, θ) distribution, and
y = (y1, y2, . . . , yn) denote a realization on Y. The objective of this section is to estimate the parameters λ,
r and α based on the available data y. We present the maximum likelihood methods of estimation. Using
the pmf of Y ∼ PoiNB(λ, r, θ) in (2), the log-likelihood function of the parameters λ, r and θ can easily be
found as

l(λ, q, α;y) =

n∑
i=1

log

(
e−λθr(1− θ)yi

(r + yi − 1)!

(r − 1)!yi!
1F1(−yi; 1− r − yi;

λ

1− θ
)

)
. (16)
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Here are some functions that will be used in the score functions :

ψn(z) =
∂n+1

∂zn+1
ln(Γz) =

∂n

∂zn
ψ0(z),

1F
(0,n,0)
1 (a; b; z) =

∞∑
k=0

(a)k z
k

k!

∂n

∂bn
1

(b)k
,

1F
(0,0,n)
1 (a; b; z) =

(a)n
(b)n

1F1(a+ n; b+ n; z),

1F
(0,1,0)
1 (a; b; z) = ψ(b) 1F1(a; b; z)−

∞∑
k=0

(a)k z
k ψ(b+ k)

k! (b)k
,

1F
(0,1,1)
1 (a; b; z) =

a

b2
1F1(a+ 1; b+ 1; z)− a

b

∞∑
k=0

(a+ 1)k z
k

k!

∂

∂b

1

(b+ 1)k
.

LetA(yi) = 1F1(−yi; 1−r−yi;
λ

1− θ
), Bj(yi) = 1F

(0, j, 0)
1 (−yi; 1−r−yi;

λ

1− θ
), and Cjk(yi) = 1F

(0, i, j)
1 (−yi; 1−

r− yi;
λ

1− θ
) for j, k = 1, 2 . . . n. Differentiating (16), with respect to parameters the parameters λ, r, and

θ, we get the score functions as

∂

∂λ
l(λ, r, θ;y) = −n−

n∑
i=1

yiA(yi − 1)

(1− r − yi)(1− θ)A(yi)
, (17)

∂

∂r
l(λ, r, θ;y) = n(log θ − ψ0(r)) +

n∑
i=1

ψ0(yi + r)−
n∑

i=1

B1(yi)

A1(yi)
, (18)

∂

∂θ
l(λ, r, θ;y) =

nr

θ
−

n∑
i=1

yi
1− θ

−
n∑

i=1

λ yiA(yi − 1)

(1− θ)2(1− r − yi)A(yi)
. (19)

The maximum likelihood estimators are ideally derived by simultaneously solving the equations resulting
from setting the right-hand sides of (17), (18), and (19) to zero. However, the structural complexity of these
equations makes it challenging to obtain explicit expressions for the maximum likelihood estimators. There-
fore, we choose to employ numerical optimization techniques to directly maximize the log-likelihood function
with respect to the parameters. Let λ̂ML, r̂ML, and θ̂ML represent the maximum likelihood estimates (MLE)
for λ, r, and θ” respectively.

In order to derive the information matrix, it is necessary to calculate the second-order partial derivatives of
the log-likelihood function concerning the parameters λ, r, and θ. However, obtaining precise expressions
for all these second-order partial derivatives can be cumbersome and challenging. The second-order partial
derivatives of the log-likelihood function for PoiNB(λ, r, θ) are given as
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∂2l(λ, r, θ;y)

∂λ2
=

n∑
i=1

(
yi(yi − 1)A(yi − 2)

(1− θ)2(1− r − yi)(2− r − yi)A(yi)
− y2i A(yi − 1)2

(1− θ)2(1− r − yi)2A(yi)2

)
(20)

∂2l(λ, r, θ;y)

∂r2
= −nψ1(r) +

n∑
i=1

[
ψ1(yi + r)− A(yi)

2

A(yi)2
+
B2(yi)

A(yi)

]
(21)

∂2l(λ, r, θ;y)

∂λ∂r
=

n∑
i=1

yi (−A(yi − 1)/(1− r − yi) +B1(yi − 1)− (A(yi − 1)A(yi))/A(yi))

(1− θ)(1− r − yi)A(yi)
(22)

∂2l(λ, r, θ;y)

∂θ2
= −nr

θ2
+

n∑
i=1

(
− yi
(1− θ)2

− 2λ yiA(yi − 1)

(1− θ)3(1− r − yi)A(yi)

)

+

n∑
i=1

(
λ2 yi(yi − 1)A(yi − 2)

(1− θ)4(1− r − yi)(2− r − yi)A(yi)
− λ2 y2i A(yi − 1)2

(1− θ)4(1− r − yi)2A(yi)2

)
(23)

∂2l(λ, r, θ;y)

∂λ∂θ
=

n∑
i=1

(
− yiA(yi − 1)

(1− θ)2(1− r − yi)A(yi)
+

λ yi(yi − 1)A(yi − 2)

(1− θ)3(1− r − yi)(2− r − yi)A(yi)

)

−
n∑

i=1

λ y2i A(yi − 1)

(1− θ)3(1− r − yi)2A(yi)
(24)

∂2l(λ, r, θ;y)

∂r∂θ
=
n

θ
−

n∑
i=1

λ

(1− θ)2

(
yiA(yi − 1)B1(yi)

(1− r − yi)A(yi)2
+
C11(yi)

A(yi)

)
. (25)

The Fisher’s information matrix for (λ, q, α) is

IY (λ, r, θ) =



−E
(
∂2l(λ, r, θ;y)

∂λ2

)
−E

(
∂2l(λ, r, θ;y)

∂λ∂r

)
−E

(
∂2l(λ, r, θ;y)

∂λ∂θ

)

−E
(
∂2l(λ, r, θ;y)

∂λ∂r

)
−E

(
∂2l(λ, r, θ;y)

∂r2

)
−E

(
∂2l(λ, r, θ;y)

∂r∂θ

)

−E
(
∂2l(λ, r, θ;y)

∂λ∂θ

)
−E

(
∂2l(λ, r, θ;y)

∂r∂θ

)
−E

(
∂2l(λ, r, θ;y)

∂θ2

)


.

This can be approximated by

ÎY (λ, r, θ) ≈



−∂
2l(λ, r, θ;y)

∂λ2
−∂

2l(λ, r, θ;y)

∂λ∂r
−∂

2l(λ, r, θ;y)

∂λ∂θ

−∂
2l(λ, r, θ;y)

∂λ∂r
−∂

2l(λ, r, θ;y)

∂r2
−∂

2l(λ, r, θ;y)

∂r∂θ

−∂
2l(λ, r, θ;y)

∂λ∂θ
−∂

2l(λ, r, θ;y)

∂r∂θ
−∂

2l(λ, r, θ;y)

∂θ2


(λ, r, θ)=(λ̂ML,r̂ML,θ̂ML)

.

For a large value of n, the maximum likelihood estimators λ̂ML, r̂ML, and θ̂ML exhibit consistency and
asymptotic normality. The distribution of

√
n(λ̂ML − λ, r̂ML − r, θ̂ML − θ) is trivariate normal with zero

means and the dispersion matrix Î−1 = [dij ]3×3, where dij = d(λ̂ML, r̂ML, θ̂ML; y). The dispersion matrix

Î−1 includes the variances of λ̂ML, r̂ML, and θ̂ML, denoted by d11, d22, and d33, respectively. Let zα repre-
sent the (1−α)-th quantile of the standard normal distribution. The asymptotic (1−α)× 100% confidence
interval for the parameters λ, r and θ are given by
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(
λ̂ML − zα/2

√
d11 , λ̂ML + zα/2

√
d11

)
,
(
r̂ML − zα/2

√
d22 , r̂ML + zα/2

√
d22

)
and (

θ̂ML − zα/2
√
d33 , θ̂ML + zα/2

√
d33

)
.

6. PoiNB regression model

In this section, we introduce a reparametrized version of the PoiNB(λ, r, θ) model and subsequently employ
the generalized linear model (GLM) approach to establish a novel count regression model rooted in the
proposed distribution, referred to as PoiNBGLM . Let µ and ϕ denote the mean and index of dispersion of
Y ∼ PoiNB(λ, r, θ), given in (3) and (8), respectively.

µ = λ+
r(1− θ)

θ
,

ϕ = 1 +
r(1− θ)2

θ(r + λθ − rθ)
.

To achieve the reparametrization of the PoiNB(λ, r, θ) distribution, one may use the inverse transformations

λ = µ−
√
rµ(ϕ− 1) and θ =

(
1 +

√
µ(ϕ− 1)/r

)−1

in the pmf of PoiNB distribution given in (2)

pY (y) =

(√
µ(ϕ− 1)

r

)y

(
1 +

√
µ(ϕ− 1)

r

)r+y exp
(
−µ+

√
rµ(ϕ− 1)

) (r + y − 1)!

(r − 1)!y!

1F1

(
−y; 1− r − y; r

(
1 +

√
µ(ϕ− 1)

r

)(√
µ

r(ϕ− 1)
− 1

))
. (26)

This PoiNB model has one location parameter µ, one dispersion parameter ϕ and the integer-valued index
r can be considered as a scaling parameter.

Consider an observed sample of size n, denoted as y1, y2, ..., yn, drawn from the PoiNB(λ, r
, θ) model as defined in (26). In this context, yi represents the response variable associated with a specific
set of covariates x′

i for each i = 1, 2, ..., n. Moreover, we assume that the mean of the response variable yi is
linked to the covariates with a log link function given by

µi = ex
′
iβ, i = 1, 2, ...n. (27)

Here, x′
i = (1, xi1, xi2, ..., xip) represents the covariate vector corresponding to the i-th observation, where

i = 1, 2, ..., n, and β = (β0, β1, β2, ..., βp)
′ is the vector of unknown regression coefficients. By substitut-

ing the expression for µi from (27) into (26), we express the probability mass function (pmf) of yi|x′
i ∼
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PoiNB(µi, ϕ, r) as:

PY (yi|x′
i) =

(√
ex

′
iβ(ϕ− 1)

r

)yi

(
1 +

√
ex

′
iβ(ϕ− 1)

r

)r+yi
exp

(
−ex

′
iβ +

√
rex

′
iβ(ϕ− 1)

)
(r + yi − 1)!

(r − 1)!yi!

1F1

−yi; 1− r − yi; r

1 +

√
ex

′
iβ(ϕ− 1)

r

√ ex
′
iβ

r(ϕ− 1)
− 1

 . (28)

Using (28), we obtain the log-likelihood function of δ = (β, ϕ, r)′ for given y1, y2, ..., yn and fixed x′
1,x

′
2, ...,x

′
n

as

l(δ) =

n∑
i=1

(
−ex

′
iβ +

√
rβ(xi, ϕ)

)
+

n∑
i=1

yi log

(√
β(xi, ϕ)

r

)
−

n∑
i=1

(yi + r) log

(
1 +

√
β(xi, ϕ)

r

)
+

n∑
i=1

log

(
(r + yi − 1)!

(r − 1)!yi!
1F1

(
−yi; 1− r − yi; r

(
1 +

√
β(xi, ϕ)

r

)(√
β(xi, ϕ)

r(ϕ− 1)2
− 1

)))
, (29)

where β(xi, ϕ) = ex
′
iβ(ϕ − 1). We may use numerical methods directly to maximize l(δ) and obtain the

maximum likelihood estimates of β, ϕ and r.

7. Data analysis

In this section, we demonstrate the suitability of the PoiNB distribution by applying it to two real-life
datasets. The first data set (Dataset I) relates to the count of journeys undertaken by Dutch families with
at least one car during a specific survey week in 1989. The initial analysis of this dataset was conducted
by Ophem (2000). The second dataset (Dataset II) pertains to the number of ticks observed on sheep, as
examined by Fisher (1941). Table 1 presents important summary measures of the response variables. The
dispersion indices (DI) for both datasets exceed unity, indicating the presence of over-dispersion. We assess
the fitted values of the PoiNB distribution in comparison to several established discrete distributions such as
the Poisson (P ) distribution, geometric (G) distribution, negative binomial (NB) distribution, COM-Poisson
(CMP ) distribution, and BerG distribution. The comparison of the fitted models is based on conventional
model selection criteria such as the negative log-likelihood (-LL), the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), the Chi-square goodness of fit test (χ2) and the resulting p-value.

Table 1: Descriptive statistics for the data sets.

Dataset Variable n Mean Median Var std.dev DI(IY ) CV(%)

I Number of trips 1839 3.04 3 3.41 1.84 1.12 60.80

II Number of ticks 82 6.56 5 34.77 5.89 5.29 89.87

In Tables 2 and 3, the expected frequencies are derived from estimated probabilities, which, in turn, are
computed using maximum likelihood estimates of the relevant parameters. The goodness of fit is assessed
using the chi-square (χ2) statistic, along with associated p-values and additional model selection criteria such
as the negative log-likelihood (-LL), the Akaike information criterion (AIC), and the Bayesian information
criterion (BIC). From the analysis, it can be observed that the PoiNB distribution performs better compared
to the other distributions as it has the least values for -LL, AIC, BIC and χ2. Note that the p-values
corresponding to the χ2 goodness of fit tests for Dataset II is well above the nominal level in case of PoiNB
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Table 2: Goodness of fit results for Dataset I.

Expected Frequency

y freq Poi Geo NB CMP BerG PoiNB

0 75 88.19 455.50 102.32 99.99 75.05 95.60

1 312 267.88 342.68 281.25 275.00 556.96 280.30

2 384 406.83 257.80 399.41 398.89 381.10 411.89

3 421 411.91 193.95 391.89 397.94 260.77 404.97

4 307 312.80 145.91 297.35 304.40 178.43 300.36

5 183 190.03 109.77 186.17 189.50 122.09 179.99

6 77 96.20 82.58 100.10 99.70 83.54 91.50

7 47 41.74 62.12 47.50 45.50 57.16 41.23

8 15 15.85 46.74 20.29 18.35 39.11 17.33

≥9 18 07.57 141.95 12.17 09.72 84.76 15.83

1839 1839 1839 1839 1839 1839 1839

Estimated λ̂=3.04 θ̂=0.25 r̂=28.87 λ̂=2.75 π̂=0.87 λ̂=2.91

θ̂=0.90 r̂=0.92 θ̂=2.18 r̂=0.03

θ̂=0.22

(χ2,df) (29.99,8) (1008,8) (23.33,7) (26.24,7) (399,7) (14.46,6)

p−value 0.0002 <0.0001 0.0014 <0.0001 <0.0001 0.0248

−LL 3615.52 4156.28 3610.09 3613.52 3797.14 3596.37

AIC 7233.04 8314.5 7224.18 7231.04 7598.28 7198.74

BIC 7238.55 8320.01 7235.21 7242.09 7609.31 7215.29

Table 3: Goodness of fit results for Dataset II.

Expected Frequency

y freq Poi Geo NB CMP BerG PoiNB

0 04 00.11 10.84 05.25 07.08 04.00 02.83

1 05 00.76 09.40 07.34 07.54 11.31 07.28

2 11 02.49 08.16 08.03 07.54 09.67 10.09

3 10 05.45 07.08 07.96 07.26 08.27 10.31

4 09 08.95 06.14 07.48 06.82 07.07 08.99

5 11 11.75 05.33 06.80 06.28 06.04 07.32

6 03 12.84 04.62 06.04 05.68 05.16 05.86

7 05 12.04 04.01 05.28 05.07 04.41 04.72

8−10 07 21.80 09.13 11.76 11.76 09.76 09.67

11−14 09 05.50 07.46 08.68 09.17 07.58 06.98

≥15 08 00.26 09.77 07.36 07.76 08.69 07.89

82 82 82 82 82 82 82

Estimated λ̂=6.56 θ̂=0.13 r̂=1.77 λ̂=1.06 π̂=0.66 λ̂=1.99

θ̂=0.21 r̂=0.09 θ̂=5.89 r̂=0.67

θ̂=0.13

(χ2,df) (94.39, 5) (17.09, 8) (9.12, 8) (12.25, 8) (9.10, 6) (4.01, 5)

p−value <0.0001 0.0292 0.3317 0.1402 0.1677 0.5478

−LL 325.11 242.20 237.96 239.45 238.66 236.18

AIC 652.22 486.40 479.92 482.90 481.32 478.36

BIC 654.62 488.80 484.73 487.71 486.13 485.58
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model. Moreover, as depicted in Figure 5 and Figure 6, it is clear that the expected frequencies generated
by the proposed distribution offer the most accurate approximation to the observed frequencies for both
datasets.

Figure 5: Observed and fitted distributions for Dataset I

Figure 6: Observed and fitted distributions for Dataset II
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8. Discussion

In the current work, we have introduced the PoiNB distribution, thoroughly studied and fitted it to real
life datasets. The simple structural properties of the proposed distribution should prove to be useful for
the practitioners. From the application point of view, the proposed model is easy to use for modelling over-
dispersed data. Despite the availability of several other over-dispersed count models, the proposed model
may find wide applications due to the interpretability of its parameters. The maximum likelihood estimation
method is utilized to estimate the unknown parameters. Results of the two real- life datasets show that the
PoiNB distribution exhibits a better fit compared to the popular count models such as the Poisson, the
geometric, the negative binomial, the COM-Poisson and the BerG model. Moreover, we have introduced
the PoiNB regression model through the generalized linear model approach. Further investigation into the
application of this regression model is necessary. Additionally, attention should be directed towards exploring
the usage and suitability of this versatile new distribution for count time series analysis.
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