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Abstract
The process capability indices are important numerical measures in statistical quality control. Well-known
process capability indices are constructed under the process distribution is normal. Unfortunately, this
situation is rather not realistic. This paper focuses on the half logistic distribution. The bootstrap confidence
intervals for the difference between two process capability indices for the mentioned distribution are
proposed. The bootstrap confidence intervals considered in this paper consist of the standard bootstrap
confidence interval, the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap
confidence interval. A Monte Carlo simulation has been used to investigate the estimated coverage
probabilities and average widths of the bootstrap confidence intervals. Simulation results showed that the
estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected
percentile bootstrap confidence interval get closer to the nominal confidence level than those of the
standard bootstrap confidence interval.

Keywords: Process capability index, Bootstrap confidence interval, Half logistic
distribution.

1. Introduction
The half logistic distribution, which is the distribution of the absolute logistic random
variable, was introduced by Balakrishnan (1985). The main references about the half
logistic distribution include Balakrishnan and Chan (1992), Balakrishnan and Wong
(1994) and Balakrishnan and Aggarwala (1996). If Y is a logistic random variable, then
X Y has a half logistic distribution. The probability density function ( ( ))f x and the
cumulative distribution function ( ( ))F x are
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where  and  are the location and the scale parameters, respectively. Characterizations
of the half logistic distribution were described in Olapade and Ojo (2002).The graph of
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the probability density function for half logistic distribution is shown in Fig. 1.1 The
mean and the variance of X are defined as

( ) ln(4)E X    and  
2

22( ) .ln(4)
3

Var X      

Figure 1.1 The probability density function for half logistic distribution with 0  and
1. 

Several studies have applied the half logistic distribution. For instance, Balakrishnan
(1985) has suggested the usage of this distribution as a possible life-time model with an
increasing hazard rate. In addition, Balakrishnan and Chan (1992) have shown that the
failure times of air conditioning equipment in a Boeing 720 airplane fits the half logistic
distribution quite well. This distribution was also applied to environmental and sports
records data (Mbah and Tsokos, 2008). In recent papers, many authors have applied the
half logistic distribution under progressive Type-II censoring (see Kang et al., 2008,
Balakrishnan and Saleh, 2011, Jang et al. 2011). As mentioned above, it is known that the
half logistic distribution is an increasing failure rates model with reasonable importance
in statistical quality control and reliability studies (see Kantam and Rosaiah 1998,Kantam
et al. 2000, Srinivasa, 2004, Satyaprasad, 2007, Rosaiah et al., 2009, Kantam et al.,
2010).

One of the statistical quality control tools widely used is the process capability index
(PCI). This index uses both process variability and process specification to determine
whether the process is capable (Peng, 2010). Even though there are many process
capability indices, the two most commonly used indices are pC and pkC (Kane, 1986,
Zhang, 2010). In this paper, we focus only on the popular process capability index pkC
defined as follows

min , ,
3 3pk

USL LSLC  
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where USL and LSL denote respectively the upper and lower specification limits of the
process,  is the process mean and  is the process standard deviation. As the process
standard deviation and the process mean are unknown, they must be estimated from the
sample data 1{ ,..., }.nX X Under the normality assumption, the sample mean ;X
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to estimate the unknown parameters  and  in Eq. (1.3), respectively. Therefore, the
natural estimator of the process capability index pkC can be obtained as

min , .
3 3pk

USL X X LSLC
S S
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However, the underlying process distribution is non-normal in some situations. Hence, it
may be a skewed distribution. To deal with these phenomena, Clements (1989) proposed
a new method for computing the estimator of the process capability index pkC when the
process distribution is non-normal. This estimator is defined as

min , ,pk
p p

USL M M LSLC
U M M L
        


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where ,p pU L and M denote the 99.865th percentile, the 0.135th percentile and the 50th

percentile of the distribution, respectively. The advantage of pkC


shown in Eq.(1.4) is
that it can be applied to any distribution. Kantam et al. (2010) discussed the relationship
between pkC


and the probability that a product falling outside the specification limits

when X has a half logistic distribution. This probability is given by

( ) ( ) 1 ( ) ( ),tP P X LSL P X USL F LSL F USL      

where ( )F  is the cumulative distribution function of a half logistic distribution shown in
Eq.(1.2). Using the open source statistical package R (Ihaka and Gentleman 1996), some
values of ,p pL U and M for the half logistic distribution are shown in Table 1.

Table 1: The values of ,p pL U and M for the half logistic distribution

  pL pU M
0 1 0.002700002 7.300123 1.098612
0 1.5 0.00405 10.95018 1.647918

0.5 1 0.5027 7.800123 1.598612
0.5 1.5 0.50405 11.45018 2.147918
1 1 1.0027 8.300123 2.098612
1 1.5 1.00405 11.95018 2.647918

1.5 1 1.5027 8.800123 2.611111
1.5 1.5 1.50405 12.45018 3.147918
2 1 2.0027 9.300123 3.098612
2 1.5 2.00405 12.95018 3.647918
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The estimator pkC


in Eq. (1.4) can be applied when the scale parameter  of the half
logistic distribution is equal to 1. Therefore, if a scale parameter  is introduced and
known, i.e., 1  in Eq.(1.1), the optimal estimator of pkC is given by

min , .
( ) ( )pk

p p

USL M M LSLC
U M M L
 

 
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

In practice, the scale parameter  is unknown. Therefore, we must estimate the unknown
 by its estimator. In this paper, we use the moment method for calculating this
estimator. The estimator of pkC for a half logistic distribution is

ˆ ˆˆ min , ,
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where ̂ is the estimator of . Here, we use the simple estimator which is computed by

the moment method given by 1ˆ ˆ
ln(4)

X     and the maximum likelihood estimator

for  is (1)ˆ ,X  the smallest sample order statistics. The moments of the half logistic
distribution were shown in Giles (2012).

In this paper, our focus is on the difference between two process capability indices,
1 2 ,pk pkC C which we will denote by which

1 1 2 2

1 1 2 2

min , min , ,
3 3 3 3

USL LSL USL LSL   
   

      
    

   

where 1 2,  and 1 2,  are the process mean and standard deviation of the first and the
second population, respectively. Similar to Eq.(1.5), we can get the estimator of  which
is

1 1 1 1 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2
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where 1̂ and 2̂ are the moment estimator of 1 and 2 given by 1 1 1
1ˆ ˆ

ln(4)
X    

and 2 2 2
1ˆ ˆ ,

ln(4)
X     respectively, 1 1(1)ˆ X  and 2 2(1)ˆ .X 

The remainder of the paper is organized as follows. Section 2 describes the bootstrap
confidence intervals. Some simulation evidence on the performance of bootstrap
confidence intervals is provided in Section 3. In Section 4, all bootstrap confidence
intervals are illustrated and compared through numerical example. A discussion of the
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results and conclusions are presented in the final section. The conclusions are offered in
the final section.

2. Bootstrap Confidence Intervals

The bootstrap is a computer-based and resampling method for assigning measures of
accuracy to statistical estimates (Efron and Tibshirani, 1993). Many types of bootstrap
methods for constructing confidence intervals have been introduced; for example, the
standard bootstrap method (SB), the percentile bootstrap method (PB) and the bias-
corrected percentile bootstrap method (BCPB).

For a sequence of independent and identically distributed (i.i.d.) random variables, the
bootstrap procedure can be defined as follows (Tosasukul et al., 2009). Let the random
variables ,{ ,1 }k jX j m   be the result from sampling m times from the thk population
with replacement from the n observations ,1 ,,..., .k k nX X The random variables

,{ ,1 }k jX j m   are called the bootstrap samples from original data ,1 ,,..., .k k nX X In what

follows, we describe the constructions for the confidence interval of the difference
between two process capability indices using bootstrap techniques.

2.1 Standard Bootstrap (SB) Confidence Interval

Let , ,k bX  where 1 ,b B  and 1, 2k  be the thb bootstrap samples and let ,1 ,,...,k k BX X 

be the B bootstrap samples. The thb bootstrap estimator of  is computed by
( ) ( ) ( ) ( )
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the standard bootstrap (1 )100% confidence interval is
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2.2 Percentile Bootstrap (PB) Confidence Interval
The percentile bootstrap (1 )100% confidence interval is given by

1
2 2

ˆ ˆ, ,PB B BCI    
            

   
 

(2.3)

where ( )
ˆ

r
 is the thr ordered value on the list of the B bootstrap estimator of .

2.3 Bias-Corrected Percentile Bootstrap (BCPB) Confidence Interval

The obtained bootstrap distributions using only a sample of the complete bootstrap
distribution may be shifted higher or lower than would be expected. Therefore, this
approach has been introduced in order to correct for the potential bias. Firstly, using the
ordered distribution of ˆ ,  compute the probability 0

ˆ ˆ( ).P P    Then, 1
0 0( ).Z P 

Therefore, the percentile of the ordered distribution * ˆ( ),G    0 1 / 22LP Z Z    and

 0 1 / 22UP Z Z    are obtained, where ( )  is the standard normal cumulative
function. Finally, the bias-corrected percentile bootstrap (1 )100% confidence interval
is defined as follows

 ( ) ( )
ˆ ˆ ,,

L UBCPB P B P BCI    (2.4)

where ( )
ˆ

r
 is the thr ordered value on the list of the B bootstrap estimator of .

To study the different confidence intervals, we consider their estimated coverage
probabilities and average widths. For each of the methods considered, the probability that
the true value of pkC is covered by the (1 )100% bootstrap confidence interval, which

is called the “coverage probability”, can be obtained. In addition, the average width of the
bootstrap confidence interval is calculated based on the 5,000M  different trials .The
estimated coverage probability and the average width are given by

 #( )1 ,L U
M
  

 

and

 1
( )

,

M

i i
i

U L
Width

M






where L and U denote the lower and upper bound of the bootstrap confidence interval.

In the following section, a simulation study is presented in order to evaluate the
performance of the confidence intervals ,SBCI ,PBCI and BCPBCI based on their estimated
coverage probabilities and average widths.
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3. Simulation Study

A simulation study on the behavior of three bootstrap confidence intervals of the
difference between two process capability indices for half logistic distribution is
described. The statistical package R (Ihaka and Gentleman, 1996) is used to carry out the
simulation study in this section. In addition, the sample sizes and parameter values of half
logistic distribution that we used in this simulation are listed in Table 2. Similar to
previous experiments of Kantam et al. (2010), we set the lower and upper specification
limits are 1 and 29, respectively. The process capability indices and the difference
between the two process capability indices of twelve designs are shown in Table 2. For
each design, 1,000B  bootstrap samples with each of size n are drawn from the
original sample. Additionally, the simulation is replicated 5,000 times. The 90% and 95%
bootstrap confidence intervals are constructed by each of the three methods, i.e., SB, PB,
and BCPB confidence intervals.

The simulation results are summarized in Tables 3 and 4. These two tables present the
results on the estimated coverage probabilities and average widths of 90% and 95%
bootstrap confidence intervals, respectively. We begin with the results for Designs 1a-f,
2a-f, 3a-f and 4a-f ( 1 1  and 2 2  ), the estimated coverage probabilities of SBCI
are larger than the nominal confidence level. In addition, the estimated coverage
probabilities of BCPBCI get reasonably closer to the nominal confidence level than those of

SBCI and PBCI for all sample sizes. When Designs 6a-f and 7a-f ( 1 1  and 2 2  )
are considered, the estimated coverage probabilities of SBCI are not less than the nominal
confidence level. The PBCI provides the estimated coverage probabilities closer to the
nominal confidence level than those of SBCI and .BCPBCI

As one can see, under Designs 5a-f, 8a-f, 9a-f, 10a-f, 11a-f and 12a-f ( 1 1  and

2 2  ), the ,SBCI ,PBCI and BCPBCI give poor coverage probabilities than the nominal
confidence level for large sample sizes. On the other hand, the estimated coverage
probabilities of SBCI are significantly above the nominal confidence level for small
sample size 1 2( 10).n n 

The BCPBCI provides the shortest average width for all situations. Additionally, the
average widths of all the bootstrap confidence intervals get shorter when 1n and (or) 2n
increases.
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Table 2: Sample sizes and parameter values of half logistic distribution used in
the simulation study.

Design 1n 2n 1 1 2 2 1pkC 2pkC 

1a 10 10 0.5 1 0 1 0.5462 0.0900 0.4562
1b 30 30
1c 50 50
1d 10 30
1e 10 50
1f 30 50
2a 10 10 0.5 1.5 0 1.5 0.9011 0.5969 0.3042
2b 30 30
2c 50 50
2d 10 30
2e 10 50
2f 30 50
3a 10 10 0.5 1.5 0 1 0.9011 0.0900 0.8111
3b 30 30
3c 50 50
3d 10 30
3e 10 50
3f 30 50
4a 10 10 0.5 1 0 1.5 0.5462 0.5969 -0.0507
4b 30 30
4c 50 50
4d 10 30
4e 10 50
4f 30 50
5a 10 10 1.5 1 0.5 1 1.4535 0.5462 0.9073
5b 30 30
5c 50 50
5d 10 30
5e 10 50
5f 30 50
6a 10 10 1.5 1.5 0.5 1.5 1.5094 0.9011 0.6083
6b 30 30
6c 50 50
6d 10 30
6e 10 50
6f 30 50
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Table 2: (Continued)

Design 1n 2n 1 1 2 2 1pkC 2pkC 
7a 10 10 1.5 1.5 0.5 1 1.5094 0.5462 0.9632
7b 30 30
7c 50 50
7d 10 30
7e 10 50
7f 30 50
8a 10 10 1.5 1 0.5 1.5 1.4535 0.9011 0.5525
8b 30 30
8c 50 50
8d 10 30
8e 10 50
8f 30 50
9a 10 10 2 1 1 1 1.9149 1.0025 0.9125
9b 30 30
9c 50 50
9d 10 30
9e 10 50
9f 30 50

10a 10 10 2 1.5 1 1.5 1.6862 1.2052 0.4810
10b 30 30
10c 50 50
10d 10 30
10e 10 50
10f 30 50
11a 10 10 2 1.5 1 1 1.6862 1.0025 0.6837
11b 30 30
11c 50 50
11d 10 30
11e 10 50
11f 30 50
12a 10 10 2 1 1 1.5 0.9149 1.2052 0.7097
12b 30 30
12c 50 50
12d 10 30
12e 10 50
12f 30 50
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Table 3: The estimated coverage probabilities and average widths of a 90%
bootstrap confidence intervals of the difference between two process
capability indices.

Design Coverage probabilities Average widths
SB PB BCPB SB PB BCPB

1a 0.9860 0.9142 0.9434 2.7235 2.3111 2.3092
1b 0.9178 0.8908 0.8986 0.7999 0.7885 0.7864
1c 0.9052 0.8876 0.8926 0.5622 0.5579 0.5570
1d 0.9698 0.8504 0.8864 1.9125 1.6208 1.3842
1e 0.9676 0.8088 0.8644 1.8768 1.5627 1.2446
1f 0.9202 0.8992 0.9000 0.6867 0.6773 0.6691
2a 0.9886 0.9176 0.9356 1.2442 1.0618 1.0666
2b 0.9252 0.9018 0.9092 0.3601 0.3547 0.3543
2c 0.9088 0.8942 0.8988 0.2535 0.2515 0.2512
2d 0.9732 0.8386 0.8678 0.8648 0.7358 0.6210
2e 0.9708 0.8018 0.8516 0.8467 0.7057 0.5488
2f 0.9186 0.9002 0.9008 0.3089 0.3047 0.3004
3a 0.9784 0.8714 0.9126 2.1340 1.7884 1.6881
3b 0.9138 0.8750 0.8982 0.6330 0.6204 0.6030
3c 0.9016 0.8784 0.8936 0.4437 0.4386 0.4310
3d 0.9624 0.8990 0.9158 1.0235 0.9222 0.8829
3e 0.9622 0.8632 0.8920 0.9557 0.8143 0.7239
3f 0.9138 0.8946 0.9002 0.4776 0.4724 0.4713
4a 0.9816 0.8906 0.9242 2.0281 1.7091 1.6198
4b 0.9224 0.8996 0.9042 0.6065 0.5949 0.5792
4c 0.9044 0.8952 0.8894 0.4254 0.4208 0.4141
4d 0.9676 0.7926 0.8490 1.8307 1.5141 1.1599
4e 0.9698 0.7712 0.8378 1.8084 1.4869 1.0934
4f 0.9172 0.8898 0.8932 0.5737 0.5609 0.5311
5a 0.9762 0.8756 0.8960 2.3311 1.9775 1.9818
5b 0.7140 0.6696 0.6810 0.6680 0.6570 0.6535
5c 0.5408 0.5024 0.5144 0.4660 0.4619 0.4603
5d 0.9732 0.9346 0.8624 1.4293 1.2390 1.0725
5e 0.9796 0.9296 0.8416 1.3667 1.1621 0.9149
5f 0.7028 0.6944 0.6408 0.5410 0.5347 0.5318
6a 0.9950 0.9674 0.8834 1.1822 1.0331 1.0809
6b 0.9668 0.9480 0.8308 0.4766 0.4697 0.4637
6c 0.9522 0.9302 0.8152 0.3898 0.3826 0.3727
6d 0.9800 0.8584 0.8008 0.8248 0.7233 0.6169
6e 0.9780 0.8014 0.7718 0.7997 0.6879 0.5377
6f 0.9580 0.9224 0.8080 0.4366 0.4264 0.4004
7a 0.9844 0.9242 0.8854 2.0087 1.7083 1.6297
7b 0.9392 0.9266 0.8388 0.6882 0.6804 0.6778
7c 0.9034 0.8900 0.7992 0.5258 0.5224 0.5210
7d 0.9654 0.8962 0.8520 0.9642 0.8884 0.8558
7e 0.9526 0.8218 0.8088 0.8807 0.7930 0.7105
7f 0.9160 0.8940 0.8084 0.5602 0.5560 0.5532
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Table 3: (Continued)

Design
Coverage probabilities Average widths

SB PB BCPB SB PB BCPB
8a 0.9758 0.9174 0.8748 1.6024 1.3555 1.3264

8b 0.5388 0.5572 0.4896 0.4535 0.4457 0.4379

8c 0.2726 0.2882 0.2382 0.3155 0.3125 0.3094

8d 0.9808 0.9274 0.8100 1.3519 1.1249 0.8379

8e 0.9854 0.9358 0.7972 1.3362 1.1008 0.7626

8f 0.5542 0.5912 0.4688 0.4171 0.4090 0.3888

9a 0.9888 0.9222 0.8988 2.0488 1.7439 1.7968

9b 0.8388 0.8056 0.6588 0.6149 0.6072 0.6120

9c 0.6604 0.6472 0.4630 0.4449 0.4410 0.4390

9d 0.9960 0.9616 0.8372 1.2700 1.1016 0.9289

9e 0.9942 0.9442 0.8006 1.2314 1.0381 0.7750

9f 0.8540 0.8584 0.5928 0.5128 0.5064 0.4934

10a 0.9898 0.9904 0.7504 1.2419 1.1133 1.1157

10b 0.7200 0.7948 0.4616 0.7284 0.7174 0.6746

10c 0.4158 0.4882 0.2512 0.6060 0.6027 0.5677

10d 0.9524 0.9718 0.6680 0.9600 0.8664 0.7998

10e 0.9450 0.9634 0.6406 0.9339 0.8387 0.7491

10f 0.6578 0.7382 0.4466 0.7040 0.6928 0.6577

11a 0.9804 0.9554 0.7346 1.8674 1.6222 1.4736

11b 0.6454 0.6536 0.3460 0.8340 0.8251 0.7719

11c 0.3336 0.3432 0.1622 0.6690 0.6652 0.6296

11d 0.8978 0.8184 0.5940 1.0482 0.9763 0.9339

11e 0.8648 0.7000 0.5480 0.9843 0.9032 0.8342

11f 0.5406 0.5200 0.2708 0.7608 0.7525 0.7173

12a 0.9876 0.9534 0.7706 1.4432 1.2372 1.2690

12b 0.3914 0.4640 0.3372 0.4655 0.4575 0.4430

12c 0.1342 0.1946 0.1726 0.3400 0.3334 0.3137

12d 0.9974 0.9804 0.7068 1.1992 0.9949 0.7418

12e 0.9978 0.9736 0.6778 1.1826 0.9680 0.6520
12f 0.3990 0.5064 0.2948 0.4276 0.4158 0.3755
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Table 4: The estimated coverage probabilities and average widths of a 95%
bootstrap confidence intervals of the difference between two process
capability indices.

Design Coverage probabilities Average widths
SB PB BCPB SB PB BCPB

1a 0.9954 0.9570 0.9728 3.3069 3.1170 3.1227
1b 0.9654 0.9462 0.9528 0.9512 0.9606 0.9571
1c 0.9528 0.9400 0.9494 0.6699 0.6728 0.6715
1d 0.9908 0.9022 0.9394 2.2775 2.1122 1.7941
1e 0.9908 0.8662 0.9146 2.1888 2.0067 1.5792
1f 0.9654 0.9520 0.9558 0.8164 0.8209 0.8103
2a 0.9976 0.9626 0.9732 1.4716 1.3986 1.4073
2b 0.9678 0.9514 0.9552 0.4299 0.4344 0.4330
2c 0.9648 0.9568 0.9576 0.3019 0.3033 0.3029
2d 0.9932 0.8930 0.9280 1.0231 0.9455 0.7918
2e 0.9916 0.8532 0.8974 1.0166 0.9146 0.7025
2f 0.9630 0.9496 0.9484 0.3695 0.3714 0.3661
3a 0.9942 0.9206 0.9510 2.5140 2.3620 2.2337
3b 0.9640 0.9278 0.9426 0.7512 0.7508 0.7304
3c 0.9554 0.9330 0.9450 0.5298 0.5287 0.5191
3d 0.9886 0.9492 0.9632 1.2211 1.1845 1.1150
3e 0.9898 0.9178 0.9454 1.1204 1.0527 0.9234
3f 0.9650 0.9496 0.9514 0.5718 0.5740 0.5720
4a 0.9956 0.9346 0.9636 2.4300 2.2786 2.1623
4b 0.9684 0.9474 0.9564 0.7191 0.7197 0.7015
4c 0.9494 0.9444 0.9458 0.5041 0.5036 0.4954
4d 0.9936 0.8400 0.8986 2.2065 1.9790 1.5015
4e 0.9910 0.8202 0.8826 2.1534 1.9355 1.4052
4f 0.9644 0.9458 0.9468 0.6838 0.6804 0.6448
5a 0.9934 0.9454 0.9552 2.7516 2.6256 2.6406
5b 0.8296 0.7678 0.7804 0.7938 0.7998 0.7941
5c 0.6688 0.6198 0.6314 0.5564 0.5580 0.5559
5d 0.9908 0.9634 0.9294 1.7202 1.6203 1.3767
5e 0.9922 0.9562 0.9172 1.6604 1.5180 1.1776
5f 0.8142 0.8048 0.7668 0.6440 0.6486 0.6442
6a 0.9992 0.9894 0.9458 1.3956 1.3285 1.4170
6b 0.9890 0.9826 0.9100 0.5677 0.5631 0.5496
6c 0.9770 0.9678 0.8984 0.4672 0.4571 0.4406
6d 0.9962 0.9226 0.8902 0.9935 0.9049 0.7555
6e 0.9946 0.8868 0.8668 0.9711 0.8665 0.6609
6f 0.9822 0.9634 0.8942 0.5201 0.5062 0.4711
7a 0.9966 0.9572 0.9382 2.4163 2.2504 2.1523
7b 0.9710 0.9646 0.9074 0.8234 0.8279 0.8173
7c 0.9642 0.9554 0.8904 0.6273 0.6280 0.6234
7d 0.9882 0.9520 0.9104 1.1507 1.1127 1.0578
7e 0.9866 0.8954 0.8880 1.0548 0.9853 0.8695
7f 0.9682 0.9558 0.8952 0.6677 0.6683 0.6609
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Table 4L: (Continued)

Design
Coverage probabilities Average widths

SB PB BCPB SB PB BCPB
8a 0.9930 0.9688 0.9396 1.9218 1.8175 1.7892
8b 0.6534 0.6918 0.6328 0.5400 0.5434 0.5338
8c 0.3640 0.4066 0.3496 0.3752 0.3762 0.3722
8d 0.9942 0.9638 0.8946 1.6007 1.4503 1.0628
8e 0.9972 0.9598 0.8894 1.5901 1.4303 0.9883
8f 0.6582 0.7190 0.6034 0.4964 0.4962 0.4710
9a 0.9968 0.9644 0.9570 2.4256 2.3099 2.3948
9b 0.9206 0.8984 0.7922 0.7335 0.7439 0.7455
9c 0.8010 0.7932 0.6028 0.5315 0.5371 0.5302
9d 0.9992 0.9790 0.9142 1.5307 1.4002 1.1714
9e 0.9996 0.9684 0.8758 1.4467 1.3200 0.9618
9f 0.9328 0.9392 0.7234 0.6127 0.6184 0.5933

10a 0.9972 0.9974 0.8516 1.4609 1.3769 1.3909
10b 0.8066 0.8806 0.5968 0.8681 0.8325 0.7888
10c 0.5388 0.6260 0.3794 0.7216 0.7039 0.6671
10d 0.9828 0.9928 0.8020 1.2153 1.0196 0.9819
10e 0.9790 0.9868 0.7968 1.1313 0.9767 0.8953
10f 0.7652 0.8430 0.5828 0.8449 0.8013 0.7703
11a 0.9950 0.9788 0.8222 2.2604 2.0928 1.8903
11b 0.7542 0.7744 0.4498 0.9973 0.9760 0.9097
11c 0.4502 0.4714 0.2392 0.7959 0.7826 0.7412
11d 0.9652 0.9098 0.6998 1.2288 1.1565 1.1258
11e 0.9468 0.8250 0.6356 1.1739 1.0682 1.0338
11f 0.6846 0.6726 0.3768 0.9061 0.8765 0.8383
12a 0.9982 0.9888 0.8848 1.7307 1.6358 1.6927
12b 0.5478 0.6848 0.4284 0.5510 0.5582 0.5325
12c 0.2080 0.3270 0.2272 0.4057 0.4078 0.3776
12d 0.9996 0.9892 0.8044 1.4398 1.2943 0.9522
12e 0.9994 0.9818 0.7588 1.4080 1.2479 0.8424
12f 0.5546 0.7336 0.3822 0.5026 0.4998 0.4411

4. Illustrative example
In this section, a simulated example is presented to illustrate the bootstrap confidence
intervals of the difference between two process capability indices developed in Section 2.
The first and second random samples of sizes 1 2 20n n  are generated from the half
logistic distribution with 1 10.5, 1.5   and 2 20, 1,   respectively. In this case,
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we set 1LSL  and 29USL  , the true difference between two process capability indices,
 , is 0.8111. The first random sample ( 1x ) generated is

0.02 0.05 0.32 0.44 0.64 0.64 0.67 0.87 1.05 1.05
1.32 1.33 1.40 2.52 2.80 3.21 3.66 4.11 4.12 5.04.

The second random sample ( 2x ) generated is

0.04 0.14 0.19 0.20 0.23 0.44 0.75 0.81 0.88 1.07
1.07 1.09 1.29 1.50 1.62 1.83 1.91 3.56 5.04 5.15.

In addition, the density plot of generated samples is displayed in Fig. 4.1. Assuming the
half logistic distribution for corresponding random variables 1X and 2 ,X three bootstrap
confidence intervals of the difference between two process capability indices with
confidence level 95% are constructed, and they are shown in the following table.

Table 5: Bootstrap confidence intervals and widths of the difference between two
process capability indices

Methods Confidence intervals Widths
SB ( 0.2441 , 1.2891 ) 1.0450
PB ( 0.3025 , 1.2891 ) 0.9866
BCPB ( 0.2654 , 1.3003 ) 1.0349

As presented in Table 5, the true difference between 1pkC and 2pkC ( 0.8111)  lies in
the proposed bootstrap confidence intervals. Additionally, the width of PBCI is shorter
than any other confidence intervals by about 5%.

Figure 4.1 The density plot of generated random samples 1x and 2.x
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5. Conclusions
In this paper, we have proposed bootstrap confidence intervals of the difference between
two process capability indices for half logistic distribution. Three bootstrap confidence
intervals are considered: the standard bootstrap confidence interval ( SBCI ), the percentile
bootstrap confidence interval ( PBCI ) and the bias-corrected percentile bootstrap
confidence interval ( BCPBCI ).The performances of bootstrap confidence intervals are
compared by considering their coverage probabilities and average widths using Monte
Carlo experiments. Based on simulation studies, the BCPBCI achieves better coverage
probability than the other bootstrap confidence intervals when 1 1  and 2 2.  In
addition, the PBCI performs well with respect to the coverage criterion when 1 1  and

2 2.  On the other hand, proposed bootstrap confidence intervals are not suitable in
terms of coverage probability for other situations ( 1 1  and 2 2  ).

It would be of interest to propose confidence intervals of the difference between two
process capability indices for half logistic distribution when 1 1  and 2 2  , and
this is left as a topic for future work.
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