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Abstract

The one-inflated positive Poisson Lindley model haen recently introduced as an alternative in ftiade
positive count data with a large number of onegshenomenon known as one-inflation. In the presefiane-
inflation, this model has a high tendency to béuirficed by outliers, making usual parameter eskimsitto be
less robust. Hence, several estimators: maximuefitikod, method of moments, ordinary least squavegghted
least squares, Cramér-Von Mises, modified Cramér-M@ses (MCVM) and maximum product of spacing (MPS)
for the parameters of the model are also proposddravestigated in terms of unbiasedness, consigtend joint
efficiency under the presence and absence of mitighen the outliers are absent, the MPS estinisithie best
estimator and when the outliers are present, th& M@stimator is the best estimator. Model fittitgstwo real
datasets with one-inflation and outliers suppogtdimulation results and conclude that the MCVNhesstor is the
best estimator. Based on the best robust estimhtmmpopulation size of the number of offendersval as the
likelihood of arrests were estimated.

Key Words: Excess Ones; Outliers; Population Size Estim&ohust Estimator; Zero-Truncated Poisson
Lindley.
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1. Introduction

Truncating discrete count data distributions is wag of developing new distributions for modellipgsitive count
data, resulting in zero-truncated distributionswidger, recent studies have shown the importangehfding a one-
inflation parameter to cater for excess ones in plesitive count data, yielding one-inflated zenontated
distributions, such as one-inflated positive Paisg@odwin & Béhning, 2017), one-inflated zero-trated negative
binomial (Godwin, 2017), one-inflated positive Fmis mixtures (Godwin, 2019) and one-inflated pesifPoisson
Lindley (Tajuddin et al., 2022a) distributions. Tdrwe-inflation parameter in the models captureegie proportion
of ones that are unexplained by the non-truncaisctete models. The large number of ones portrayethe one-
inflation parameter also contributes to dispersiothe data (Tajuddin et al., 2022a).

The effects of outliers were studied on zero-ieftahull count data models (Yang et al., 2011) aand-z
inflated regression count data models (Hall & St#H1,0; Tlzen et al., 2020; Zandkarimi et al., 20T®e presence
of outliers in the zero-inflated Poisson model é&winfluential since there is an abundance of z€iang et al.,
2011). For the zero-inflated regression model wiidch special case of finite mixture models, thealignaximum
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likelihood estimator is highly sensitive when thetliers are present as well as when the mixturepmorants are
poorly separated (Hall & Shen, 2010; Zandkarinmalet2019). A comprehensive simulation study wasdceted by
Tlzen et al. (2020) on the effects of outliers ardess zeros in count data models, including nfatéd, zero-
inflated and hurdle models. The authors found thatzero-inflated negative binomial and negativehiial hurdle
models provide better fittings than other contegdirstributions when the effects of outliers andozigflation are
varied.

To combat the issue of outliers in the count dsg¢ageral robust estimators have been proposed dizedit
in the literature. Since the median is not influsshdy outliers, Coeurjolly and Rousseau Trepar2éPQ) have
developed a simple robust estimator for the medfaa jittered Poisson distribution. The estimaw®ifdund to be
consistent, asymptotically normal, and efficient fp to 10 data samples. Other techniques in obtaining robust
estimators found in the literature are trimmed mé&#&imsorized mean, Tukey’s M-estimator and robugteetation-
solution approaches. Yang et al. (2011) have engpldyoth trimmed mean and Winsorized mean to obtdinst
estimates of the parameters in the zero-inflatéds®o model. Although the estimators based onrtherted mean
are robust, removing outliers may lead to deforrmitshe estimators, and thus, Winsorized mearbistr alternative
way of dealing with outliers (Yang et al., 2011helresulting estimators based on trimmed mean ainddfized
mean perform better than the traditional maximuaalihood estimator under the presence of outliersonjunction
with that, Li et al. (2011) have introduced a triedrmean-kind estimator known as middle mean whidtphaonsiders
the middle of non-zero observations. The middlemisaquated with the non-zero part of the meantfan.

Robust expectation-solution (RES) approach, whichmodification to the expectation-maximizatiojE
algorithm, is another approach to deal with ouslifthe RES approach adds robustified estimatingtims in the
M-step of the EM algorithm (Hall & Shen, 2010). Aindar RES approach in estimating robust parameéiassalso
been utilized to obtain robust estimates for patamsein a multilevel zero-inflated negative binommodel
(Zzandkarimi et al., 2019). Similar to the RES autn another modified EM algorithm, known as thpestation-
solution algorithm, was developed to investigateust inference in the joint modeling of multilexagdro-inflated
Poisson and Cox models with applications to hesdtnces (Zandkarimi et al., 2021).

The M-estimator and its variations using differebjective functions have also been widely usedradast
estimator for count data models. For example, ttopgrties of the robust M-estimator for Poisson apdative
binomial models have been investigated (Cadigarh&r 2001). The M-estimator for the negative biradrmmodel
is better when the Poisson assumptions are uncé@aidigan & Chen, 2001). Recently, Tukey’s M-estion for the
Poisson parameter is modified so that data withlsmeans could be investigated (Elsaied & Friedl&0

For one-inflated positive count data distributiopsgvious studies concerned with the performancihef
population size estimator when the underlying itistions are one-inflated distributions (Godwin, 120 2019;
Godwin & Bohning, 2017; Tajuddin et al., 2021, 2822022b). Tajuddin et al. (2021) investigatedgbgormance
of several estimators for the parameters of oneted positive Poisson distribution but not in pnesence of outliers.
Therefore, following the works of Yang et al. (20&hd Tizen et al. (2020), this paper ultimatelestigates the
robustness of the estimators in the presence asehab of outliers for the one-inflated positive98on Lindley
distribution, proposed by Tajuddin et al. (2022a).

For starters, following the work of Tajuddin et@022a) on the one-inflated positive Poisson Légdhodel,
the estimators for the parameters of the one-gdigiositive Poisson Lindley model based on maxiniketinood,
method of moments, least squares, maximum prodsgazing, Cramér-von Mises and modified CramérMises
approaches will be discussed in this study. Thienesbrs other than the method of moments involvéndpation
framework. The maximum likelihood estimator maxiggzhe likelihood function of the one-inflated piv& Poisson
Lindley model. The ordinary and the weighted lestpiares estimators minimize the least squaresifunsctThe
Cramér-von Mises and the modified Cramér-von Misgproaches minimize the distance function between
theoretical and empirical distribution functionsna&lly, the maximum product of spacing estimatonimizes the
geometric mean of distance between two consecdistabution functions. More details on these eations can be
found in Section 3.

Since the model has an abundance of ones, it somahle to believe that the conventional maximum
likelihood and the moment estimators will be lestsust in the presence of outliers. However, theaiaing estimators
are expected to be robust in the presence of autlip to a certain degree (certain percentage tiem). This
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hypothesis surely needs to be tested, and thetsesmn be used in determining the best estimattirerpresence of
outliers. Hence, the unbiasedness and the consjsmoperties of all stated estimators will be istigated in the
presence and absence of outliers via comprehessiudation studies.

2. One-inflated positive Poisson Lindley (OIPPL) distribution and its statistical properties

The probability mass function for a random varigbMhich followsOIPPL distribution with parameters andé is
given as (Tajuddin et al., 2022a):
&’ (6+3)
Y=
(6+1)(&" +30+1)
Pr(Y=ylw®) = 1)
g (6+y+2)
(1-w)
(6+1)" (¢ +36+1)
wheref > 0 and0 < w < 1 refers to the one-inflation parameter @diPPL distribution. ThedIPPL distribution can

be described as a zero-truncated Poisson Lindgiliition with an additional inflating parameter £xcess ones.
The first two moments about origin, variance, arspersion formulae a®IPPL model are respectively given as:

w+(1-w)
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where p; = 1/Vary(Y), d; = Vary,(Y)/E,(Y), E;(Y) and Var;(Y) are the moment about the origin and the
variance for the zero-truncated Poisson Lindleyrithistion, respectively. One can easily show that (V) takes the
formVar(Y) = (1 — w){Vary;(Y) + w[E,(Y) — 1]?}.

3. Parameter s estimation for OIPPL distribution

Parameter estimation for any distribution is a lugtep in modeling data. Therefore, several wHyesstimating the
parameters fo@IPPL distribution, which includes method of moments #)omaximum likelihood (ML), ordinary
least squares (OLS), weighted least squares (Wh&ximum product spacing (MPS), Cramér-Von Mises NJV
and modified Cramér-Von Mises (MCVM).

3.1 Method of Moments (MoM)
By equating the first two sample moments with eiqunest (2) and (3), two new equations are obtainetigiven as:

mlw(lw)% ©
and ( )
(o) (7 v adee
m =oe(i-2) (5 +e)
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wherem; = ¥, v,/ /n = ¥5.,(n,y’)/n, @ andd are the MoM estimators fas and#, respectively. Solving the
two equations above will yield a quintic equation:

~ ~ ~3 ~2 ~
AD +BO +CO + DI + B9+ F=0, ®)
Where A =m, — 3m1 + 2, B = 7m2 - 23m1 + 16, C = 15m2 - 61m1 + 4’6, D = 10m2 - 68m1 + 58, E =

2m, — 34m, + 32 danF = 6(1 — m;). Equation (8) can be solved numerically. The tasyP is then substituted
into equation (6) to obtaif.

3.2 Maximum Likelihood (ML)
The log-likelihood function] for a random variabl¥ which follows theDIPPL model is given as:

k
I=InL( me ylw8)=>nInf (y|wb),
y=1

wheren, refers to the number qf-valued observatlons. The ML estimators forand 8 can be obtained by
differentiatingl with respect tow and6, given as (Tajuddin et al., 2022a):

(n-n) (6+1)(6" + 3+

. (6°+46+1) ©)
and
(9+2)(é2+6é+3) 30+2 _
(n=n) (67 +46+1) +é(é2+3é+1) M= q+;9+y+2 o (10)

where® and@ are the ML estimators fao and6, respectively. Equation (10) can be solved nuradlyicBéhning
and Ogden (2021) have provided a general estinfatahe ‘flation” parameter and with closer inspent the &
above falls into the general estimator with repatamzation oiv = 1 — w (Tajuddin et al., 2022a).

3.3 Ordinary and Weighted Least Squares
For count data, SUpPposg;) < ¥y < ¥3) < * < Y IS the order statistics of the data, which follatve OIPPL
model. It is known that:

i(n-i+1)

E[F(Y,)] _ni_+1 andvar|[ F(Y,,)] :m

However, for count data, the above mean and vagiane best written with respect to the frequencthef

data, given as:
Z Zn+1
E[ ( )] Zn andVar[ ( )] (ngl) (n+2) j; y=12,3,.

The OLS estimates of parameterandf can be obtained by minimizing the function:

O(w,@):zk:{F(y)—Zy:LT. (1)

y=1 j=1 n+1
The WLS estimates of parametersandf can be obtained by minimizing the function:

W(w6) =3 (:Ei) ;iﬂ 0-E] | @2

ci=1,2,..n.

n+1°C

3.4 Cramér-von Mises and modified Cramér-von Mises

The estimators based on Cramér-von Mises (CVM) and mdd@ramér-von Mises (MCVM) techniques involve
minimizing the distance between the cumulative distribution functishte empirical distribution function. The
estimators of parametess and6 using CVM and MCVM techniques can be obtained by minirgizire functions
below, respectively, using R software (R Core Team, 2024)
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3.5 Maximum Product of Spacings

The MPS estimator was first proposed by Cheng andnA(mB83) which considers the differences between
consecutive values of cumulative distribution fumet The uniform spacing for a random sample fromQhPPL
model can be defined & = F(y) — F(y — 1), whereF(0) =0, F(k +1) =1 and2§=1 D, = 1. Both parameters

w andf can be estimated by maximizing the geometric medn, pgiven as:

o]

with respect tav and@. Similarly, one can solve the log-geometric mead,g given as:

1 k+1
=InG=——)> InD.
g wepILL!

y=1

4. Comparison study of the estimators
The performance of the ML, MoM, OLS, WLS, CVM, MCV&hd MPS estimators for the parameters oitheP L
are investigated in the aspect of unbiasedness and temsés via simulation studies. The simulated damaas from
theOIPPL model with varyingo andd values based on different values of population $iz&he pseudo-algorithms
for generating simulated data as well as investigatie performance of each estimator are giveolbsifs:
e Stepl :Generat¥ = 200 data that follows Poisson Lindley distribution with= 1.0.
« Step2 :Remove, zero-valued data to obtainpositive count data.
« Step 3 : Replack data fromn positive count data into ‘1’ counts with proportian= 0.3 to exhibit the
one-inflation property such that= |wn|.
« Step4 : Alterp proportion of data with large numbers to mimic @resence of outliers, whepe=
0%, 2%, 4%.
 Step 5 :Fitthe new data withdata toOIPPL model and estimate the valueswéndd using ML, MoM,
OLS, WLS, CVM, MCVM and MPS estimation techniques.
» Step5 :Repeat steps 1-4 for 1000 times and @ &6timates for each parameter for all seven eitima
techniques as well as compare these estimatestivdttrue values of the parameters using mean absolute
bias(MAB) and mean squared eri@{SE), given respectively as:

1000
MAB = —— y‘
1000,2:‘
1 oo 2
MSE=——- (y, )
OOO.Z}
wherey; is thei™ estimated value of depending on the estimation technique usedyand8, w).
» Step 6 :Repeat steps 1-5 using= 0.6 as well as population siZé = 1000.

and

The best estimator must result in the smalM4dtB and MSE. Since there are two estimated parameter values, the
deficiency criterionDef = MSE3 + MSE; (Akgul etal., 2016; Tajuddin et al., 2021) will beeds The best estimator
must also yield the smalleBef value. The simulation results are tabulated inl@ab- Table 4.

Table 1 shows th¥AB and theSE values for various estimation techniques whenal tftV = 200 data
generated from the OIPPL distribution with= 1.0 andw = 0.3, 0.6. under the presence of outliegs£ 2%, 4%)

Robust parameter estimation for one-inflated pasiRoisson Lindley distribution under the preseamog absence of outliers with applications to crime 373
data



Pak.j.stat.oper.res. Vol.20 No. 3 2024 pp 369-381 DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4538

and in the absence of outliegs£€ 0%), whereas Table 2 shows the associd@tefl values. From Table 1 and Table
2, when the outliers are absept%£ 0%), the MPS estimator showed the smalldgtB, MSE andDef values. On
the other hand, when the outliers are presert %, 4%), the MCVM estimator provided the smallé$adB, MSE
andDef values, suggesting that the MCVM estimator is tlostdesirable estimator. Furthermore, the MoM edttima
provided the largest values MAB, MSE andDef, making it the least desirable estimator.

Table 1 TheAB and theMSE values of the estimators under various estimagohniques wheWN = 200,60 = 1.0 and several values of and

p.

Estimators

W p ML MOM OLS WLS CVM MCVM MPS

0 o 0 o 6 2] 0 o 0 2] 6 2] 0 )

03 0% 0.1328 0.0693 0.1652 0.1027 0.1299 0.0678 0.1374 0.0774 0.1308 0.0691 0.1384 0.0703 0.1296 0.0649
0.0310 0.0080 0.0470 0.0169 0.0271 0.0073 0.0294 0.0094 0.0287 0.0078 0.0330 0.0082 0.0258 0.0067

2%  0.1699 0.0649 0.2805 0.1423 0.1687 0.0681 0.2194 0.0936 0.1540 0.0664 0.1428 00665 0.2273 0.0700
0.0370 0.0063 0.0863 0.0257 0.0384 0.0071 0.0606 0.0127 0.0329 0.0068 0.0298 0.0068 0.0600 0.0073

4% 0.3048 0.0805 0.4368 0.2025 0.2684 0.0843 0.3591 0.1401 0.2480 0.0790 0.1982 0.0663 0.3452 0.0861
0.0982 0.0092 0.1938 0.0456 0.0830 0.0103 0.1395 0.0249 0.0724 0.0092 0.0500 0.0066 0.1244 0.0102

06 0% 0.1805 0.0508 0.2182 0.0757 0.1783 0.0488 0.1849 0.0555 0.1787 0.0503 0.1855 0.0510 0.1753 0.0465
0.0590 0.0045 0.0895 0.0096 0.0494 0.0040 0.0539 0.0051 0.0536 0.0044 0.0604 0.0047 0.0459 0.0036

2% 02411 0.0474 0.3599 0.0916 0.2422 0.0506 0.3084 0.0689 0.2177 0.0500 0.1986 00499 0.3099 0.0485
0.0693 0.0034 0.1353 0.0107 0.0746 0.0039 0.1138 0.0068 0.0624 0.0039 0.0542 0.0039 0.1069 0.0035

4% 0.4031 0.0483 05030 0.1025 0.3707 0.0540 0.4583 0.0847 0.3431 0.0520 02965 0.0472 0.4295 0.0475
0.1676 0.0035 0.2551 0.0124 0.1535 0.0043 0.2230 0.0094 0.1345 0.0040 0.1049 0.0034 0.1912 0.0033

The best estimator is written in bold.

Table 2 TheDef values of the estimators under various estima#gohniquesV = 200, 6 = 1.0 and several values af andp.

Deficiency values

@ P ML MOM oLs WLS CVM MCVM MPS

0.3 0% 0.0390 0.0639 0.0344 0.0388 0.0365 0.0412 0.0325
2% 0.0433 0.1120 0.0455 0.0733 0.0397  0.0366 0.0673
4% 0.1074 0.2394 0.0933 0.1644 0.0816  0.0566 0.1346

0.6 0% 0.0635 0.0991 0.0534 0.0590 0.0580 0.0651 0.0495
2% 0.0727 0.1460 0.0785 0.1206 0.0663  0.0581 0.1104
4% 0.1711 0.2675 0.1578 0.2324 0.1385 0.1083 0.1945

The best estimator is written in bold.

The results of the simulation study f8r= 1000 are summarized in Table 3 and Table 4. From Talaled
Table 4, when the outliers are absent 0%), both ML and MPS estimators provided the smallédB, MSE and
Def values forw = 0.3. However, wherw = 0.6, the MPS estimator provided the small®¥AB, MSE andDef
values. It is worth noting that whesn = 0.3, the MPS estimator provided the second smallesegsadiMAB, MSE
andDef. Similar observations to Table 1 and Table 2 camaéde when the outliers are present, in which the MCVM
estimator provided the smallggtdB, MSE andDef values, whereas the MoM estimator provided theclstif AB,
MSE andDef values.
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Table 3 TheWAB and theM SE values of the estimators under various estimagohniques wheiN = 1000,6 = 1.0,w = 0.3,0.6 andp =
0%, 2%, 4%.

Estimators

0] P ML MOM oLs WLS CVM MCVM MPS

0 o 0 o 6 2] 0 o 0 2] 6 2] 0 )

03 0% 00586 00299 0.0705 0.0433 0.0604 0.0303 0.0649 0.0350 0.0602 0.0305 0.0628 0.0310 0.0594 0.0295
0.0054 0.0014 0.0078 0.0030 0.0057 0.0014 0.0064 0.0019 0.0058 0.0014 0.0064 0.0015 0.0054 0.0014

2% 01970 0.0512 0.3262 0.1663 0.1554 0.0483 0.2629 0.1168 0.1496 0.0464 0.1131 00327 0.2136 0.0552
0.0408 0.0034 0.1077 0.0290 0.0276 0.0032 0.0721 0.0151 0.0259 0.0030 0.0164 0.0016 0.0476 0.0038

4% 03274 0.0800 04571 02127 02906 0.0898 0.4125 0.1794 0.2854 00875 02135 00471 0.3377 0.0823
0.1081 0.0072 0.2094 0.0461 0.0868 0.0091 0.1716 0.0333 0.0838 0.0087 0.0488 0.0031 0.1150 0.0075

06 0% 00755 0.0225 0.0933 0.0330 0.0763 0.0223 0.0841 0.0277 0.0765 0.0225 0.0784 0.0227 0.0750 0.0218
0.0092 0.0008 0.0142 0.0018 0.0090 0.0008 0.0107 0.0012 0.0092 0.0008 0.0098 0.0008 0.0086 0.0007

2% 02841 0.0359 0.4062 0.1036 0.2507 0.0394 0.3656 0.0875 0.2418 0.0380 0.2044 0.0285 0.2992 0.0370
0.0828 0.0017 0.1662 0.0113 0.0675 0.0021 0.1370 0.0084 0.0632 0.0020 0.0470 0.0012 0.0919 0.0018

4% 04282 0.0425 05202 0.1058 0.4252 0.0626 0.4942 0.0991 0.4186 0.0612 03645 0.0400 0.4322 0.0419
0.1842 0.0022 0.2710 0.0116 0.1833 0.0044 0.2457 0.0104 0.1778 0.0043 0.1360 0.0021 0.1880 0.0021

The best estimator is written in bold.

Table 4 TheDef values of the estimators under various estimagohniquesV = 1000, = 1.0 and several values af andp.

Deficiency values

w p

ML MOM oLs WLS CVM MCVM MPS

03 0% 0.0068 0.0108 0.0071 0.0083 0.0072 0.0079 0.0068
2% 0.0442 0.1367 0.0308 0.0872 0.0289  0.0180 0.0514
4% 0.1153 0.2555 0.0959 0.2049 0.0925  0.0519 0.1225

0.6 0% 0.0100 0.0160 0.0098 0.0119 0.0100 0.0106  0.0093
2% 0.0845 0.1775 0.0696 0.1454 0.0642  0.0482 0.0937

4% 0.1864 0.2826 0.1877 0.2561 0.1821 0.1381 0.1901

The best estimator is written in bold.

In conclusion, regardless of the valueswodndN, when the outliers are absent, the MPS estimattrd
best estimator for parameteisand w. However, when the outliers are present, the MC\Adngator is the best
estimator for parametetsandw. For both values oV and when the outliers are present, the MoM estimatthe
worst estimator. This is expected because the Mshmator is derived from the sample moments and sample
moments are heavily influenced by outliers.

5. Applications

To illustrate and investigate the performance ofttoposed estimators in fitting real data, two dataaeg considered
in this study. The data are tested for a large rernalb excess ones based on the one-inflation indeposed by
Tajuddin et al. (2021). The formula for the index,given by Tajuddin et al. (2021):

oi =1+ n(p,)
" In[exp(d+x-20-1- In(d+xu-9

wherep, refers to the proportion of one-valued dataefers to the dispersion index amdefers to the mean. When
dealing with sample data, one may use sample ptioppsample dispersion and sample mean to cakalaample
one-inflation index (Tajuddin et al., 2021). A pibg index value indicates the presence of large-vadued
observations in the dataset (Tajuddin et al., 202&yitionally, the score test proposed by Godwird 86hning
(2017) can be used to investigates the presencaafnflation via hypothesis testing with companigo positive
Poisson distribution.
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Several statistics such as the chi-square goodifefistest, the root mean squared error (RMSE, rifean
absolute error (MAE), the root mean squared logarit error (RMSLE) and the median absolute devafiddedAD)
are used to determine the best modelel.et n, — 7i,, wherefi, is the estimated frequency for eagh be the error
value forx-valued data, then the formulae for RMSE, MAE, RNESAnd MedAD are respectively given as:

1 h
RMSE= /FZ ¢,
x=1

h

MAE:ﬁZ

x=1

e
%

h
RMSLE= ﬁZ[In( n+1)-Iin(Tn+1)],
x=1

MedAD= med e~ mefl },

whereh refers to the number of data groups amdi(s) refers to the median of data wittobservations. Generally,
estimators that give model fitting with adequatedyzess-of-fit and the smallest RMSE, MAE, RMSLE &helAD
values, are selected as the best estimators. Femdth outliers, both RMSLE and MedAD are robust.

5.1 Example |

The first dataset refers to the counts of prostitutirrests in Vancouver (Rossmo & Routledge, 1990 data are
given asn, = 541, n, = 169, n; = 95, n, = 37, n; = 21 andng = 23, with sample one-inflation index of 0.4486,
indicating the presence of excess ones in the @a@histogram and the boxplot of the counts offitation arrests
data are provided in Figure 1. From Figure 1, tistogram suggests that the prostitution arrests idatkewed to the
right and the boxplot suggests that there are toudiéers:n,, ns andng. Since the data have large number of ones
and several outliers, the OIPPL distribution wiiffedent estimation techniques can be used for mbtlimg (see
Section 5.3).
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Histogram for the counts of prostitution arrests
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Boxplot for the counts of prostitution arrests

Figure 1 Histogram and the boxplot of the countproftitution arrests data
5.2 Example Il
The second dataset refers to the counts of drumkrdrin the police records (Van Der Heijden et2003). The data
are given asn, = 8877, n, = 481, ny; = 52, n, = 8 andng = 1, with sample one-inflation index of 0.1543,
suggesting the presence of excess ones in theTadahistogram and the boxplot of the counts ohHrdrivers in
the police records. From Figure 2, the histograggssts that the drunk drivers data is skewed taigie and the
boxplot suggests that there are four outliets:ns, n, andns. Similar to Example |, the OIPPL distribution with
different estimation techniques can be used foreghbitling (see Section 5.3).
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Histogram for the number of drunk drivers
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Figure 2 Histogram and the boxplot of the countdrofk drivers in the police records

5.3 Model Fittings

All seven estimators: ML, MoM, OLS, WLS, CVM, MCVIEnd MPS; are used to estimate the two parameténg of
OIPPL distribution based on the datasets desciib8dction 5.1 and Section 5.2. The summarieseofitbdel fittings
are given in Table 5.

For the first dataset in Table 5, every modelrfgtiprovides an adequate fit to the data excepiWh6
estimator. Therefore, the WLS estimator can beusbad in the list of the best models. Additionalhye model fitting
resulting from MCVM estimator provides the small&¥ISE, MAE and MedAD values while the model fitting
resulting from using OLS estimator provides the lesa RMSLE value. Moreover, its RMSE, MAE and MdaA
values are very close to those from MCVM estimaitie RMSLE value from CVM estimator is comparabléttose
from MCVM and OLS estimators as well. Other estionatprovide less desirable error values. Despite/MGnd
OLS estimators producing close RMSE, MAE, RMSLE aeHAD values, the best estimation technique timfit
data with a large number of ones and outliers cebeaecided objectively.

For the second dataset in Table 5, all model §igiprovide an adequate fit to the data. Howeverptbdel
fitting resulting from the MCVM estimator providése smallest RMSE and MAE values but also the ErBMSLE
value. Conversely, the model fitting resulting frolne WLS estimator provides the smallest RMSLE ediut the
largest RMSE and MAE values. The OLS estimatorthenother hand, provides the smallest MedAD vaBimilar
to the issue faced in Dataset |, an objective dmtigegarding the best estimation technique inpttesence of one-
inflation and outliers cannot be obtained.
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Table 5 Summary of model fittings for prostituteests in Vancouver (Dataset ) and drunk driveratéBet 1)
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Estimation Techniqut

Dataset ML MoM OLS WLS CUM MCVM MPS
i
g 1.3653 1.4822 1.3120 1.6436 1.3183 1.3128 1.3476
& 0.2300 0.1552 0.2454 0.0917 0.2433 0.2463 0.2346
RMSE 12.163 28.787 10.751 40.541 10857 10698 11,577
MAE 4.074 9.274 3.504 12.262 3.668 3.481 3.803
RMSLE 0.114 0.171 0.095 0.272 0.096 0.096 0.106
MedAD 5.373 6.376 2.850 6.622 3.200 2778 4.686
1 2875 7.493 2.189 17.406 2232 2103 2566
df 3 3 3 3 3 3 3
p-value 0.4113 0.0577 0.5341 0.0006 0.5257 05333 4636
I
i 8.3238 8.1526 8.3549 7.7998 8.4341 8.4759 7.9087
& 0.5067 05175 0.5040 0.5375 0.4999 0.4978 0.5291
RMSE 4.403 6.463 4.106 9.820 3.668 3.466 7.393
MAE 1.835 2.894 1.745 4.030 1,510 1385 3.018
RMSLE 0.102 0.090 0.104 0.073 0.111 0.115 0.076
MedAD 1.012 2.855 0,537 4.432 0.707 0.881 1.699
1 0.662 0.690 0.671 0.900 0.693 0.712 0.793
df 1 1 1 1 1 1 1
p-value 0.4159 0.4062 0.4127 0.3428 0.4051 03988 .37

The smallest value is written in bold.

Based on the two model fittings, the best estinmatezhnique cannot be concluded because eachiamiter
provides a different assessment. On that accoumemploy an integrated approach which involves iplidative
aggregation through standard normal cumulativeriligion function transformation (Masseran, 2018he
integrated approach combines all criteria involredhis study to produce an objective decision andsequently
selects the best model. Masseran (2018) integrsggdral statistics: Kolmogorov-Smirnov, Akaike Infation
Criterion, deviation of skewness and kurtosis amuglementary oR?; standardized them to scores and transformed
them to a normal distribution, which takes valuesaeen 0 and 1. Each transformed score for the sidstrébution

gets multiplied and the model that yields the sestlfinal multiplicative aggregation value is sédecas the best
model (Masseran, 2018).

This paper adopts the approach by Masseran (21 8tdégrating the RMSE, MAE, RMSLE and MedAD
values in the multiplicative aggregation. By doswm the best estimation technique in fitting th&adats with one-
inflation and outliers can be obtained. The trarmsfed scores and their multiplicative aggregatiolues as well as
the rank from the best to worst model fitting arevided in Table 6.

Table 6 Final transformed scores, multiplicativgragation * values and their corresponding rank.

N Dataset

Estimation Multiplicative

techniques RMSE MAE RMSLE MedAD plica Rank

aggregation
ML 0.00505! 0.02699! 0.13844: 0.22689. 0.00428: 5

MoM 0.023545 0.227567 0.634824 0.368923 1.254863 6
oLS 0.004368 0.020878 0.058830 0.036600 0.000196 2
WLS 0.058147 0.472587 0.998025 0.407856 11.185536 7
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CVM

0.004416

0.021736 0.061835 0.049782 0.000295 3
MCVM 0004344 0019624 0.061835 0.034278 0000181 1
MPS 0.004756 0.024529 0.098817 0.150806 0.001739 4
Estimation Dataset Ii
techniques RMSE MAE RMSLE MedAD Multiplicative Rank
aggregation
ML 0.004862 0.054260 0.123269 0.087097 0.002832 4
MoM 0.013246 0.178487 0.116709 0.304809 0.084103
oLs 0.004165 0.048158 0.124387 0.057344 0.001431 3
WLS 0.052449 0.425556 0.107846 0.585188 1.408616 7
cVM 0.003301 0.034784 0.128356 0.066908 0.000986 2
MCVM 0.002959 0.029019 0.130663 0.077929 0.000874 1
MPS 0.020015 0.003067 0.999328 0.072194 0.004428 5

* Multiplied by 1000 to scale up the small values.
The smallest value is written in bold.

Based on Table 6, the final multiplicative aggtemavalues of the MCVM estimator are the smalfest
both datasets, indicating that the MCVM estimatothie best estimator when estimating parameterthéOIPPL
distribution when the data have a large numbemesand outliers. This result is supported by tmeikation results
given in Table 1 — Table 4. On the other hand fited multiplicative aggregation values of the WEStimator are
the largest for both datasets, which suggeststiieatVLS estimator is the worst estimator in estintaparameters
for the OIPPL distribution when one-inflation anakleers are present. Therefore, if the data undasitieration have
a large number of ones and outliers are presestrégcommended to use the MCVM estimator overratisémators
in estimating the parameters of the OIPPL distidyut

Based on the estimated parameters from using the#M@&chnique, the unobserved number of uncaught
prostitutes and drunk drivers can be estimateds&yilently, the total number of offenders (both bdagd uncaught)

can be estimated. The total number of offenderbdtin prostitutes and drunk drivers can be estichaséng (Tajuddin
et al., 2022a):

- n(6+1)
G004y
g +30+1
with its estimated variandéar(N) = A(8) + B(6)c () (Tajuddin et al., 2022b), where
o ng’(6+2)(6+2)
(@)= 2
(6’Z +3€+1)

2

~fA A 2
B(é): nH(i9+4)A(6?+21) |
(62+36+1)
o 1 F--w-2 6 o |
c(8)==|- + ———dt
n

' (6+1) (6+1) 5 0+1-t

Knowing the estimated values and the estimate@neaé, the 95% confidence interval can be obtai@edsequently,
the likelihood of arrestd,04 can be obtained using (Chainey & Lazarus, 2021):

total number of individual offenders asted
LOA=

total number of estimated individuals
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Table 7 summarizes the estimated population sidetar®5% confidence interval as well as the liketd
of arrests for both datasets. From Table 7, itlwarconcluded that less than half of the prostithige not been
arrested yet whereas almost 90% of drunk driveve hat get caught by the police yet. Thééel values will surely
help the authority to be more alert and activecmusing the streets and conducting frequent paiops.

Table 7 Estimated population size with its corresfiog 95% confidence interval (lower and upper ga)uand the likelihood of arrest.

~ ~ = 95% confidence interv

Dataset 6 w n N LOA
Lowel Uppel
| 1.312¢ 0.246: 88¢ 164t 1541 174¢ 53.86Y%
Il 8.4759 0.4978 9419 81, 555 80, 006 83, 104 1%.55

6. Conclusions

This paper aimed to investigate the performancesevkeral parameter estimation techniques for theirtfteted
positive Poisson Lindley distribution in the presemand absence of outliers. From the simulatiogisg, it was found
that the modified Cramér-Von Mises estimator predidhe smallest error values in the aspect of gediaess and
consistency when the data have outliers. In theradesof outliers, the maximum product spacing estimyielded
the smallest error values. For model fittings tal data with a large number of ones and outliéngesseveral criteria
were used, an objective decision on the best eimgauld not be obtained. With the help of angnég¢ed approach
that combines the information from the criteriaotranean squared error, mean absolute bias, rooh mgaared
logarithmic error and median absolute deviatioe; itodified Cramér-Von Mises estimator was seleatethe best
estimator in estimating parameters for the oneatefl positive Poisson Lindley distribution when ttata are one-
inflated and have outliers. Based on the best estimthe population size as well as the likelih@bdrrests were
calculated. It is believed that the likelihood ofests for both prostitutes and drunk drivers dg&awill inform the
authorities to be more vigilant and active in caipiy these offenders.
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