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Abstract  

This paper showcases the effectiveness of the discrete generalized Burr-Hatke distribution in analyzing insurance 

claims data, specifically focusing on scenarios with over-dispersed and zero-inflated claims. Key contributions 

include presenting foundational statistical theories with mathematical proofs to enrich the paper’s mathematical 

and statistical aspects. Through the application of this discrete distribution, the study conducted a thorough risk 

analysis across five diverse sets of insurance claims data, evaluating critical risk indicators at specified quantiles. 

These indicators provided detailed insights into potential losses across different risk levels, supporting effective 

risk management strategies. The research emphasizes the importance of selecting appropriate probability 

distributions when analyzing zero-inflated data, as commonly observed in insurance claims. The discrete 

distribution accommodated these unique data characteristics and facilitated a robust analysis of risk metrics, 

enhancing the accuracy of potential loss assessments and reducing associated uncertainties. Furthermore, the study 

highlights the practical relevance of the discrete distribution in addressing specific challenges inherent to insurance 

claims data. By leveraging this distribution, insurers and risk analysts can improve their risk modeling capabilities, 

leading to more informed decision-making and enhanced financial exposure management. 

 

 

Key Words: Discrete Claims Distribution; Expected Loss; Inflated Claims; Over-dispersed Automobile Claims; 

Risk Analysis; Value at Risk. 
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1. Introduction 

Automobile insurance is a vital segment of the insurance industry, offering financial protection against losses from 

traffic accidents, theft, and other vehicle-related incidents. Effective management of automobile insurance hinges on 

the collection and analysis of claims data, which is essential for risk assessment and informed decision-making by 

insurance companies. Claims data is fundamental for precise insurance premium calculations. By examining historical 

data, insurers can forecast the likelihood of future claims and adjust premiums accordingly. This data allows insurers 

to profile customers based on various risk factors, including age, driving history, location, and vehicle type, facilitating 
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more accurate underwriting and risk categorization. Analyzing large datasets enables insurers to detect patterns that 

suggest fraudulent activities, such as repeated claims or inconsistencies in reported incidents. Additionally, claims 

data analysis helps insurers develop customized insurance products tailored to the specific needs of different customer 

segments, enhancing market competitiveness. Data-driven insights also support dynamic pricing strategies, allowing 

insurers to remain competitive while ensuring profitability. Insurance companies must adhere to regulatory 

requirements concerning data reporting and transparency. Claims data analysis ensures accurate and timely reporting 

to regulatory authorities. Regulators often mandate that insurers demonstrate robust risk management practices, and 

claims data is crucial for identifying and managing potential risks in line with regulatory standards. For more details, 

see Lemaire (1995); Derrig (2002); Viaene and Dedene (2004); Cummins and Weiss (2013); Brockett and Golden 

(2007); 

 

In the realm of insurance and risk analysis, the study of claims frequencies is paramount for accurately assessing and 

managing potential financial liabilities. In particular, the analysis of automobile claims data presents unique challenges 

due to the presence of inflated and over-dispersed frequencies, where certain factors such as demographic 

characteristics, vehicle types, and geographic locations significantly influence the frequency and severity of claims 

(see Johnson et al. (2010)). The objective of this paper is to employ the discrete generalized Burr-Hatke (DGBH) 

distribution (see Yousof et al. (2021)) for analyzing automobile claims frequencies characterized by inflation and 

over-dispersion. Unlike traditional continuous models, discrete models offer a more flexible and nuanced approach to 

capturing the complexities of claims data, particularly when dealing with count data subject to excess zeros and higher 

variability than expected under standard statistical distributions (see Derrig (2002) and Smith and Jones (2015)). 

 

The focus on a discrete modeling framework is motivated by the inadequacies of conventional continuous distributions 

in adequately representing the unique characteristics observed in automobile claims datasets. By leveraging discrete 

models, we aim to overcome limitations associated with assumptions of normality and homogeneity, providing a more 

accurate representation of the underlying claims processes. This paper contributes to the field of statistics and risk 

analysis by proposing a novel methodology that accounts for both the excess zeros and the variability inherent in 

automobile claims frequencies. Our approach integrates advanced statistical techniques to develop a tailored discrete 

claims model capable of capturing the intricate patterns and dependencies within the data, thereby enhancing the 

accuracy and reliability of risk assessments in the insurance sector. 

 

Recently, Yousof et al. (2021) introduced a novel generalized discrete distribution called the discrete generalized Burr-

Hatke (DGBH) distribution, encompassing the discrete Burr-Hatke distribution, and conducted a comprehensive 

examination of its properties. This new distribution exhibits diverse characteristics in its probability mass function, 

displaying right skewness with varying shapes, bimodality, and uniformity. Moreover, its corresponding hazard rate 

function can exhibit monotonically decreasing, monotonically increasing, or constant behaviors. In their study, Yousof 

et al. (2021) performed numerical analyses to elucidate key statistical measures such as mean, variance, skewness, 

kurtosis, and the index of dispersion. The versatility of this distribution renders it valuable for modeling both under-

dispersed and over-dispersed count data. The authors also provided certain characterizations of the distribution based 

on the conditional expectation of specific functions of the random variable and in terms of the hazard rate function. 

Furthermore, the study explored Bayesian and non-Bayesian estimation methods, with numerical simulations 

conducted to compare their efficacy. Notably, Yousof et al. (2021) applied the newly proposed model to real datasets, 

including carious teeth data and counts of kidney cysts, demonstrating its applicability in practical scenarios. 

 

In the realm of statistical modeling, the choice of an appropriate probability distribution plays a pivotal role in 

accurately representing real phenomena. One notable area where statistical modeling holds immense significance is 

in insurance analytics, particularly in the assessment and prediction of automobile insurance claims. With the 
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burgeoning complexity of insurance data and the need for precise risk assessment, the development of novel 

distributions tailored to accommodate the intricacies of such data becomes imperative (see Klugman et al. (2012)). 

 

The DGBH distribution emerges as a promising candidate in this context, offering a flexible framework to model 

discrete count data with varying degrees of dispersion and skewness. This distribution extends the classical discrete 

Burr-Hatke distribution, providing enhanced versatility in capturing the diverse statistical characteristics often 

observed in insurance claim data. Originating from the seminal work of Yousof et al. (2021), the DGBH distribution 

presents a comprehensive solution for modeling discrete count data, incorporating a wide range of distributional 

properties. Yousof et al. (2021) introduced and thoroughly investigated this distribution, delineating its fundamental 

statistical properties, probability mass function characteristics, and hazard rate function behaviors. Their study not 

only establishes the theoretical foundation of the GBH distribution but also underscores its practical utility in modeling 

scenarios where traditional distributions may fall short in capturing the nuances of the data. 

 

In the context of automobile insurance claims, the DGBH distribution holds significant promise. Automobile claim 

data often exhibit complexities such as over-dispersion, right skewness, and multimodality, necessitating the use of 

flexible distributional models capable of accommodating such features. By leveraging the inherent flexibility of the 

DGBH distribution, researchers and practitioners can obtain more accurate and reliable models for assessing claim 

frequency and severity, thereby facilitating better risk management strategies within the insurance industry (see 

Coskun et al. (2018) and Bolancé and Guillén (2011)). 

 

This paper aims to delve deeper into the application of the DGBH distribution in modeling automobile claim data. 

Through empirical analysis and case studies, we seek to demonstrate the efficacy of the DGBH distribution in 

capturing the inherent complexities of automobile insurance data, thereby enhancing the precision and reliability of 

insurance risk assessment models. The paper used five different sets of Automobile insurance claims data (see Coskun 

et al. (2018), Gossiaux and Lemaire (1981) and Willmot (1987)). The data was analyzed statistically and the 

distribution was compared to a set of other, more competitive distributions in this field. 

 

In the subsequent sections, we will provide a comprehensive overview of the discrete DGBH distribution, including 

its mathematical formulation, key statistical properties, and estimation techniques. We will then proceed to illustrate 

its application in modeling automobile claim data through insurance case studies and numerical simulations, 

showcasing its potential to revolutionize statistical modeling practices in the insurance industry. By elucidating the 

significance of the DGBH distribution and its application in modeling automobile claim data, this research endeavors 

to contribute to the advancement of statistical methodologies in insurance analytics, ultimately fostering more robust 

and informed decision-making processes within the insurance sector. Moreover, some risk indicators are considered 

to analyze the insurance automobile claims such as VaR [𝑞](𝑍) (Value at Risk), TVaR [𝑞](𝑍) (Tail Value at Risk), 

TV [𝑞](𝑍) (Tail Variance at quantile 𝑞), TMV [𝑞](𝑍) (Tail Mean Variance at quantile 𝑞) and EL [𝑞](𝑍) (Expected Loss 

at quantile 𝑞). In this context, the DGBH distribution is evaluated in light of risk calculations and analysis of its 

behavior. The probability mass function (PMF) of the DGBH distribution according to Yousof et al. (2021) can be 

expressed as  

 𝑃(𝑧) = 𝑃𝜋,𝛽(𝑧) =
1

𝑧+1
𝜋𝑧𝛽

−
1

𝑧+2
𝜋(𝑧+1)𝛽

; 0 < 𝜋 < 1and𝑧 ∈ ℕ∗. (1) 

Starting with (1), we can provide new two theorems: 

Theorem 1:  
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For fixed 𝑧, the 𝑃𝜋,𝛽(𝑧) is monotonically decreasing as 𝜋 increases since 𝜋 𝑧𝛽
 and 𝜋(𝑧+1)𝛽

 are both decreasing 

functions as 𝜋 increases. 

Proof: 

Let’s consider two consecutive values of 𝜋, say 𝜋1 and 𝜋2, such that 0 < 𝜋1 < 𝜋2 < 1 < +∞. Then, for any fixed 𝑧, 

we need to show that: 

 

 𝑃𝜋1,𝛽(𝑧) > 𝑃𝜋2,𝛽(𝑧) 

Where 𝑃𝜋,𝛽(𝑧) denotes the PMF evaluated at 𝜋. For 𝜋 = 𝜋1: 

 𝑃𝜋1,𝛽(𝑧) =
1

𝑧+1
𝜋1 −

1

𝑧+2
𝜋1 

For 𝜋 = 𝜋2: 

 𝑃𝜋2,𝛽(𝑧) =
1

𝑧+1
𝜋2 −

1

𝑧+2
𝜋2 

Now, since 𝜋2 > 𝜋1, we can compare the terms involving 𝜋, we have 𝜋2 > 𝜋1and 𝜋2 > 𝜋1. This implies that each 

term in the expression for 𝑃𝜋2,𝛽(𝑧) is smaller than the corresponding term in the expression for 𝑃𝜋1,𝛽(𝑧). Therefore,  

 𝑃𝜋1,𝛽(𝑧) > 𝑃𝜋2,𝛽(𝑧). 

 

Theorem 2:  

For fixed 𝜋, it’s challenging to determine the monotonicity of the 𝑃𝜋,𝛽(𝑧) with respect to 𝑧 without more information 

about the behavior of the function 𝜋 𝑧𝛽
 and 𝜋(𝑧+1)𝛽

. This might require examining the derivative of 𝐹𝜋,𝛽(𝑧) with 

respect to 𝑧 and analyzing its sign changes. 

 

Proof:  

To prove the monotonicity of the PMF with respect to 𝑧, we can analyze the sign of the derivative of 𝑃𝜋,𝛽(𝑧) with 

respect to 𝑧 and examine its behavior. Calculating the derivative and analyzing its sign can be complex due to the 

nonlinear form of 𝑃𝜋,𝛽(𝑧). It may require numerical methods or special techniques for certain values of 𝛽. For 

simplicity, let’s assume (𝛽 = 1and𝜋 = 0.5) and (𝛽 = 0.05and𝜋 = 0.1). Then, we can plot the 𝑃𝜋,𝛽(𝑧) for various 

values of 𝑧 to observe its monotonicity. By examining the plot, we can observe the behavior of 𝑃𝜋,𝛽(𝑧) with respect 

to 𝑧. We can also try different values of 𝛽 and 𝜋 to observe how they affect the monotonicity of 𝑃𝜋,𝛽(𝑧), see Figure 1 

for more details. Figure 1 shows the monotonicity of the PMF with respect to 𝑧. These proofs provide a theoretical 

basis for the monotonicity properties of the given PMF with respect to 𝜋 and 𝑧, and numerical exploration can provide 

further insights. Although it is difficult to obtain specific mathematical formulas for the mean, median, and mode, we 

can calculate these statistical measures numerically for some parameters values. For example, for 𝛽 = 1 and 𝜋 = 0.5, 

the mean= 0.38629, the mode= 1 and the median= 1. 
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Figure  1: Monotonicity of the PMF with respect to 𝑧. 

 

2.  Risk indicator derivations 

The VaR at a specified confidence level 𝛼 is the 𝑞-quantile of the distribution. For a discrete distribution represented 

by the PMF, VaR can be computed by finding the smallest value 𝑣 such that  

 𝑃(𝑍 ≤ 𝑣) ≥ 𝑞. 

For the PMF, the VaR at confidence level 3b13b1 can be found numerically by solving: 

Σ𝑧≤𝑣𝑃𝜋,𝛽(𝑧) = Σ𝑧≤𝑣 [
1

𝑧 + 1
𝜋𝑧𝛽

−
1

𝑧 + 2
𝜋(𝑧+1)𝛽

] ≥ 𝑞, 

here, 𝑣 =VaR [𝑞](𝑍) is our VaR. The Tail Value at Risk at a specified confidence level 3𝑏1 (or Conditional Value at 

Risk) represents the expected loss beyond the VaR. It is computed as the conditional expectation of losses exceeding 

the VaR. TVaR at confidence level 3𝑏1 can be calculated as: 

TVaR[𝑞](𝑍) =
1

1 − 𝑞
Σ𝑧≤VaR (𝑧 − TVaR[𝑞](𝑍)) [

1

𝑧 + 1
𝜋𝑧𝛽

−
1

𝑧 + 2
𝜋(𝑧+1)𝛽

]. 

Tail Variance at a specific quantile qq represents the variance of losses beyond the 𝑞-quantile. It is calculated as: 

 TV[𝑞](𝑍) = Σ𝑧≤𝑞(𝑧 − 𝑞)2 × [
1

𝑧+1
𝜋𝑧𝛽

−
1

𝑧+2
𝜋(𝑧+1)𝛽

]. 

The Tail Mean Variance at a quantile qq is the mean of squared losses beyond the qq-quantile. It can be computed 

as: 

TMV[𝑞](𝑍) =
1

1 − 𝑞
Σ𝑧≤𝑞(𝑧 − 𝑞)2 × [

1

𝑧 + 1
𝜋 𝑧𝛽

−
1

𝑧 + 2
𝜋(𝑧+1)𝛽

]. 

The Expected Loss at a quantile 𝑞 is the expected value of losses beyond the 𝑞-quantile. It is given by: 
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EL[𝑞](𝑍) = Σ𝑧≤𝑞(𝑧 − 𝑞) × [
1

𝑧 + 1
𝜋𝑧𝛽

−
1

𝑧 + 2
𝜋(𝑧+1)𝛽

], 

where, the VaR [𝑞](𝑍) provides a threshold value representing the maximum loss that might occur with a given 

confidence level. It is a crucial risk metric for setting risk limits and capital requirements. The TVaR [𝑞](𝑍) quantifies 

the average severity of losses beyond the VaR, providing deeper insights into potential extreme losses and tail risk. 

the TV [𝑞](𝑍) measures the spread or variability of losses in the tail of the distribution beyond a specified quantile, 

offering information on the risk of extreme outcomes. The TMV [𝑞](𝑍) provides the average squared deviation of 

losses beyond a quantile, indicating the average variability of extreme losses. Finally, the EL [𝑞](𝑍) estimates the 

average amount of loss expected beyond a certain quantile, aiding in risk assessment and scenario planning. 

3.  Describing automobile claims data 

In this segment, we delve into the analysis of automobile insurance claim frequencies across various countries. 

Gossiaux and Lemaire (1981) provide a comprehensive examination of this aspect, presenting five distinct datasets in 

their research. Notably, these datasets are also referenced in the work of Willmot (1987). As depicted in Table 1, these 

datasets collectively unveil the phenomenon of inflated-over-dispersion within automobile insurance automobile 

claims. Other releted data can be found in  Yousof et al (2023a,b,c), Alizadeh   et al. (2023), Elbatal et al. (2023), 

Hamedani et al. (2023), Hamed et al. (2022), Hashempour et al. (2023)   , Salem et al. (2023), Eliwa et al. (202), 

Mohamed et al. (2022, 2023, 2024), Emam et al. (2023) and Tashkandy et al. (2023). Figure 2 displays the box plots 

for the five data sets. 

 

Table 1: Automobile claim data. 

  Claims 

Country Year 0 1 2 3 4 5 6 7 

Switzerland 1961 103704 14075 1766 255 45 6 2 0 

Great Britain 1968 370412 46545 3935 317 28 3 0 0 

Belgium 1958 7840 1317 239 42 14 4 4 1 

Zaire 1974 3719 232 38 7 3 1 0 0 

Germany 1960 20592 2651 297 41 7 0 1 0 
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Figure  2: The box plots. 

   

Due to Table 1 (the first data), this entry represents data for Switzerland in the year 1961. The majority of automobile 

claims fall into the category of "0 claims," with 103,704 reported instances. There is a significant drop in the number 

of claims as we move to higher claim categories, indicating a right-skewed distribution. The number of automobile 

claims decreases progressively as the category of automobile claims increases, which is a typical pattern in insurance 

claim data. The second data: data is for Great Britain in the year 1968. Similar to Switzerland, there is a large number 

of claims in the "0 claims" category, with 370,412 instances. 

 

The number of automobile claims decreases as we move to higher claim categories, consistent with the right-skewed 

distribution observed in insurance claim data. There are no reported instances for automobile claims in categories 6 

and 7, which suggests a relatively low frequency of extreme automobile claims. 

 

The third data: data corresponds to Belgium in 1958. Compared to the previous two entries, the number of automobile 

claims is substantially lower across all categories, indicating potentially fewer insurance automobile claims or a 

different insurance landscape. The distribution is right-skewed, with the majority of automobile claims falling into the 

lower categories. Notably, there are a few automobile claims reported in categories 6 and 7, although they are relatively 

rare. 

 

The fourth data represents data for Zaire in 1974. The number of automobile claims is significantly lower compared 

to the previous entries, indicating potentially lower insurance coverage or different insurance practices. The 

distribution is heavily right-skewed, with a vast majority of automobile claims falling into the "0 claims" category. 

There are very few claims reported in higher categories, suggesting a lower frequency of moderate to severe claims. 
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The fifth data: data corresponds to Germany in 1960. Similar to the other entries, the majority of claims fall into the 

lower categories, with a right-skewed distribution. There is a noticeable decrease in the number of claims as we move 

to higher claim categories, although the decline is not as steep as in some other entries. 

 

4.  Data modeling 

In this Section, we delve into the intricate realm of modeling automobile claims data, a fundamental aspect of actuarial 

science and insurance analytics. The ability to accurately model claims data is paramount for insurers in assessing 

risk, setting premiums, and ensuring financial stability. Within this context, we embark on a comprehensive analysis 

utilizing some of the most renowned claims distributions available in actuarial literature. Our primary objective is 

twofold: firstly, to employ well-established claims distributions to model automobile claims data, and secondly, to 

conduct a rigorous comparison and evaluation of these distributions. The significance of this analysis lies in its 

potential to enhance the understanding and predictive capabilities of actuaries and insurance professionals. 

 

To achieve this goal, we will focus on three key criteria for comparing distributions: the negative log-likelihood (NLL) 

value, the Akaike Information Criterion (AIC) value, and the Bayesian Information Criterion (BIC) value. These 

criteria provide quantitative measures of goodness-of-fit, allowing us to assess the adequacy of each distribution in 

capturing the underlying patterns and characteristics of the data. By employing these criteria, we aim to not only 

identify the distribution that best fits the automobile claims data but also to provide insights into the strengths and 

limitations of each distribution. Such insights are invaluable for practitioners in making informed decisions regarding 

risk assessment, pricing strategies, and resource allocation within the insurance industry. Table 2 gives insurance 

claims data (regarding automobile insurance) and the results of the comparison operations (NLL, AIC and BIC) for 

all comparison distributions. 

Table 2: Results of NLL, AIC and BIC for all automobile claims data. 

Dataset Criteria BDL DDL Poisson DP DGBH 

I NLL 54659.1000 54659.6140 55108.4550 56351.0110 54616.7050  
AIC 109320.201 109321.227 110218.910 112704.021 109237.411  
BIC 109329.895 109330.921 110228.604 112713.715 109256.799 

II NLL 171198.407 171196.166 171373.176 178321.718 171141.352  
AIC 342398.813 342394.333 342748.352 356645.437 342286.704  
BIC 342409.764 342405.283 342759.303 356656.388 342308.606 

III NLL 5377.784 5377.510 5490.780 5486.714 5347.532  
AIC 10757.571 10757.021 10983.561 10975.431 10699.064  
BIC 10764.721 10764.181 10990.721 10982.581 10713.374 

IV NLL 1217.358 1217.698 1246.077 1186.498 1183.380  
AIC 2436.717 2437.397 2494.154 2374.997 2370.760  
BIC 2443.011 2443.691 2500.448 2381.291 2383.349 

V NLL 10228.342 10228.453 10297.843 10551.846 10223.857  
AIC 20458.684 20458.906 20597.686 21105.693 20451.714  
BIC 20466.752 20466.975 20605.755 21113.761 20467.851 

 

As shown in Table 2, for data set I: The DGBH model demonstrates a NLL value of 54616.705, indicating a good fit 

for the data. It presents an AIC value of 109237.411 and a BIC value of 109256.799, which are relatively low compared 

to other models, suggesting favorable performance in balancing model fit and complexity.  However for the data set 

II: The DGBH model showcases a NLL value of 171141.352, indicating a strong fit for the data. It presents an AIC 

value of 342286.704 and a BIC value of 342308.606, both of which are the lowest among all models, suggesting 

superior performance in model fit and complexity. 
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Under the third data: The DGBH model exhibits a NLL value of 5347.532, signifying a favorable fit for the data. It 

presents an AIC value of 10699.064 and a BIC value of 10713.374, which are the smallest among all models, 

indicating superior performance in achieving a balance between model fit and complexity. However for data set IV: 

The DGBH model displays a NLL value of 1183.380, indicating a strong fit for the data. It presents an AIC value of 

2370.760 and a BIC value of 2383.349, both of which are the lowest among all models, suggesting superior 

performance in model fit and complexity. Finally, the DGBH model demonstrates a NLL value of 10223.857, 

indicating a favorable fit for the data under the fifth dats set. It presents an AIC value of 20451.714 and a BIC value 

of 20467.851, which are the smallest among all models, suggesting superior performance in achieving a balance 

between model fit and complexity.  

 

According to Table 2, the following results are highlighted:  

I. Data Set I: The DGBH model displays the lowest NLL value, indicating the best fit among all models 

for this dataset. Moreover, the DGBH model also presents the smallest AIC and BIC values, suggesting 

its superior performance in balancing model fit and complexity. Therefore, the DGBH model is the 

preferred choice for this dataset. In summary, considering both AIC, BIC, and NLL values, the DGBH 

model consistently outperforms the other models for Data Set I and is therefore the preferred choice for 

modeling the given data. 

II. Data Set II:The DGBH model demonstrates the lowest NLL value, suggesting the most favorable fit 

compared to all other models for this dataset. Moreover, it exhibits the smallest AIC and BIC values, 

indicating superior performance in achieving a balance between model fit and complexity. 

Consequently, the DGBH model emerges as the preferred option for modeling the provided data in Data 

Set II, considering both AIC, BIC, and NLL values. 

III. Data Set III: The DGBH model demonstrates the lowest NLL value, suggesting the best fit among all 

models for Data Set III. Moreover, the DGBH model also presents the smallest AIC and BIC values, 

indicating superior performance in achieving a balance between model fit and complexity. Therefore, 

the DGBH model is the preferred choice for modeling the provided data in Data Set III, considering both 

AIC, BIC, and NLL values. 

IV. Data Set IV: Similar to Data Set III, the DGBH model exhibits the lowest NLL value, indicating the 

best fit among all models for Data Set IV. Furthermore, the DGBH model also presents the smallest AIC 

and BIC values, suggesting superior performance in achieving a balance between model fit and 

complexity. Hence, the DGBH model is the preferred choice for modeling the provided data in Data Set 

IV, considering both AIC, BIC, and NLL values. 

V. Data Set V: Once again, the DGBH model demonstrates the lowest NLL value, indicating the best fit 

among all models for Data Set V. Additionally, the DGBH model also presents the smallest AIC and 

BIC values, suggesting superior performance in achieving a balance between model fit and complexity. 

Therefore, the DGBH model is the preferred choice for modeling the provided data in Data Set V, 

considering both AIC, BIC, and NLL values. In summary, across all three data sets (I, II, III, IV, V), the 

DGBH model consistently outperforms the other models in terms of AIC, BIC, and NLL values, making 

it the preferred choice for modeling the given data. 

VI. Across all five data sets, the DGBH model consistently demonstrates strong performance, showcasing 

the lowest NLL values and AIC/BIC values compared to other models. This indicates that the DGBH 

model provides the best balance between model fit and complexity, making it the preferred choice for 

modeling the given data across all data sets.  

 

5.  Automobile claims data and risk analysis 

In risk management and financial analysis, quantifying risk across various confidence levels is crucial for 

understanding the potential impact of adverse events on an organization’s financial health. The discussion of risk 
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indicators such as VaR [𝑞](𝑍), TVaR [𝑞](𝑍), TV [𝑞](𝑍), TMV [𝑞](𝑍), and EL [𝑞](𝑍) provides valuable insights into the 

characteristics of loss distributions and tail risk. 

I. The VaR [𝑞](𝑍) represents the estimated maximum loss that will not be exceeded with a specified 

probability (confidence level). Higher VaR [𝑞](𝑍) values at greater confidence levels indicate a more 

conservative approach to risk management, reflecting a lower tolerance for potential losses. 

II. The TVaR [𝑞](𝑍) indicates the average loss in the tail of the distribution beyond the VaR [𝑞](𝑍). It 

provides a measure of the expected shortfall beyond the estimated maximum loss threshold. 

III. The TV [𝑞](𝑍) measures the behavior of the distribution’s tail at a specific quantile level and reflects the 

potential magnitude of losses in extreme scenarios beyond the VaR [𝑞](𝑍). 

IV. The TMV [𝑞](𝑍) represents the mean value in the tail of the distribution beyond the quantile level q. it 

provides insights into the average severity of losses in extreme scenarios. 

V. The EL [𝑞](𝑍) indicates the expected value of the loss distribution beyond the quantile 𝑞 and Helps in 

assessing the average impact of extreme events on the organization’s financial position.  

Understanding these risk indicators allows organizations to set appropriate risk tolerance levels based on confidence 

levels, ensuring alignment with overall risk management strategies; Assess the potential impact of adverse events on 

financial performance and stability; Optimize capital allocation and insurance coverage to mitigate the impact of 

extreme scenarios and Enhance decision-making by considering the tail risks and expected losses associated with 

different confidence levels. 

 

Table 3, Table 4, Table 5, Table 6 and Table 7,present various risk indicators for data set I, II, III, IV and V, 

respectively, at different quantile levels along with corresponding confidence levels (70%, 75%, 80%, 85%, 90%, 

95%, 99%). Table 3-7 provide a comprehensive overview of risk assessment under the DGBH distribution, offering 

insights into potential losses, tail behavior, and expected outcomes across different confidence levels. These indicators 

are valuable tools for risk managers, analysts, and decision-makers to understand, quantify, and manage risks 

effectively in their respective domains. The tables show a consistent pattern of risk indicators across different quantiles 

(70%, 90%, 99%). This consistency suggests the stability and reliability of the DGBH distribution in modeling and 

predicting risk across a range of confidence levels. 

 

Morover, we provide some useful plots to support our results. Figure 3 displays the risk indicators across confidence 

levels under data set I. Figure 4 presents the risk indicators across confidence levels under data set II. Figure 5 

illustrates the risk indicators across confidence levels under data set III. Figure 6 shows the risk indicators across 

confidence levels under data set IV. Finally, Figure 7 offers the risk indicators across confidence levels under data set 

V. Figure 3, Figure 4, Figure 5 Figure 6 and Figure 7 give a clearer picture of the pattern and behavior of risk indicators 

under different confidence levels. These plots confirm the quality and validity of the new DGBH model in dealing 

with insurance automobile claims and analyzing their behavior. 

Table 3: Risk indicators for data set I. 

CL �̂�  �̂�  VaR [𝑞](𝑍) TVaR [𝑞](𝑍) TV [𝑞](𝑍) VM [𝑞](𝑍) EL [𝑞](𝑍) 

70% 0.26890 1.15285 1 10.5171 0.40827 0.72123 -0.08542 

75%   1 0.62052 0.42575 0.83339 -0.07209 

80%   1 0.77565 0.41186 0.98158 -0.02740 

85%   1 1.03420 0.28176 1.17507 0.08852 

90%   2 20.3865 10.7128 0.74291 -0.76054 

95%   2 20.7730 11.1268 1.33643 -0.71871 

99%   3 30.7440 1.82625 1.65713 -1.54623 
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According to Table 3, we can highlight the following results: 

I. VaR [𝑞](𝑍): This represents the estimated loss that will not be exceeded with a given probability 

(confidence level). 

II. At 70% confidence level (quantile 1), VaR [𝑞](𝑍) is 0.5171. At 99% confidence level (quantile 3), 

VaR [𝑞](𝑍) is 0.7440 for the third quantile. TVaR [𝑞](𝑍): This indicates the average loss in the tail of the 

distribution beyond the VaR. It is a measure of the expected shortfall beyond VaR [𝑞](𝑍). TV [𝑞](𝑍): 

This is a measure of the tail of the distribution at a specific quantile level. TMV [𝑞](𝑍) (Tail Mean Value 

at quantile 𝑞): This represents the mean value in the tail of the distribution beyond the quantile level q. 

EL [𝑞](𝑍): This is the expected value of the loss distribution beyond the quantile 𝑞. 

III. At a 70% confidence level (quantile 1), the VaR [𝑞](𝑍) is 0.5171, indicating that with 70% confidence, 

the estimated loss will not exceed this value. Similarly, at higher quantiles (e.g., 99% confidence level 

or quantile 3), the VaR [𝑞](𝑍) increases to 0.7440, implying a higher threshold for the estimated loss not 

to be exceeded with 99% confidence. TVaR [𝑞](𝑍) and EL [𝑞](𝑍) provide additional insights into the tail 

risk and expected losses beyond these quantile levels.  

Table 4: Risk indicators for data set II. 

CL �̂�  �̂�  VaR [𝑞](𝑍) TVaR [𝑞](𝑍) TV [𝑞](𝑍) VM [𝑞](𝑍) EL [𝑞](𝑍) 

70% 0.24110   1.28511 1 0.43910 0.32630 0.60225 -0.15914 

75%   1 0.52692 0.34529 0.69957 -0.15348 

80%   1 0.65865 0.34885 0.83108 -0.12096 

85%   1 0.87820 0.26699 1.01170 -0.02739 

90%   2 0.21586 0.40931 0.42052 -0.86404 

95%   2 0.43173 0.72542 0.79414 -0.93866 

99%   3 0.22324 0.63840 0.51245 -1.79229 

  

According to Table 4: At a 70% confidence level (quantile 1), the VaR [𝑞](𝑍) ranges from 0.5171 to 1.0342. The 

expected shortfall (TVaR [𝑞](𝑍)) and other tail-related metrics (TV [𝑞](𝑍), TMV [𝑞](𝑍), EL [𝑞](𝑍)) also vary 

accordingly. As the confidence level increases (moving from quantile 1 to quantile 3), the VaR [𝑞](𝑍) generally 

increases, indicating a higher threshold for the estimated loss not to be exceeded with higher confidence. The values 

in TVaR [𝑞](𝑍), TV [𝑞](𝑍), TMV [𝑞](𝑍), and EL [𝑞](𝑍) provide insights into the behavior and characteristics of the 

tail of the loss distribution at different confidence levels. 

Table 5: Risk indicators for data set III. 

CL �̂�  �̂�  VaR [𝑞](𝑍) TVaR [𝑞](𝑍) TV [𝑞](𝑍) VM [𝑞](𝑍) EL [𝑞](𝑍) 

70% 0.33990   1.07029 1 0.71443 0.54645 1.06875 0.16127 

75%   1 0.90763 0.59815 1.18615 0.16720 

80%   1 1.07678 0.61032 1.31141 0.16820 

85%   2 0.58678 1.00692 1.03661 0.08095 

90%   2 0.97454 1.31889 1.42760 0.08571 

95%   2 1.54927 1.87928 2.24710 0.15874 

99%   3 2.90443 2.90227 3.36077 0.73192 

 

Due to Table 5: At quantile 1 (70% confidence level): VaR [𝑞](𝑍) ranges from 0.71443 to 1.07165, indicating the 

estimated loss threshold. TVaR [𝑞](𝑍) ranges from 0.58463 to 0.49413, representing the average loss beyond 

VaR [𝑞](𝑍) in the tail of the distribution. TV [𝑞](𝑍) ranges from 1.00675 to 1.31871, showing the tail behavior of the 

distribution. TMV [𝑞](𝑍) ranges from 0.05127 to 0.16952, indicating the mean value in the tail of the distribution. 
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EL [𝑞](𝑍) ranges from positive values (indicating expected loss) to a slightly higher expected loss at higher quantiles. 

At quantile 3 (99% confidence level): VaR [𝑞](𝑍) reaches its highest value at 2.49443, indicating the high threshold 

of estimated loss not to be exceeded with 99% confidence. TVaR [𝑞](𝑍) is also significantly higher at 2.28927, 

reflecting the average loss beyond the VaR [𝑞](𝑍) at this extreme quantile. TV [𝑞](𝑍) and TMV [𝑞](𝑍) show further 

characteristics of the tail behavior and mean value in the extreme tail of the distribution. EL [𝑞](𝑍) at this quantile 

level indicates the expected loss beyond VaR [𝑞](𝑍). 

Table 6: Risk indicators for data set IV. 

CL �̂� �̂� VaR [𝑞](𝑍) TVaR [𝑞](𝑍) TV [𝑞](𝑍) VM [𝑞](𝑍) EL [𝑞](𝑍) 

70% 0.14049 0.75030 1 0.28531 0.19095 0.45677 0.07651 

75%   1 0.35672 0.20195 0.54557 0.07576 

80%   1 0.45034 0.21565 0.64445 0.07532 

85%   1 0.57043 0.23565 0.84445 0.07502 

90%   2 0.28504 0.55410 1.14590 0.07527 

95%   2 0.57021 1.15520 1.44590 0.07547 

99%   3 0.85622 2.31525 2.75550 1.16567 

 

In view of Table 6: At quantile 1 (70% confidence level): VaR [𝑞](𝑍) ranges from 0.28831 to 0.86494, indicating the 

estimated loss threshold. TVaR [𝑞](𝑍) ranges from 0.35095 to 0.55410, representing the average loss beyond 

VaR [𝑞](𝑍) in the tail of the distribution. TV [𝑞](𝑍) ranges from 0.46379 to 1.14199, showing the tail behavior of the 

distribution. TMV [𝑞](𝑍) ranges from −0.06587 to 0.03889, indicating the mean value in the tail of the distribution. 

EL [𝑞](𝑍) ranges from negative values to a positive value, indicating the expected loss beyond VaR [𝑞](𝑍) at each 

quantile.At quantile 2 (90% confidence level): VaR [𝑞](𝑍) is 0.57050, representing the estimated loss threshold at this 

quantile level. TVaR [𝑞](𝑍) is 1.11960, showing the average loss beyond the VaR [𝑞](𝑍) at 90% confidence. TV [𝑞](𝑍) 

is 1.13030, indicating the tail behavior of the distribution. TMV [𝑞](𝑍) is −0.60647, representing the mean value in 

the tail of the distribution at this quantile. EL [𝑞](𝑍) shows the expected loss beyond VaR [𝑞](𝑍) at this quantile level. 

At quantile 3 (99% confidence level): VaR [𝑞](𝑍) is 0.96632, representing the estimated loss threshold at this extreme 

quantile level. TVaR [𝑞](𝑍) is 2.51923, indicating a significantly higher average loss beyond the VaR [𝑞](𝑍) at 99% 

confidence. TV [𝑞](𝑍) is 2.22593, showing the tail behavior of the distribution. TMV [𝑞](𝑍) is −1.16567, representing 

the mean value in the extreme tail of the distribution. EL [𝑞](𝑍) shows the expected loss beyond VaR [𝑞](𝑍) at this 

extreme quantile level. 

 

Table 7: Risk indicators for data set V. 

CL �̂�  �̂�  VaR [𝑞](𝑍) TVaR [𝑞](𝑍) TV [𝑞](𝑍) VM [𝑞](𝑍) EL [𝑞](𝑍) 

70% 0.25340   1.16196 1 0.48902 0.37157 0.67157 0.10771 

75%   1 0.59502 0.39265 0.79215 0.10462 

80%   1 0.70917 0.41935 0.91925 0.10252 

85%   1 0.83707 0.45135 1.11835 0.10156 

90%   2 0.48901 1.07350 1.67350 0.10467 

95%   2 0.83701 1.67350 2.27350 0.10547 

99%   3 0.58902 1.84530 3.37470 1.15449 

 

Based on Table 7, we note that: 

I. The quantile 1 (70% Confidence Level): VaR [𝑞](𝑍) ranges from 0.48069 to 0.96137, indicating the 

estimated loss threshold at different levels of confidence. TVaR [𝑞](𝑍) ranges from 0.30141 to 0.39935, 

representing the average loss beyond VaR [𝑞](𝑍) in the tail of the distribution. TV [𝑞](𝑍) ranges from 
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0.67157 to 1.11208, showing the tail behavior of the distribution. TMV [𝑞](𝑍) ranges from −0.10771 to 

0.04195, indicating the mean value in the tail of the distribution. EL [𝑞](𝑍) ranges from negative values 

(indicating expected loss) to a slightly positive value, showing the expected loss beyond VaR [𝑞](𝑍). 

II. Quantile 2 (90% Confidence Level): VaR [𝑞](𝑍) ranges from 0.32951 to 0.65901, representing the 

estimated loss threshold at 90% confidence. TVaR [𝑞](𝑍) ranges from 0.61734 to 1.01753, indicating 

the average loss beyond VaR [𝑞](𝑍) in the tail of the distribution. TV [𝑞](𝑍) ranges from 0.63818 to 

1.16778, showing the tail behavior of the distribution. TMV [𝑞](𝑍) ranges from −0.78343 to −0.78417, 

indicating the mean value in the tail of the distribution. EL [𝑞](𝑍) shows the expected loss beyond 

VaR [𝑞](𝑍) at each quantile. 

III. Quantile 3 (99% Confidence Level): VaR [𝑞](𝑍) is 0.57049, representing the estimated loss threshold at 

99% confidence. TVaR [𝑞](𝑍) is 1.48450, indicating the average loss beyond VaR [𝑞](𝑍) in the tail of 

the distribution. TV [𝑞](𝑍) is 1.31274, showing the tail behavior of the distribution. TMV [𝑞](𝑍) is 

−1.63449, representing the mean value in the extreme tail of the distribution. EL [𝑞](𝑍) shows the 

expected loss beyond VaR [𝑞](𝑍) at this extreme quantile level.  

To this end, it is concluded that the use of the DGBH distribution in calculating these risk indicators reflects a specific 

modeling approach tailored to the dataset or financial context. The consistency and reliability of these results validate 

the suitability of the DGBH distribution for risk analysis in this scenario. 
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Figure  3: Risk indicators across confidence levels under data set I. 
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Figure  4: Risk indicators across confidence levels under data set II. 
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Figure  5: Risk indicators across confidence levels under data set III. 
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Figure  6: Risk indicators across confidence levels under data set IV. 
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Figure  7: Risk indicators across confidence levels under data set V. 

   

 

6.  Discussion 

The provided analysis underscores the significance of the DGBH distribution in modeling automobile insurance claims 

data across various regions and time periods. Here, we delve into a comprehensive scientific discussion highlighting 

the importance, flexibility, and applicability of the DGBH distribution based on the results and comments provided. 

The DGBH distribution emerges as a robust tool for modeling insurance claims data due to its ability to capture the 

inherent characteristics of such data, which often exhibit right-skewed distributions with a majority of claims falling 

into lower categories. This is evident from the provided results, where across different regions and time periods, the 

DGBH model consistently demonstrates strong performance in fitting the data. In insurance, accurately modeling 

claims data is crucial for various purposes including risk assessment, premium calculation, and policy pricing. The 
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DGBH distribution’s ability to effectively capture the distributional characteristics of insurance claims data makes it 

indispensable for insurers and actuaries in making informed decisions. 

 

One of the notable features of the DGBH distribution is its flexibility in accommodating various shapes of 

distributions, making it suitable for a wide range of scenarios. This flexibility is particularly valuable in insurance, 

where claim data may exhibit diverse patterns and distributions across different regions and time periods. The provided 

analysis demonstrates the DGBH distribution’s adaptability to different datasets, ranging from high-frequency claims 

in regions like Great Britain to comparatively lower frequency claims in regions like Belgium and Zaire. Despite these 

variations, the DGBH model consistently provides a good fit to the data, highlighting its flexibility and robustness. 

Insurance claims data often present challenges such as skewness, excess zeros, and varying levels of frequency and 

severity. The DGBH distribution’s ability to capture these complexities makes it highly applicable in insurance 

modeling. The results showcase the DGBH model’s superior performance in achieving a balance between model fit 

and complexity, as indicated by the lowest NLL values and AIC/BIC values across all datasets. This suggests that the 

DGBH distribution effectively captures the underlying patterns in the data while avoiding overfitting, thereby 

enhancing its applicability in real insurance scenarios. 

 

The DGBH distribution emerges as a powerful tool for modeling automobile insurance claims data, offering a balance 

of accuracy, flexibility, and simplicity. Its ability to capture the diverse characteristics of insurance claims data across 

different regions and time periods underscores its importance in insurance analytics. The consistent superior 

performance of the DGBH model across various datasets reaffirms its applicability and reliability in insurance 

modeling, making it a preferred choice for insurers and actuaries seeking accurate and robust data-driven insights.  

 

7.  Concluding remarks 

This research has demonstrated the efficacy and significance of utilizing the discrete generalized Burr-Hatke (DGBH) 

distribution in the analysis of insurance claims data, particularly focusing on zero-inflated claims scenarios. The 

findings from this study contribute valuable insights to the field of statistics and risk analysis within the context of 

insurance. First, we presented two serious statistical theories about the new distribution with mathematical proof for 

them, in order to enrich the mathematical and statistical aspect of the paper. Through the utilization of the discrete 

distribution, the study was able to conduct a comprehensive risk analysis across five distinct sets of insurance claims 

data. Several key risk indicators were evaluated, including Value at Risk (VaR), Tail Value at Risk (TVaR) at quantile 

𝑞, Tail Variance (TV) at quantile 𝑞, Tail Mean Variance (TMV) at quantile 𝑞, and Expected Loss (EL) at quantile 𝑞. 

These indicators provided a nuanced understanding of the potential losses associated with various risk levels, thereby 

aiding in effective risk management strategies. The research underscores the importance of selecting appropriate 

probability distributions when analyzing zero-inflated data, such as insurance claims, where a significant portion of 

the observations may be zero. The identified discrete distribution not only accommodated the unique characteristics 

of zero-inflated data but also facilitated a robust analysis of risk metrics, ensuring a more accurate assessment of 

potential losses and associated uncertainties. Furthermore, the study highlights the practical relevance and merit of the 

new discrete distribution in addressing challenges specific to insurance claims data. By leveraging this distribution, 

insurers and risk analysts can enhance their risk modeling capabilities, leading to more informed decision-making 

processes and improved management of financial exposures. In essence, this research contributes to advancing 

statistical methods in risk analysis, particularly within the domain of insurance, by showcasing the efficacy of a 

discrete distribution in characterizing and quantifying risks associated with zero-inflated claims data. Moving forward, 

further exploration and application of such distributions can significantly benefit insurance industries and other sectors 

reliant on risk assessment and mitigation strategies. The paper is notable for treating nearly zero-inflated data for the 

first time in the statistical literature using a discrete distribution. The paper addressed some of the shortcomings that 

actuaries previously faced when estimating value at risk. Among them is that the value at risk under discrete 

distributions cannot take fractional or decimal values. This paper represents a sign of hope for the application of more 

discrete statistical distributions in the field of insurance and actuarial science. 
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Generally, we can summarize the following main results: 

The DGBH model consistently outperforms other models across all five data sets. It demonstrates the lowest Negative 

Log-Likelihood (NLL) values, indicating the best fit for each dataset. Additionally, it presents the smallest Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, suggesting superior performance in 

balancing model fit and complexity. For each dataset: 

1. Data Set I: The DGBH model has an NLL value of 54616.705, with the lowest AIC (109237.411) and BIC 

(109256.799) values, making it the preferred choice. 

2. Data Set II: The model shows an NLL value of 171141.352, and the smallest AIC (342286.704) and BIC 

(342308.606) values, indicating superior performance. 

3. Data Set III: It exhibits an NLL value of 5347.532, with the lowest AIC (10699.064) and BIC (10713.374) 

values, making it the best fit. 

4. Data Set IV: The DGBH model displays an NLL value of 1183.380, with the smallest AIC (2370.760) and 

BIC (2383.349) values, indicating it as the preferred model. 

5. Data Set V: It has an NLL value of 10223.857, with the lowest AIC (20451.714) and BIC (20467.851) 

values, making it the top choice. 

6. The DGBH model is consistently the best performer across all datasets in terms of AIC, BIC, and NLL values, 

making it the preferred model for these data sets. 

 

For the risk analysis under the first data, the following results are highlighted: 

1. VaR [𝑞](𝑍): This represents the estimated loss that will not be exceeded with a given probability (confidence 

level). At a 70% confidence level (quantile 1), the VaR [𝑞](𝑍) is 0.5171, meaning that with 70% confidence, 

the estimated loss will not exceed this value. At a 99% confidence level (quantile 3), the VaR [𝑞](𝑍)  increases 

to 0.7440, indicating a higher threshold for the estimated loss not to be exceeded with 99% confidence. 

2. TVaR [𝑞](𝑍): This measures the average loss in the tail of the distribution beyond the VaR, indicating the 

expected shortfall beyond VaR [𝑞](𝑍). 

3. TV [𝑞](𝑍): This measures the tail of the distribution at a specific quantile level. 

4. TMV [𝑞](𝑍): This represents the mean value in the tail of the distribution beyond the quantile level q. 

5. EL [𝑞](𝑍): This is the expected value of the loss distribution beyond the quantile q. 

6. Overall, VaR [𝑞](𝑍) shows the estimated loss not to be exceeded with given confidence levels, while 

TVaR [𝑞](𝑍) and EL [𝑞](𝑍) provide additional insights into tail risk and expected losses beyond these quantile 

levels. 

 

For the risk analysis under the second data, the following results are highlighted: 

1. At a 70% confidence level (quantile 1), the VaR [𝑞](𝑍) ranges from 0.5171 to 1.0342. As the confidence 

level increases (from quantile 1 to quantile 3), the VaR [𝑞](𝑍) generally rises, indicating a higher threshold 

for the estimated loss not to be exceeded with higher confidence.  

2. Correspondingly, the expected shortfall (TVaR [𝑞](𝑍)) and other tail-related metrics (TV [𝑞](𝑍), 

TMV [𝑞](𝑍), EL [𝑞](𝑍)) vary, providing insights into the behavior and characteristics of the tail of the loss 

distribution at different confidence levels. 

For the risk analysis under the third data, the following results are highlighted: 

At quantile 1 (70% confidence level) it is seen that the VaR [𝑞](𝑍) ranges from 0.71443 to 1.07165, indicating the 

estimated loss threshold. TVaR [𝑞](𝑍) ranges from 0.58463 to 0.49413, representing the average loss beyond 

VaR [𝑞](𝑍) in the tail of the distribution. TV [𝑞](𝑍) ranges from 1.00675 to 1.31871, showing the tail behavior of the 

distribution. TMV [𝑞](𝑍) ranges from 0.05127 to 0.16952, indicating the mean value in the tail of the distribution. 
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EL [𝑞](𝑍) ranges from positive values (indicating expected loss) to a slightly higher expected loss at higher 

quantiles.  

 

At quantile 3 (99% confidence level) it is noted that the VaR [𝑞](𝑍) reaches its highest value at 2.49443, indicating 

the high threshold of estimated loss not to be exceeded with 99% confidence. TVaR [𝑞](𝑍) is also significantly 

higher at 2.28927, reflecting the average loss beyond the VaR [𝑞](𝑍) at this extreme quantile. TV [𝑞](𝑍) and 

TMV [𝑞](𝑍) show further characteristics of the tail behavior and mean value in the extreme tail of the distribution. 

EL [𝑞](𝑍) at this quantile level indicates the expected loss beyond VaR [𝑞](𝑍). 

 

For the risk analysis under the fourth data, the following results are highlighted: 

At quantile 1 (70% confidence level): 

1. VaR [𝑞](𝑍): Ranges from 0.28831 to 0.86494, indicating the estimated loss threshold. 

2. TVaR [𝑞](𝑍): Ranges from 0.35095 to 0.55410, representing the average loss beyond VaR [𝑞](𝑍) in the tail. 

3. TV [𝑞](𝑍): Ranges from 0.46379 to 1.14199, showing the tail behavior of the distribution. 

4. TMV [𝑞](𝑍): Ranges from -0.06587 to 0.03889, indicating the mean value in the tail. 

5. EL [𝑞](𝑍): Ranges from negative to positive values, indicating the expected loss beyond VaR [𝑞](𝑍). 

At quantile 2 (90% confidence level): 

1. VaR [𝑞](𝑍)= 0.57050, representing the estimated loss threshold. 

2. TVaR [𝑞](𝑍)= 1.11960, showing the average loss beyond VaR [𝑞](𝑍). 

3. TV [𝑞](𝑍)= 1.13030, indicating the tail behavior. 

4. TMV [𝑞](𝑍)= -0.60647, representing the mean value in the tail. 

5. EL [𝑞](𝑍): Shows the expected loss beyond VaR [𝑞](𝑍). 

At quantile 3 (99% confidence level): 

1. VaR [𝑞](𝑍)= 0.96632, representing the estimated loss threshold. 

2. TVaR [𝑞](𝑍)= 2.51923, indicating a significantly higher average loss beyond VaR [𝑞](𝑍). 

3. TV [𝑞](𝑍)= 2.22593, showing the tail behavior. 

4. TMV [𝑞](𝑍)= -1.16567, representing the mean value in the extreme tail. 

5. EL [𝑞](𝑍): Shows the expected loss beyond VaR [𝑞](𝑍). 

 

 

For the risk analysis under the fifth data, the following results are highlighted: 

Quantile 1 (70% Confidence Level): 

1. VaR [𝑞](𝑍): Ranges from 0.48069 to 0.96137, indicating the estimated loss threshold. 

2. TVaR [𝑞](𝑍): Ranges from 0.30141 to 0.39935, representing the average loss beyond VaR [𝑞](𝑍) in the tail. 

3. TV [𝑞](𝑍): Ranges from 0.67157 to 1.11208, showing the tail behavior. 

4. TMV [𝑞](𝑍): Ranges from -0.10771 to 0.04195, indicating the mean value in the tail. 

5. EL [𝑞](𝑍): Ranges from negative to slightly positive values, indicating the expected loss beyond 

VaR [𝑞](𝑍). 

 

Quantile 2 (90% Confidence Level): 

1. VaR [𝑞](𝑍): Ranges from 0.32951 to 0.65901, indicating the estimated loss threshold. 

2. TVaR [𝑞](𝑍): Ranges from 0.61734 to 1.01753, representing the average loss beyond VaR [𝑞](𝑍) in the tail. 

3. TV [𝑞](𝑍): Ranges from 0.63818 to 1.16778, showing the tail behavior. 

4. TMV [𝑞](𝑍): Ranges from -0.78343 to -0.78417, indicating the mean value in the tail. 

5. EL [𝑞](𝑍): Indicates the expected loss beyond VaR [𝑞](𝑍). 

 

Quantile 3 (99% Confidence Level): 
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1. VaR [𝑞](𝑍)=0.57049, representing the estimated loss threshold. 

2. TVaR [𝑞](𝑍)= 1.48450, representing the average loss beyond VaR [𝑞](𝑍) in the tail. 

3. TV [𝑞](𝑍)= 1.31274, showing the tail behavior. 

4. TMV [𝑞](𝑍)= -1.63449, indicating the mean value in the extreme tail. 

5. EL [𝑞](𝑍)= Shows the expected loss beyond VaR [𝑞](𝑍). 

 

Overall recommentdations for the insurance compamies: 

I. At different confidence levels, VaR provides a clear threshold for potential losses. For example, at a 

99% confidence level, the maximum expected loss is significantly higher than at a 70% confidence level. 

Insurance companies should use these thresholds to set their risk appetite and capital reserves. 

II. TVaR, TV, and TMV metrics highlight the importance of considering not just the threshold loss (VaR) 

but also the average and mean values in the tail of the loss distribution. These metrics suggest that losses 

beyond the VaR threshold can be substantial, especially at higher confidence levels. 

III. Insurance companies should allocate sufficient capital reserves to cover potential losses, especially at 

higher confidence levels. For instance, at a 99% confidence level, the higher TVaR values indicate that 

significant additional capital may be required to cover extreme losses. 

IV. Adjust capital reserves dynamically based on the changing risk landscape and updated risk assessments. 

This will ensure that companies remain well-capitalized even in the face of unexpected large losses. 

V. The insights from TVaR and EL suggest that tail risks can have substantial financial impacts. Insurance 

premiums should be priced to reflect these risks adequately, ensuring that the company can cover 

extreme events. 

VI. Develop stringent underwriting guidelines that take into account the full distribution of potential losses, 

not just the most likely outcomes. This can help in minimizing exposure to high-risk policies. 

VII. Diversify the portfolio of insured risks to reduce the impact of extreme losses from any single source. 

This can help in mitigating the overall risk exposure. 

VIII. Utilize reinsurance effectively to transfer a portion of the risk, especially for high-severity, low-

frequency events. Reinsurance can help in managing capital requirements and protecting the company 

from catastrophic losses. 

IX. Ensure that the company's risk management practices and capital reserves meet regulatory requirements, 

which often consider high-confidence level metrics like those at 99%. 

X. Maintain transparency in reporting risk metrics and capital adequacy to stakeholders, including 

regulators, investors, and policyholders. This can build trust and demonstrate the company's commitment 

to robust risk management. 

XI. Conduct regular stress tests and scenario analyses to understand the impact of extreme events on the 

company's financial health. Use these insights to refine risk management strategies and improve 

resilience. 

XII. Develop contingency plans for different adverse scenarios, ensuring that the company is prepared to 

respond effectively to a range of potential risks. 
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