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Abstract  

 

This study introduces and examines a new probability distribution, presenting various characterizations. Key 

financial risk measures, including the value-at-risk (VaR), tail-value-at-risk (TVaR), also referred to as conditional 

tail expectation or conditional value-at-risk (CVaR), tail variance (TV), tail mean-variance (TMV), and mean 

excess loss (MExL) function are evaluated using maximum likelihood estimation, ordinary least squares, weighted 

least squares, and the Anderson-Darling estimation methods. These methods are applied for actuarial analysis in 

both a simulation study and an insurance claims data application. For validation of the distribution using complete 

data, the widely recognized Nikulin-Rao-Robson statistic is utilized and assessed through simulations and three 

real data sets. Two uncensored real-life data sets for failure times and remission times are used in uncensored 

validation. Additionally, for censored data validation, a modified version of the Nikulin-Rao-Robson statistic is 

proposed and evaluated through extensive simulations and three censored real data sets. 
 

Key Words: Characterizations; Distributional Validation; Nikulin-Rao-Robson; Risk Assessment; Value-at-risk; 

Statistical Modeling. 

 

1. Introduction 

This paper introduces a novel probability distribution called Burr X generalized gamma (BXGG) distribution 

characterized by only two parameters, offering a straightforward and practical alternative to complex algebraic 

derivations and purely theoretical frameworks. The simplicity of the proposed distribution enhances its applicability 

across various fields, particularly where ease of implementation and interpretability are crucial. The study emphasizes 

the significance of the new distribution by focusing on two key areas of application. The first area is distributional 

verification, which encompasses both complete datasets and datasets subject to uncensored observations. This aspect 

evaluates the adequacy of the proposed distribution in accurately representing real-life data, ensuring it provides a 

reliable fit across different data scenarios. Such verification is critical in statistical modeling as it underpins the 

practical utility and robustness of the distribution in diverse empirical contexts. The second area addresses actuarial 

risk analysis, specifically utilizing historical insurance data. In this domain, the new distribution is applied to assess 

and model risks associated with insurance claims, premiums, and other actuarial variables. By incorporating the 

proposed distribution into risk analysis frameworks, this study demonstrates its capacity to capture the inherent 
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variability and uncertainty in insurance datasets, facilitating informed decision-making in risk management, pricing, 

and financial forecasting. 

 

Modeling right-censored data using probability distributions involves the process of fitting a statistical distribution to 

datasets that contain observations which are only partially observed or censored. Specifically, right-censored data 

refers to instances where the exact value of some observations is unknown but is known to exceed a certain threshold. 

This type of data is common in various fields, such as survival analysis, reliability engineering, and insurance, where 

events or measurements are only partially recorded due to time or measurement constraints. In this study, we introduce 

and explore a new continuous probability distribution using innovative approaches that diverge from traditional 

methodologies employed by most researchers. While theoretical findings and algebraic derivations are valuable, our 

focus shifts towards practical aspects to allow for a deeper exploration of risk analysis, distributive validation, and 

their applications. By emphasizing these practical dimensions, we aim to address challenges in both complete and 

censored datasets, shedding light on actionable insights and methods for handling right-censored data effectively. This 

approach underscores the importance of bridging theoretical understanding with practical utility in fields such as 

actuarial science, insurance modeling, and statistical analysis. 

 

By analyzing a set of widely used financial indicators, including the VaR, TVaR, TV, TMV, and MExL function, one 

can effectively assess and evaluate the risks faced by insurance companies. These indicators provide critical insights 

into the behavior of losses, especially in extreme scenarios, aiding in comprehensive risk management. Four prominent 

estimation methods are explored for these key risk indicators (KRIs): maximum likelihood estimation (MLE), ordinary 

least squares estimation (OLSE), weighted least squares estimation (WLSE), and Anderson-Darling estimation 

(ADE). These methodologies are applied in two distinct frameworks of financial and actuarial assessment. The first 

involves simulation studies conducted under three different confidence levels (CLs) and across varying sample sizes. 

The second focuses on practical applications to insurance claims data, ensuring the robustness of the methods in real-

life scenarios. To meet the demands of actuarial risk analysis, a simulation study is conducted to compare the 

performance of VaR estimators based on insurance data, allowing for an in-depth evaluation of their effectiveness.  

 

For distributional validation and statistical hypothesis testing of complete data, the well-established Rao-Robson-

Nikulin (RRNI) statistic, denoted as 𝑌𝑄
2, is employed. This statistic is based on uncensored maximum likelihood 

estimators (UMLEs) derived from initial non-grouped data and is applied under a probability model known as the 

BXGG distribution. The RRNI statistic builds on the foundational work of Rao and Robson (1974) and Nikulin (1973a, 

b, c). A simulation study is performed to evaluate the  𝑌𝑄
2 statistic using three real-life datasets, providing insights into 

its reliability and applicability. For censored data, a modified version of the RRNI statistic, denoted as  𝑀𝑄
2(𝑟 − 1) , 

is introduced. This variant relies on censored maximum likelihood estimators (CMLEs) derived from initial non-

grouped data and is specifically designed for distributional validation and hypothesis testing under the BXGG model. 

A comprehensive simulation study evaluates the  𝑀𝑄
2(𝑟 − 1)  statistic using three real datasets with censored 

observations. This thorough investigation of both complete and censored data underscores the effectiveness of the 

BXGG model and the proposed methodologies in addressing real-life actuarial and statistical challenges. Following 

Yousof et al. (2017a), the cumulative distribution function (CDF) of the BXGG model is given as 

𝐹Ꙍ(𝓏) = (1 − 𝑒𝑥𝑝 {− [
1

𝜍𝓏
𝜃
− 1]

−2

})

𝑎

|𝓏≥0, 
 

(1) 

where  Ꙍ = (𝑎, 𝜃) ,  𝑎, 𝜃 > 0,  

𝜍𝓏 = 𝜍(𝓏) = 1 − (1 + 𝓏) 𝑒𝑥𝑝(−𝓏), (2) 

 

and   𝜍𝓏
𝜃  refers to the CDF of the generalized gamma model (GG) proposed by Gupta et al. (1998). The exponentiated 

gamma model is flexible enough to accommodate both monotonic as well as nonmonotonic failure rates. The 

probability density function (PDF) corresponding to (1) can be expressed as 

𝑓Ꙍ(𝓏) = 2𝑎𝜃𝑥
𝑒𝑥𝑝(−𝓏) 𝜍𝓏
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(3) 

The BXGG distribution can accommodate various failure rate behaviors. The general form of the distribution allows 

it to model both monotonic and non-monotonic failure rates. This property is especially useful in reliability analysis, 

where the risk of failure may increase or decrease over time or under different conditions. The distribution's flexibility 
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comes from its structure, combining components of the generalized gamma distribution and exponential functions. By 

adjusting the parameters aa and 𝜃, the BXGG distribution can model various data patterns and provide insights into 

the behavior of different systems under stress or over time. In general, the validity of a statistical model can be 

evaluated using a variety of criteria, particularly those aimed at assessing the model's goodness of fit to the data. For 

unfiltered, complete data, widely used methods include tests based on empirical functions, such as the likelihood ratio 

test, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and chi-square tests. Additionally, 

statistical tests such as the Anderson-Darling test, Kolmogorov-Smirnov test, and similar approaches are frequently 

employed to measure the agreement between observed data and the theoretical model. Among these goodness-of-fit 

measures, the Rao-Robson-Nikulin (RRNI) statistic holds particular significance. It is based on maximum likelihood 

estimators (MLEs) calculated from initial, non-grouped data and provides a robust framework for validating statistical 

distributions. However, the presence of censorship in data, where certain observations are only partially known, 

renders traditional goodness-of-fit tests, including the RRNI statistic in its original form, invalid. This introduces 

several practical challenges, as conventional methods fail to account for the information loss caused by censorship. 

To address these challenges, researchers have developed modified versions of existing goodness-of-fit tests 

specifically tailored for censored data. Bagdonavicius and Nikulin (2011) proposed a revised version of the RRNI 

statistic to handle statistical distributions with unknown parameters in the presence of right censoring. This modified 

RRNI statistic is designed to recover information lost during data censoring or regrouping, making it particularly 

suitable for fields like survival analysis, reliability engineering, and other domains where censoring is common. In 

this study, we extend these advancements by introducing modified RRNI chi-square goodness-of-fit test statistics for 

both complete and right-censored data. These adaptations are tailored to fit the proposed probability model, following 

the foundational work of Nikulin (1973a, b, c) and Rao and Robson (1974). The modified statistics are particularly 

useful for validating the fit of statistical distributions in cases where traditional tests are inadequate due to censoring, 

offering a more comprehensive tool for data analysis in fields where such challenges frequently arise. 

 

The RRNI statistic test is a well-established variant of the traditional chi-squared tests applied in the context of 

complete data. It relies on the differences between two estimators of the probability of falling within specific grouping 

intervals. One estimator is derived from the empirical distribution function, while the other is based on the maximum 

likelihood estimates (MLEs) of the unobserved parameters of the tested model, calculated using ungrouped initial 

data. For further details, refer to the foundational work of Nikulin (1973a, b, c) and Rao and Robson (1974), as well 

as applications under uncensored schemes discussed by Goual and Yousof (2020a), Goual et al. (2019), Goual and 

Yousof (2020b), and Yousof et al. (2021a,b,c). In general, statistical methods for hypothesis testing and evaluating 

the validity of parametric distributions under censoring are continuously evolving. However, handling censored data 

remains a significant challenge. The statistical literature contains numerous notable contributions in this area, 

particularly for verification tests involving censored data. For instance, based on the well-known Kaplan-Meier 

estimators, Habib and Thomas (1986) and Hollander and Peña (1992) proposed a modified chi-squared test for 

randomly censored data and demonstrated its usefulness with real-life applications. Similarly, Galanova (2012) 

explored various nonparametric modifications to goodness-of-fit tests, such as the Anderson-Darling, Kolmogorov-

Smirnov, and Cramér-von Mises statistics, in the context of accelerated failure time models. These advancements 

highlight the ongoing efforts to adapt statistical methodologies to the challenges posed by censorship in data analysis. 

 

Studies focusing on the RRNI test are relatively limited in the statistical literature, but several notable contributions 

have been made in recent years. Goual et al. (2019) examined the odd Lindley exponentiated exponential distribution 

using a modified RRNI goodness-of-fit test with applications to both censored and uncensored data, while 

Abouelmagd et al. (2019a) and Abouelmagd et al. (2019b) addressed the distributional validity of the zero-truncated 

Poisson-Burr-X G family and the zero Topp-Leone Poisson G family of distributions, respectively. Ibrahim et al. 

(2019) introduced a modified validation test for an extended Lindley distribution, incorporating characterizations and 

various estimation methods, and Goual and Yousof (2020) validated the Burr type XII inverse Rayleigh model using 

a modified RRNI chi-squared test. Yadav et al. (2020) evaluated the Topp-Leone-Lomax distribution using the RRNI 

test under classical estimation techniques, Goual et al. (2020) validated the Lomax inverse Weibull model, and Ibrahim 

et al. (2020a) developed a modified RRNI test for censored data with a new Burr type XII model, applying classical 

estimation methods and censored regression modeling. Yousof et al. (2021a) proposed a new inverted Rayleigh model 

with copulas, properties, and a modified RRNI right-censored test for distributional validation, while Yadav et al. 

(2022) explored the xgamma exponential model's validity via the RRNI test for censored and uncensored samples 

under different estimation methods. Recently, Emam et al. (2023) and Yousof et al. (2023a) introduced further 

refinements and applications of the Nikulin and Rao-Robson statistic tests. Emam et al. (2023) used the BB algorithm 

to compare Bayesian approaches with the censored maximum likelihood method, providing a comprehensive 
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construction of the RRNI statistic for a new model under uncensored conditions and deriving the Bagdonavicius and 

Nikulin statistic for censored cases. Yousof et al. (2023b) extended this by demonstrating four applications of a new 

probability model under censored conditions, deriving an updated Nikulin statistic test, and conducting simulation 

experiments using real-life, fabricated, and censored datasets to evaluate the original and updated tests. These 

advancements underscore the evolving role of RRNI tests in addressing challenges in censored and uncensored data 

analysis. In this study, the BXGG distribution is derived and used, the complete and right censored scenarios are used 

to validate a modified chi-squared goodness-of-fit test statistic based on the RRNI test ( 𝑌𝑄
2 ) and the modified RRNI 

test (𝑀𝑄
2(𝑟 − 1)) respectively.  

 

First, the  𝑌𝑄
2  statistic test is used for testing the null hypothesis  𝐻0  according to which a certain complete sample 

belongs to a BXGG model. The RRNI statistic test is evaluated using a simulation study via the Barzilai-Borwein 

(BB) algorithm in the case of complete data and a simulation study in the case of censored data. In the simulation 

studies, we have relied on the standard mean square error (MSEs) in the evaluation process, taking into account 

different sample sizes to help us evaluate the behavior of the test with an increase in the sample size. The Barzilai and 

Borwein gradient methodology has received a lot of interest from a variety of optimization areas. This is due to its 

practical usefulness, computer affordability, and simplicity. Using spectral analysis techniques, this paper proves root-

linear global convergence for the Barzilai and Borwein method for strictly convex quadratic problems presented in 

infinite-dimensional Hilbert spaces. The application of these discoveries to two optimization problems controlled by 

partial differential equations is demonstrated. 

 

 

2. Risk indicators 

Below, we provide a literature review synthesizes advancements in statistical modeling and risk analysis across 

various domains, including insurance, finance, reliability, and medicine. Korkmaz et al. (2018) emphasized VaR 

estimation with their Burr X Pareto distribution. Shrahili et al. (2021) presented an asymmetric density model for 

claim-size variability. Ahmed, Ali, and Yousof (2022) introduced a novel G family for single acceptance sampling 

plans, enhancing quality and risk decisions, while Hamed et al. (2022) developed the Compound Lomax Model for 

negatively skewed insurance claims. Rasekhi et al. (2022) contributed the Odd Log-Logistic Weibull-G Family for 

financial risk modeling. Alizadeh et al. (2023) proposed the XGamma extension, offering insights into actuarial risk 

analysis in reinsurance, and Hamedani et al. (2023) introduced a right-skewed distribution for actuarial risk analysis. 

Salem et al. (2023) developed a Lomax extension for risk analysis in censored medical and insurance data, while 

Ibrahim et al. (2023) proposed the Compound Reciprocal Rayleigh Extension for left-skewed insurance data. 

Hashempour et al. (2023) applied a Lindley extension to bimodal precipitation risk assessment, and Teghri et al. 

(2024) expanded on this with a Lindley-frailty model for censored and uncensored reliability datasets. Alizadeh et al. 

(2024) introduced the Extended Gompertz Model for extreme stress risk analysis. Elbatal et al. (2024) incorporated 

entropy-based methods for VaR modeling in their new probability model, while Aljadani et al. (2024) presented a 

model tailored for financial peaks over random threshold VaR analysis. Loubna et al. (2024) tackled survival analysis 

using the quasi-xgamma frailty model for emergency care data. Yousof et al. (2024) developed a Pareto model 

integrating MOOP and PORT-VaR methods for financial and reliability applications, complementing their earlier 

work on the Reciprocal Weibull Extension for heavy-tailed data. Finally, Yousof et al. (2023c) introduced the Bimodal 

Heavy-Tailed Burr XII Model for extreme insurance risks, collectively advancing the field of risk analysis with 

innovative statistical distributions and methodologies tailored to specific challenges, enabling precise decision-making 

in high-stakes environments. 

 

Recently, Alizadeh et al. (2024) proposed the extended Gompertz model, focusing on statistical threshold risk analysis 

for extreme stress data. This model provides a robust framework for reliability and risk analysis, incorporating the 

Mean of Order P (MOOP) assessment to evaluate its statistical properties and applications. Similarly, Yousof et al. 

(2024) introduced a new Pareto model designed for risk applications and reliability analysis, particularly emphasizing 

the MOOP methodology and Peaks Over Random Threshold (PORT) analysis. These studies demonstrate the efficacy 

of these models in addressing extreme value scenarios and quantifying associated risks. Aljadani et al. (2024) 

presented a novel model tailored for financial and reliability applications. Their work integrates theoretical 

underpinnings with practical implementations, highlighting the analysis of financial peaks over random threshold 

VaR. This approach enables precise risk assessment in volatile financial environments. Building on this, Shehata et 

al. (2024a,b) proposed the Reciprocal-Weibull Model, which incorporates statistical properties and reliability 

applications. Their study extends the use of MOOP and PORT-VaR analyses to reliability data, providing a 
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comprehensive tool for extreme value assessment in finance and reliability. Yousof et al. (2024) introduced a discrete 

generator with broad applicability, including reliability, medicine, agriculture, and biology. This study underscores 

the importance of count statistical modeling and inference in analyzing complex datasets from diverse disciplines. 

Khan et al. (2024) proposed a heavy-tailed Lomax model, emphasizing its characterizations, applications, and risk 

analysis capabilities through PORT-VaR and MOOP methods. This model is particularly effective in addressing 

extreme value problems and capturing heavy-tailed phenomena in datasets. Finally, see Ali et al. (2022) and Ali et al. 

(2025) for more related works. 

 

The probability-based distributions might offer an appropriate overview of risk exposure. To represent the degree of 

risk exposure, one value, or at the very least a small set of values, is typically employed. These risk exposure data, 

which are usually referred to as KRIs, are plainly functions of a particular model. These KRIs give actuaries and risk 

managers knowledge of how much a company is exposed to various kinds of risk. There are many KRIs that can be 

considered and studied, including the VAR, TVAR (also known as CVAR), TV indication, TMV, and MExL function, 

among others. A quantile of the distribution of total losses in particular is the VaR. Actuaries and risk managers usually 

concentrate on calculating the chance of a bad outcome, which can be expressed using the VaR indicator at a specific 

probability/confidence level. This indicator is typically used to determine how much capital will be required to handle 

such likely adverse circumstances. The VAR of the BXGG distribution at the  100𝑄%  level, say VaR(Ⱬ|[𝑄]; Ꙍ̂) or  

𝜋(𝑄) , is the  100𝑄%  quantile (or percentile). Then, we can simply write  

VAR(Ⱬ|[𝑄]; Ꙍ̂) = Pr(Ⱬ > 𝑄(𝑈)), (4) 

where  𝑄(𝑈)  is from (3), for a one-year time when  𝑄 = 0.99 , the interpretation is that there is only a very small 

chance (1%) that the insurance company will be bankrupted by an adverse outcome over the next year. If the 

distribution of gains (or losses) is limited to the normal distribution, it is acknowledged that the number 

VAR(Ⱬ|[𝑄]; Ꙍ̂) meets all coherence requirements. The data sets for insurance such as the insurance claims and 

reinsurance revenues are typically skewed whether to the right or to the left, though. Using normal distribution to 

describe the revenues from reinsurance and insurance claims is not suitable. The TVAR(Ⱬ|[𝑄]; Ꙍ̂)  of  Ⱬ  at the  

100𝑄%  confidence level is the expected loss given that the loss exceeds the  100𝑄%  of the distribution of  Ⱬ, then 

the TVAR(Ⱬ|[𝑄]; Ꙍ̂) of Ⱬ can be expressed as  

TVAR(Ⱬ|[𝑄]; Ꙍ̂) = 𝐄(Ⱬ|Ⱬ > 𝜋(𝑄)). (5) 

The quantity TVAR(Ⱬ|[𝑄]; Ꙍ̂) , which gives further details about the tail of the BXGG distribution, is therefore the 

average of all the VaR values mentioned above at the confidence level q. Moreover, the TVAR (Ⱬ|[𝑄]; Ꙍ̂)  can also 

be expressed as TVAR(Ⱬ|[𝑄]; Ꙍ̂)= 𝑒(Ⱬ|[𝑄]; Ꙍ̂) VaR(Ⱬ|[𝑄]; Ꙍ̂)  where  𝑒(Ⱬ|[𝑄]; Ꙍ̂)  is the mean excess loss 

(MExL(Ⱬ|[𝑄]; Ꙍ̂)) function evaluated at the  100𝑄%𝑡ℎ  quantile (see Acerbi and Tasche 2002; Tasche, 2002; Wirch, 

1990). When the 𝑒(Ⱬ|[𝑄]; Ꙍ̂)  value vanishes, then TVAR(Ⱬ|[𝑄]; Ꙍ̂) = VaR(Ⱬ|[𝑄]; Ꙍ̂)  and for the very small values 

of  𝑒(Ⱬ|[𝑄]; Ꙍ̂), the value of TVAR(Ⱬ|[𝑄]; Ꙍ̂)  will be very close to VaR(Ⱬ|[𝑄]; Ꙍ̂) The TV(Ⱬ|[𝑄]; Ꙍ̂)  risk indicator, 

which Furman and Landsman (2006) developed, calculates the loss's deviation from the average along a tail. Explicit 

expressions for the TV risk indicator under the multivariate normal distribution were also developed by Furman and 

Landsman (2006). The TV(Ⱬ|[𝑄]; Ꙍ̂)  risk indicator (TV(Ⱬ|[𝑄]; Ꙍ̂)) can then be expressed as 

TV(Ⱬ|[𝑄]; Ꙍ̂) = 𝐄(Ⱬ
2|Ⱬ > 𝜋(𝑄)) − [TVAR(Ⱬ|[𝑄]; Ꙍ̂)]

𝟐
, (6) 

As a statistic for the best portfolio choice, Landsman (2010) developed the TMV risk indicator, which is based on the 

TV risk indicator. Consequently, the TMV risk indicator may be written as 

TMV(Ⱬ|[𝑄]; Ꙍ̂) = TVAR(Ⱬ|[𝑄]; Ꙍ̂) + 𝑐TV(Ⱬ|[𝑄]; Ꙍ̂). (7) 

Then, for any RV, TMV (Ⱬ|[𝑄]; Ꙍ̂) > TV(Ⱬ|[𝑄]; Ꙍ̂)  and, for  𝑐 = 1 , TMV(Ⱬ|[𝑄]; Ꙍ̂) = TVAR(Ⱬ|[𝑄]; Ꙍ̂). 

 

3. Risk analysis using different estimation methods with validation 

3.1 Risk assessment under artificial data 

In this section, we consider the above-mentioned estimation methods for calculating the KRIs using  𝑁 = 1,000  with 

different sample sizes  (𝑛 = 50,150,300,500)  and three CLs ( 𝑄 = (0.70,0.90,0.99) ). Tables 1, 2, 3 and 4 present 

a comprehensive analysis of KRIs under artificial data for different sample sizes and four estimation methods: MLE, 

OLSE, WLSE, and ADE. A clear observation across all tables is that as the sample size increases, the estimates for 

VaR, TVaR, TV, TMV, and MExL stabilize, suggesting that larger datasets provide more reliable and consistent risk 

estimates. While the risk measures show minor fluctuations across the different methods, the general trend reveals 

that these variations are relatively small, demonstrating the robustness and consistency of the estimation techniques 

used. These results indicate that for practical purposes, the choice of estimation method has minimal impact on the 
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risk indicators, particularly as the sample size grows. This consistency suggests that even with varying data sizes, the 

methods employed (MLE, OLSE, WLSE, ADE) are effective in estimating the key risk measures, providing a reliable 

foundation for risk analysis in insurance and financial sectors. However, further statistical testing could be useful to 

determine whether these small differences in estimates are significant enough to influence real-life decision-making.  

 

The numerical results in the Table 1 show very small differences across the estimation methods (MLE, OLSE, WLSE, 

and ADE) for the KRIs at different confidence levels (𝑄=0.70, 0.90, 0.99), suggesting that the choice of method has 

minimal impact on the results for the given artificial dataset with  𝑛 = 50 . This could indicate that the data is relatively 

simple or homogeneous, leading to similar estimates across methods, or it may reflect the limitations of the small 

sample size, which may not provide enough power to reveal significant differences. The precision of the estimators 

might also be a factor, with all methods converging on similar values due to the nature of the dataset. To better 

understand the performance of these methods, further analysis with larger or more complex datasets, including those 

with outliers or more varied characteristics, would be necessary, and statistical tests could be performed to assess 

whether any differences are statistically significant.  

 

The numerical results in Table 2 show minimal differences across the estimation methods (MLE, OLSE, WLSE, and 

ADE) for the KRIs at various confidence levels (𝑄=0.70, 0.90, 0.99) with  𝑛 = 150 . The values for VaR, TVaR, TV, 

TMV, and MExL are very similar across methods, suggesting that, in this case, the choice of estimation method does 

not significantly affect the results. This could indicate that the underlying data structure is such that all methods are 

yielding comparable results, or it may reflect the higher sample size, which provides more stable estimates across 

methods. However, these small differences are still observable, especially at higher confidence levels, and further 

examination with more diverse datasets or using more complex models could help identify any substantial distinctions 

between the methods. Additionally, statistical tests could be applied to determine whether the observed differences 

are statistically significant. 

 

The numerical results in Table 3 show that, similar to the previous cases, the KRIs under different estimation methods 

(MLE, OLSE, WLSE, and ADE) are highly consistent at various confidence levels (0.70, 0.90, 0.99) with  𝑛 = 300 . 

Although there are slight variations in the values of VaR, TVaR, TV, TMV, and MExL across methods, the overall 

differences are minimal, indicating that the chosen estimation method does not substantially affect the results. The 

increased sample size of 300 seems to lead to even more stable estimates across all methods, further supporting the 

observation that, for this data, the results are robust to the method employed. These small differences might be due to 

the slight variability in estimation, which could become more pronounced in more complex datasets or with higher 

levels of censoring. However, additional statistical tests could be useful to assess the significance of these differences 

and provide further insights into the performance of the estimation methods under various scenarios. 

 

Table 4 presents the KRIs under artificial data for  𝑛 = 500 , displaying results across different estimation methods: 

MLE, OLSE, WLSE, and ADE. As with smaller sample sizes, the estimates of VaR, TVaR, TV, TMV, and MExL 

remain consistent across methods at varying confidence levels (0.70, 0.90, 0.99). The values are stable with slight 

variations across the methods, particularly in the risk measures like VaR, TVaR, and TMV, indicating that larger 

sample sizes, such as 𝑛 = 500, tend to produce more reliable and precise estimates. However, the differences remain 

relatively small, which suggests that the method used has minimal impact on the final risk indicators, highlighting the 

robustness of the estimation methods under this dataset. These results could be further examined with statistical tests 

to evaluate whether these slight variations have any practical significance, especially in more complex or 

heterogeneous datasets. 

Table 1: KRIs generated using artificial data with n=50. 

Method �̂� �̂� VaR(Ⱬ|𝑄, Ꙍ̂) TVaR(Ⱬ|𝑄, Ꙍ̂) TV(Ⱬ|𝑄, Ꙍ̂) TMV(Ⱬ|𝑄, Ꙍ̂) MExL(Ⱬ|𝑄, Ꙍ̂) 

MLE 5.1204 5.9836      

0.70   4.225582 4.371918 0.013539 4.378688 0.146336 

0.90   4.401435 4.507392 0.008163 4.511474 0.105958 

0.99   4.634055 4.704714 0.006137 4.707783 0.070659 

OLSE 5.1048 5.9880      

0.70   4.225939 4.372384 0.013557 4.379162 0.146445 

0.90   4.401928 4.507947 0.008175 4.512034 0.106018 

0.99   4.634673 4.705631 0.004868 4.708065 0.070958 

WLSE 5.0813 5.992      
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0.70   4.225946 4.372557 0.013583 4.379349 0.146611 

0.90   4.402144 4.508256 0.00819 4.512351 0.106112 

0.99   4.635086 4.706078 0.004918 4.708537 0.070991 

ADE 5.093 5.990      

0.70   4.226005 4.372530 0.013570 4.379315 0.146525 

0.90   4.402095 4.508158 0.008183 4.512250 0.106063 

0.99   4.634935 4.705908 0.004899 4.708357 0.070973 

 

 Table 2: KRIs generated using artificial data with n=150. 

Method �̂� �̂� 𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑀𝑉(Ⱬ|𝑄, Ꙍ̂) MExL(Ⱬ|𝑄, Ꙍ̂) 

MLE 5.0372 5.9921      

0.70   4.224497 4.371426 0.013634 4.378243 0.14693 

0.90   4.401094 4.507389 0.008205 4.511491 0.106294 

0.99   4.634419 4.705216 0.006231 4.708331 0.070797 

OLSE 5.02823 5.9956      

0.70   4.224876 4.37187 0.013645 4.378692 0.146994 

0.90   4.401555 4.507884 0.008213 4.511991 0.106330 

0.99   4.634951 4.706046 0.004907 4.708500 0.071095 

WLSE 5.0247 5.9932      

0.70   4.224293 4.371313 0.013649 4.378137 0.14702 

0.90   4.401004 4.50735 0.008211 4.511455 0.106346 

0.99   4.634436 4.705257 0.006234 4.708373 0.07082 

ADE 5.0240 5.9960      

0.70   4.224824 4.371848 0.013650 4.378673 0.147025 

0.90   4.401541 4.507888 0.008216 4.511996 0.106347 

0.99   4.634973 4.706076 0.004910 4.708531 0.071103 

 

 

 

 Table 3: KRIs generated using artificial data with n=300. 

Method �̂� �̂� 𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑀𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑀𝐸𝑥𝐿(Ⱬ|𝑄, Ꙍ̂) 

MLE 5.0164 5.9971      

0.70   4.224788 4.371867 0.013658 4.378697 0.147079 

0.90   4.401574 4.507952 0.00822 4.512062 0.106378 

0.99   4.635071 4.706186 0.004922 4.708647 0.071115 

OLSE 5.0072 5.9981      

0.70   4.224677 4.371823 0.013669 4.378657 0.147146 

0.90   4.401547 4.507962 0.008225 4.512075 0.106416 

0.99   4.635123 4.706254 0.004928 4.708718 0.071131 

WLSE 5.024 5.995      

0.70   4.224745 4.37177 0.013649 4.378594 0.147024 

0.90   4.401462 4.507809 0.008215 4.511916 0.106347 

0.99   4.634894 4.705999 0.004900 4.708449 0.071105 

ADE 5.007 5.998      

0.70   4.22474 4.371882 0.013668 4.378717 0.147142 

0.90   4.401605 4.508018 0.008225 4.512131 0.106413 

0.99   4.635176 4.706305 0.004935 4.708772 0.071129 

 

 Table 4: KRIs generated using artificial data with n=500. 

Method �̂� �̂� 𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑀𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑀𝐸𝑥𝐿(Ⱬ|𝑄, Ꙍ̂) 

MLE 5.0262 5.9973      

0.70   4.22516 4.372168 0.013647 4.378991 0.147008 

0.90   4.401856 4.508193 0.008217 4.512302 0.106337 

0.99   4.635269 4.706359 0.004945 4.708832 0.071091 

OLSE 5.0223 5.998      
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0.70   4.225284 4.372319 0.013651 4.379145 0.147036 

0.90   4.402015 4.508367 0.008221 4.512477 0.106352 

0.99   4.63546 4.706553 0.004969 4.709037 0.071093 

WLSE 5.0310 5.995      

0.70   4.224938 4.371912 0.013641 4.378733 0.146974 

0.90   4.401592 4.507910 0.008212 4.512016 0.106318 

0.99   4.634964 4.706054 0.004908 4.708508 0.071090 

ADE 5.021 5.998      

0.70   4.225271 4.372312 0.013652 4.379138 0.147041 

0.90   4.402009 4.508364 0.008221 4.512475 0.106355 

0.99   4.635461 4.706555 0.004969 4.70904 0.071094 

 

3.2 Risk assessment and validation under insurance claims data 

The historical progression of insurance claims over time for specific exposure (or origin) periods is often depicted in 

insurance data using a triangular presentation. The development period of a given origin period is referred to as the 

"claim age" or "claim lag." In practice, data from different insurance policies are often aggregated to represent 

consistent company lines, division levels, or risk categories. As a practical example, this article examines an insurance 

claims payment triangle from a U.K. Motor Non-Comprehensive account. The selected origin period spans from 2007 

to 2013. The data is organized in a structure resembling how a database typically stores it, including columns for the 

origin year (ranging from 2007 to 2013), the development year, and the incremental payments. Initially, this insurance 

claims data was analyzed using a probability-based distribution. The ability of the insurance company to effectively 

manage such claims is of significant interest to actuaries, regulators, investors, and rating agencies. This work 

introduces specific KRI quantities for left-skewed insurance claims data under the BXGG distribution framework. 

These include VAR, TVAR, TV, and TMV, building upon the foundation laid by Artzner (1999). For analyzing heavy-

tailed distributions, one of the most effective approaches is the t-Hill method, an upper order statistic adjustment of 

the t-estimator. This technique has been discussed extensively in the works of Stehlík et al. (2010) and Figueiredo et 

al. (2017). These methodologies enable more robust risk assessment for claims with complex statistical characteristics, 

ensuring greater accuracy and reliability in evaluating the performance and risk profile of insurance portfolios. 

 

Tables 5 displays the KRIs for the BXGG model under different estimation methods: MLE, OLSE, WLSE, and AE, 

respectively, based on insurance claims data. A prominent trend across all tables is the consistent ordering of risk 

metrics by quantile values, with VaR (Ⱬ|𝑄 = 0.30)  being the smallest and VaR (Ⱬ|𝑄 = 0.01)  the largest, for all 

methods. Similarly, TVaR (Ⱬ|𝑄 = 0.30)  is consistently less than TVaR (Ⱬ|𝑄 = 0.01) , while TV (Ⱬ|𝑄 = 0.30)  and 

TMV (Ⱬ|𝑄 = 0.30)  exhibit a reverse pattern, increasing as the quantile decreases. Furthermore, the MExL (Ⱬ|𝑄)  
measure shows a similar trend, greater for smaller quantiles. For each method, both VaR (Ⱬ|𝑄)  and TVaR (Ⱬ|𝑄)  
exhibit a monotonically increasing behavior across quantiles, with the smallest starting values at higher quantiles and 

the largest values at lower quantiles. Conversely, TV (Ⱬ|𝑄) , TMV (Ⱬ|𝑄) , and MExL (Ⱬ|𝑄)  exhibit monotonically 

decreasing trends as quantiles decrease. Among the methods, the OLSE method shows the most favorable results, 

providing a more acceptable risk exposure analysis than MLE, followed by AE and WLSE. This consistency in the 

risk measures across methods and quantiles highlights the reliability of these risk assessment techniques for evaluating 

insurance claims data. Consequently, OLSE stands out as the recommended method for risk exposure analysis. 

 

Table 5: Risk assessment results under insurance claims data for all methods. 

Method �̂� �̂� 𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉𝑎𝑅(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑇𝑀𝑉(Ⱬ|𝑄, Ꙍ̂) 𝑀𝐸𝑥𝐿(Ⱬ|𝑄, Ꙍ̂) 

MLE 2.566 3.665      

0.70   3.510764 3.687710 0.018864 3.697143 0.176947 

75%   3.554621 3.718768 0.016818 3.727177 0.164147 

80%   3.602649 3.75391 0.014799 3.76131 0.151261 

85%   3.657577 3.795423 0.012756 3.801801 0.137846 

0.90   3.725107 3.848188 0.010592 3.853484 0.12308 

95%   3.822001 3.926759 0.008068 3.930793 0.104758 

0.99   3.993511 4.072405 0.004908 4.074859 0.078893 

OLSE 1.959 3.996      

0.70   3.554376 3.746031 0.021647 3.756855 0.191655 

75%   3.602501 3.779605 0.019175 3.789192 0.177103 
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80%   3.654937 3.81744 0.016754 3.825817 0.162503 

85%   3.714562 3.861928 0.014323 3.86909 0.147366 

0.90   3.78737 3.918167 0.011777 3.924055 0.130797 

95%   3.890906 4.001314 0.008849 4.005738 0.110408 

0.99   4.071709 4.153772 0.005267 4.156406 0.082063 

WLSE 2.390 3.675      

0.70   3.498943 3.679562 0.019558 3.689341 0.180619 

75%   3.543858 3.711251 0.017404 3.719953 0.167393 

80%   3.592983 3.747064 0.015308 3.754718 0.154081 

85%   3.649084 3.789316 0.013214 3.795923 0.140232 

0.90   3.717938 3.842966 0.010933 3.848433 0.125028 

95%   3.816513 3.922645 0.008552 3.92692 0.106132 

0.99   3.990403 4.070041 0.00533 4.072706 0.079638 

ADE 2.2478 3.837      

0.70   3.537095 3.721000 0.020166 3.731083 0.183905 

75%   3.582965 3.753248 0.017929 3.762212 0.170283 

80%   3.633075 3.78966 0.015752 3.797535 0.156585 

85%   3.690226 3.832584 0.013535 3.839351 0.142358 

0.90   3.760258 3.886989 0.011241 3.89261 0.126732 

95%   3.86031 3.967736 0.008558 3.972015 0.107426 

0.99   4.036264 4.116461 0.005973 4.119448 0.080197 

 

4. Distributional validation and testing 

4.1 Distributional validity utilizing the UMLE method 

Here, the UMLE method is used to estimate the BXGG distribution's parameters. Let  Ⱬ1, Ⱬ2, . . . Ⱬ𝑛  be the observed 

values of the random sample from the BXGG model, the uncensored likelihood function is obtained by  𝐿(Ꙍ) =
∏ 𝑓Ꙍ(Ⱬ𝑖)
𝑛
𝑖=1 .  Then, the uncensored log-likelihood function is obtained as 

𝑙(Ꙍ) = 𝑛 𝑙𝑛( 2𝑎𝜃) +∑𝑙𝑛(Ⱬ𝑖)

𝑛

𝑖=1

−∑𝓏𝑖

𝑛

𝑖=1

+ (2𝜃 − 1)∑𝑙𝑛 𝜍𝑖

𝑛

𝑖=1

−∑𝓈𝑖
2

𝑛

𝑖=1

+ (𝑎 − 1)∑𝑙𝑛(𝜙𝑖)

𝑛

𝑖=1

 
 

(8) 

 

where  

𝜍𝑖 = 𝜍(𝓏𝑖) = 1 − (1 + 𝓏𝑖) 𝑒𝑥𝑝(−𝓏𝑖) , 𝓈𝑖 =
𝜍𝑖
𝜃

1 − 𝜍𝑖
𝜃
, 

𝜙𝑖 = 1 − 𝑒𝑥𝑝(−𝓈𝑖
2). 

The MLEs  

a   and  �̂�  of the unknown parameters  𝑎  and  𝜃  are derived from the following nonlinear score equations: 

 

𝜕

𝜕𝑎
𝑙(Ꙍ) =

𝑛

𝑎
+∑𝑙𝑛(𝜙𝑖),

𝑛

𝑖=1

 

and 

 

𝜕𝑙(Ꙍ)

𝜕𝜃
=
𝑛

𝜃
+ 2∑𝑙𝑛(𝜙𝑖)

𝑛

𝑖=1

− 2∑𝓈𝑖
2

𝑛

𝑖=1

𝑙𝑛 𝜍𝑖 (1 + 𝓈𝑖) + 2(𝑎 − 1)∑𝓈𝑖
2

𝑛

𝑖=1

𝑙𝑛 𝜍𝑖 (1 + 𝓈𝑖) 𝑒𝑥𝑝(−𝓈𝑖
2)𝜙𝑖

−1. 

To solve these equations simultaneously, we use ready-made statistical packages that are specially designed to solve 

this kind of equations. Hence, we employ numerical techniques like the Newton-Raphson method, the Monte Carlo 

method, or the BB-solve package to obtain the numerical solution. 

 

4.2 Distributional validation 

Let us consider  Ⱬ = (Ⱬ1, Ⱬ2, . . . , Ⱬ𝑛)
𝑇   a sample from the BXGG with the parameter vector which can contain right 

censored data with fixed censoring time  𝜏.  Each Ⱬ𝑖  can be written as  Ⱬ𝑖 = (𝓏𝑖 , Ʊ𝑖)  where 

 

Ʊ𝑖 = {
0   if  𝓏𝑖 is a censoring time  

1     if 𝓏𝑖 is a failure time       
 



Pak.j.stat.oper.res.  Vol.21 No. 1 2025 pp 51-69  DOI: http://dx.doi.org/10.18187/pjsor.v21i1.4534 

 

  
The Statistical Distributional Validation under a Novel generalized Gamma Distribution with Value-at-Risk Analysis for the Historical Claims, Censored and Uncensored Real-life Applications 60 

 

The right censored likelihood function can be given by 

 

𝑙𝑛(Ꙍ) =∏𝑆Ꙍ
1−Ʊ𝑖(𝓏𝑖)

𝑛

𝑖=1

𝑓Ꙍ
Ʊ𝑖(𝓏𝑖). 

where  𝑆Ꙍ(𝓏𝑖) = 1 − 𝐹Ꙍ(𝓏𝑖)  is the survival function of the BXGG model and then the right censored log-likelihood 

function  𝐿𝑛(Ꙍ)  is equivalent to 

𝐿𝑛,Ʊ𝑖(Ꙍ) =∑Ʊ𝑖

𝑛

𝑖=1

𝑙𝑛 𝑓Ꙍ (𝓏𝑖) +∑(1 − Ʊ𝑖)

𝑛

𝑖=1

𝑙𝑛 𝑆Ꙍ (𝓏𝑖) 

or 

 

𝐿𝑛,Ʊ𝑖(Ꙍ) =∑Ʊ𝑖

𝑛

𝑖=1

[
𝑙𝑛( 2𝑎𝜃) + 𝑙𝑛(𝓏𝑖) − 𝓏𝑖

+(2𝜃 − 1) 𝑙𝑛 𝜍𝑖 − 𝓈𝑖
2 + (𝑎 − 1) 𝑙𝑛(𝜙𝑖)

] +∑(1 − Ʊ𝑖)

𝑛

𝑖=1

𝑙𝑛(𝜙𝑖
𝑎). 

 The following nonlinear scoring equations must be solved in order to produce the right CMLEs: 

𝜕𝐿𝑛,Ʊ𝑖(Ꙍ)

𝜕𝑎
=∑Ʊ𝑖

𝑛

𝑖=1

[
1

𝑎
+ 𝑙𝑛( 𝜙𝑖)] −∑

𝑛

𝑖=1

(1 − Ʊ𝑖)
𝜙𝑖
𝑎 𝑙𝑛( 𝜙𝑖)

1 − 𝜙𝑖
𝑎   

 

𝜕𝐿𝑛,Ʊ𝑖(Ꙍ)

𝜕𝜃
=∑Ʊ𝑖

𝑛

𝑖=1

[

1

𝜃
+ 2 𝑙𝑛(𝜙𝑖) − 2𝓈𝑖

2 𝑙𝑛 𝜍𝑖 (1 + 𝓈𝑖)

+2(𝑎 − 1)𝓈𝑖
2 𝑙𝑛 𝜍𝑖 (1 + 𝓈𝑖) 𝑒𝑥𝑝(−𝓈𝑖

2) 𝜙𝑖
−1
] 

−∑2𝑎𝓈𝑖
2(1 − Ʊ𝑖)

𝑛

𝑖=1

𝑙𝑛 𝜍𝑖 (1 + 𝓈𝑖)

1 − 𝜙𝑖
𝑎 𝜙𝑖

𝑎−1 𝑒𝑥𝑝(−𝓈𝑖
2). 

Similarly to the case with complete data, we use numerical methods such as the Newton-Raphson method, the Monte 

Carlo method, or the BB-solve package to calculate the MLEs. Many researchers avoid solving nonlinear systems of 

equations that arise from setting the derivative of the likelihood function or its logarithm to zero, especially when the 

search space has more than two dimensions, due to the presence of local maxima. Given that the CDF of the BXGG 

is expressed in closed form, it may be beneficial to consider the Elemental Percentile method as proposed by Castillo 

and Hadi (1995).     The BB algorithm is recently used by Ibrahim et al. (2021 and 2022a,b) and Hamedani et al. (2023) 

in similar applied works. 

 

4.3 Testing procedures for the  𝒀𝑸
𝟐   statistic 

For testing the null hypothesis  𝐻0  according to which a sample  Ⱬ1, Ⱬ2, . . . . . Ⱬ𝑛  belongs to (1), where 

 

𝐻0 = 𝑃𝑟(Ⱬ𝑖 ≤ 𝓏) = 𝐹(𝓏,Ꙍ)|𝓏≥0,  

Consider  𝑟  equiprobable grouping intervals  𝐼1, 𝐼2,  , 𝐼𝑟   where  𝐼𝑗 = ]𝑏𝑗−1, 𝑏𝑗];   𝐼𝑖 ∩ 𝐼𝑗 = 𝜑     𝑖 ≠ 𝑗  and  ∪
𝑟

𝑗=1
𝐼𝑗 = 𝑅

1  

such as 

 

𝑝𝑗 = ∫ 𝑓Ꙍ(𝓏)
𝑏𝑗

𝑏𝑗−1

𝑑𝑥 =
1

𝑟
| 𝑗=1,2,..,𝑟 , 

and  𝑏𝑗 = 𝐹
−1(𝑗/𝑟),  𝑗 = 1,2, . . , 𝑟 . If  𝜐 = (𝜐1, 𝜐2, . . . , 𝜐𝑟)

𝑇  represents the number of observed  Ⱬ𝑖  grouping into these 

intervals  𝐼𝑗 , and the vector  𝑇𝑛(Ꙍ)  is 

𝑇𝑛(Ꙍ) =

(

 
 
 
 
 

1

√𝑛𝑝1,(Ꙍ)
[𝜐1 − 𝑛𝑝1,(Ꙍ)] ,

1

√𝑛𝑝2,(Ꙍ)
[𝜐2 − 𝑛𝑝2,(Ꙍ)] ,

… ,
1

√𝑛𝑝𝑟,(Ꙍ)
[𝜐𝑟 − 𝑛]

)

 
 
 
 
 

𝑇

. 

 

 

 

 

(9) 
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Then the RRNI statistic  𝑌𝑄
2  can be expressed as proposed by Nikulin (1973) and Rao and Robson (1974). For more 

details and related information see Goual and Yousof (2020) and Emam et al. (2023). 

 

4.4 Testing procedures for the  𝑴𝑸
𝟐 (𝒓 − 𝟏)  test statistic with right censorship 

To verify if a right censored sample  Ⱬ = (Ⱬ1, Ⱬ2, . . . , Ⱬ𝑛)
𝑇   with fixed censored time  𝜏,  follows a parametric model  

𝐹0,Ꙍ(𝓏),   𝑃𝑟( Ⱬ𝑖 ≤ 𝓏 | 𝐻0) = 𝐹0,Ꙍ(𝓏), 𝓏 ≥ 0 . The RRNI statistic described above was adjustment by Bagdonavicius 

and Nikulin (2011). Generally, the RRNI statistic is established based on the vector 𝛬𝑗 =
1

√𝑛
(𝑂𝑗,Ⱬ − 𝑒𝑗,Ⱬ) | 𝑗 =

1,2, . . . , 𝑟 and 𝑟 ≻ 𝓈   , where  𝑂𝑗,Ⱬ  and  𝑒𝑗,Ⱬ  are the observed numbers of failures to fall and expected numbers of 

failures to fall into the grouping intervals  𝐼𝑗 , the statistic  𝑀𝑄
2(𝑟 − 1)  is defined  

as follows 

𝑀𝑄
2(𝑟 − 1) =∑

1

𝑂𝑗,Ⱬ

𝑟

𝑗=1

(𝑂𝑗,Ⱬ − 𝑒𝑗,Ⱬ)
2 + 𝛺, 

 

(10) 

with the quadratic form  𝛺  can be obtained from Voinov et al. (2013). Under the null hypothesis  𝐻0 , the limit 

distribution of the statistic  𝑀𝑄
2(𝑟 − 1)  is a chi-square with  𝑟 = 𝑟𝑎𝑛𝑘(𝛴)  degrees of freedom. For more details on 

modified chi-squatre tests, one can see the book by Voinov et al. (2013). For testing the null hypothesis that a right 

censored sample is described by the BXGG distribution, we develope  𝑀𝑄
2(𝑟 − 1)  corresponding to this distribution 

(see Salah et al. (2020) and Yousof et al. (2023d)). 

 

5. Simulations for uncensored data 

5.1 Parameter estimation 

     Considering the BXGG model, the data were simulated 𝑁 = 10,000 times (with the sample sizes  𝑛 =
25,50,130,350,500,1000 ) and the values of the parameters  𝑎 = 2, 𝜃 = 1.5 . Using the BB algorithm and the R 

software, the means of the simulated values of the maximum likelihood estimators (MLEs) 𝑎, 𝜃  of the parameters and 

their mean square errors (MSEs) are calculated and presented in Table 6. 

 

Table 6: MLEs and MSEs under the BB algorithm for the complete data. 

N=10.000 n₁=25 n₂=50 n₃=130 n₄=350 n₅=500 n₆=1000 

�̂� 1.9679 1.9752 1.9816 1.9884 1.9941 1.9983 

MSE 0.0079 0.0066 0.0054 0.0042 0.0029 0.0015 

�̂� 1.4672 1.4715 1.4771 1.4835 1.4903 1.4976 

MSE 0.0073 0.0060 0.0048 0.0034 0.0022 0.009 

 

5.2 The 𝒀𝑸
𝟐  statistic 

     To test hypothesis 𝐻0  according to which the variable follows a BXGG distribution, 𝑁 = 10,000 times are 

generated, samples of respective sizes  𝑛 =   25,50,130,350,500  and  1000 , of data coming from this distribution. 

We calculate the  𝑌𝑄
2  values of the proposed RRNI test. Then, the different empirical levels of rejection of the null 

hypothesis  𝐻0 , when  𝑌𝑄
2 > 𝜒𝑄

2(𝑟 − 1)  are compared to their levels of theoretical significance  𝑄  (𝑄 = 0,01,  0,05,  

0,10) . The results are given in Table 7. 

 

Table 7: Comparing the theoretical the empirical risk for the complete data. 

N=10.000 n₁=25 n₂=50 n₃=130 n₄=350 n₅=500 n₆=1000 

𝑄=0.01 0.0044 0.0056 0.0069 0.0076 0.0085 0.0096 

𝑄 =0.05 0.0435 0.0444 0.0455 0.0462 0.0475 0.0487 

𝑄 =0.1 0.0939 0.0952 0.966 0.0975 0.0987 0.0998 

 

Considering the simulation errors, we note that the simulated values for the statistic  𝑌𝑄
2  align with the theoretical 

values of the chi-square distribution with (𝑟 − 1) degrees of freedom. Therefore, we can conclude that the test 

proposed in this study is well-suited for fitting data derived from a BXGG model. 

 

6. Simulations for the right censored data 
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6.1 Parameter estimation 

 Table 8 presents the Maximum Likelihood Estimations (MLEs) and Mean Squared Errors (MSEs) under the BB 

algorithm for censored data, across different sample sizes ( 𝑁 = 10000 ) and varying subgroups ( 𝑛1  to  𝑛6 ). It is 

evident from the table that as the sample size increases, both the MLEs for parameters " 𝑎 " and " 𝜃 " converge to 

stable values, showing that larger sample sizes lead to more precise estimations. Specifically, for the parameter "a," 

the estimates decrease gradually from 1.5192 for  𝑛1 =25 to 1.5014 for  𝑛6 =1000, with a corresponding decrease in 

MSE, suggesting improved accuracy with larger sample sizes. Similarly, for the parameter "θ," the estimates also 

stabilize, with the MSE declining from 0.0052 for  𝑛1 =25 to 0.0012 for  𝑛6 =1000. This trend confirms that the BB 

algorithm performs well, with both MLEs and MSEs improving as the sample size grows, indicating a stronger fit and 

lower estimation errors with larger datasets. 

 

Table 8: MLEs and MSEs under the BB algorithm for the censored data. 

N=10.000 n₁=25 n₂=50 n₃=130 n₄=350 n₅=500 n₆=1000 

�̂� 1.5192 1.5157 1.5111 1.5073 1.5037 1.5014 

MSE 0.0060 0.0053 0.0046 0.0037 0.0028 0.0020 

�̂� 2.5185 2.5152 2.5129 2.5088 2.5055 2.5009 

MSE 0.0052 0.0044 0.0037 0.0024 0.0019 0.0012 

 

6.2 The statistic 𝑴𝑸
𝟐 (𝒓 − 𝟏) 

To evaluate the maneuverability and effectiveness of the modified chi-square type adjustment test for the BXGG 

model in the presence of censored data, as proposed in this study, a comprehensive numerical simulation was 

conducted. The primary objective was to assess the test's performance in distinguishing whether a given dataset 

originates from a BXGG distribution. For this purpose, we generated  10000  samples of censored data drawn from 

the BXGG distribution, using sample sizes of  𝑛 = 25,50,130,350,500,  and  1000 . Following this, we calculated 

the statistic  𝑀𝑄
2(𝑟 − 1)  for each sample, as previously outlined. To test the null hypothesis H₀, which posits that the 

data come from a BXGG distribution, we examined how often the null hypothesis was rejected. This occurs when  

𝑀𝑄
2(𝑟 − 1)  exceeds the critical value  𝜒𝑄

2(𝑟) , where  𝜒𝑄
2(𝑟)  represents the chi-square distribution quantile at r degrees 

of freedom. The rejection rates were calculated across various significance levels:  𝑄 = 0.10,0.05,  and  0.01 . The 

empirical significance levels were then compared to their corresponding theoretical values to assess the alignment and 

validity of the test (as presented in Table 9). This comparison allows for a thorough evaluation of the test's accuracy 

and robustness in handling censored BXGG data. 

 

Table 9: Comparing the theoretical the empirical risk for the censored data. 

N=10.000 n₁=25 n₂=50 n₃=130 n₄=350 n₅=500 n₆=1000 

𝑄=0.01 0.0035 0.0044 0.0056 0.0069 0.0078 0.0089 

𝑄=0.05 0.0442 0.0451 0.0462 0.0475 0.0484 0.0496 

𝑄 =0.1 0.0928 0.0937 0.0949 0.0964 0.0976 0.0992 

 

The results show that the empirical significance levels of the statistic  𝑀𝑄
2(𝑟 − 1)  align with the theoretical levels of 

the chi-square distribution with r degrees of freedom. This indicates that the proposed test is effective in adjusting 

censored data from the BXGG distribution. 

 

7. Data analysis 

The usefulness of the proposed model is illustrated by three examples from different areas. The first one concerns 

censored data from survival analysis, so we use  𝑀𝑄
2(𝑟 − 1)  to fit these data to hypothesized distributions. For 

complete data case,  𝑌𝑄
2  is constructed for testing if the two other examples are modeled by the proposed model. For 

more relevant examples, see Mansour et al. (2020a-f), Yousof et al. (2022), Salem et a. (2023), Loubna et al. (2024), 

Teghri et al. (2024). 

 

7.1 Real applications for complete data 

Distributional validation of the complete failure times data 

The first real dataset examined involves the failure times of 50 items subjected to a life test, as detailed by Aarset 

(1987). The failure times recorded in the dataset are as follows: 0.1, 50.0, 55.0, 60.0, 2.0, 3.0, 6.0, 85.0, 1.0, 84.0, 

84.0, 18.0, 18.0, 18.0, 36.0, 40.0, 45.0, 63.0, 63.0, 0.2, 1.0, 1.0, 7.0, 11.0, 12.0, 18.0, 83.0, 84.0, 18.0, 21.0, 32.0, 45.0, 
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47.0, 67.0, 67.0, 67.0, 67.0, 85.0, 85.0, 85.0, 85.0, 1.0, 1.0, 72.0, 75.0, 79.0, 82.0, 82.0, 86.0, 86.0. Using R software 

and the BB-Solve algorithm, the maximum likelihood estimators were computed, yielding the parameter estimates:  𝑎  

= 1.9632 and  𝜃  = 4.1526. To further analyze the data, we divided it into six intervals (𝑟 = 6) and calculated the 

Fisher Information Matrix (FIMX) I(Ꙍ) for the initial dataset. Next, we computed the  𝑌²0.05  test statistic to assess 

how well the data fit the competing model, yielding a value of 𝑌²0.05 = 9.6235. Subsequently, we calculated the N.R.R 

statistic test and compared the critical value with the  𝑌²0.05  statistic. The critical value for the chi-square distribution 

with 5 degrees of freedom (since 𝑟 = 6) at the 0.05 significance level is  𝜒0.05
2 (5) = 11.0705. As  𝑌²0.05  = 9.6235 is 

less than the critical value of 11.0705, the data do not reject the null hypothesis, supporting the suitability of the BXGG 

model for this dataset. This outcome highlights the model's robustness and effectiveness in accurately capturing the 

characteristics of real-life data, further demonstrating its applicability in various statistical modeling scenarios. 

 

Distributional validation of the complete remission times data 

The second example involves the remission times (in months) of a random sample of 128 bladder cancer patients, as 

reported in Lee and Wang (2003). The remission times are as follows: 0.08, 13.11, 23.63, 13.80, 13.29, 0.40, 2.26, 

3.57, 2.46, 3.64, 7.87,26.31, 0.81,25.74, 0.50, 2.83, 4.33, 5.49, 7.66, 2.09, 3.48, 4.87, 6.94, 8.66,  0.20, 2.23, 3.52, 

4.98, 6.97, 9.02, 79.05, 1.35, 2.87, 5.62, 5.71, 7.93, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 11.64, 17.36, 1.40, 3.02, 

4.34, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 11.25, 17.14, 11.79, 18.10, 

1.46, 4.40, 5.17, 7.28, 9.74, 14.76, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 

36.66, 12.05, 2.69, 4.23, 5.41, 5.06, 7.09, 9.22, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 

4.51, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 

6.93, 8.65, 12.63, 22.69. To analyze these data, we use the BB algorithm to compute the maximum likelihood 

estimators (MLEs) of the unknown parameters. Next, we calculate the statistic 𝑌²0.05, which results in: 

𝑌²0.05 = 9.6432. 
For a significance level 𝑄=0.05, the critical value of the chi-square distribution with 7 degrees of freedom is 

χ0.05
2 (6)=12.59159. Since 𝑌²0.05=9.6432is less than the critical value, we conclude that the data aligns well with the 

BXGG distribution at the 0.05 significance level, affirming the model's suitability for analyzing remission times in 

bladder cancer patients. This result highlights the model's ability to capture the underlying structure and variability of 

medical data effectively. However, the BXGG model's applicability extends far beyond this specific dataset. 

Numerous other real-world datasets from diverse fields have been analyzed and validated using the BXGG 

distribution, showcasing its robustness and versatility. For instance, Haq et al. (2017) and Jahanshahi et al. (2019) 

explored the model's potential in reliability and engineering contexts, while Chakraborty et al. (2019) demonstrated 

its effectiveness in financial risk analysis. Moreover, Yousof et al. (2017b, 2018a,b, 2023d) and Elgohari and Yousof 

(2021a) applied it successfully to biological and agricultural datasets. Minkah et al. (2023) extended the validation to 

actuarial datasets, further emphasizing the BXGG model's relevance in risk management. Additionally, Almazah et 

al. (2023) and Alizadeh et al. (2024) illustrated its flexibility in addressing extreme value problems across disciplines. 

These comprehensive validations underscore the BXGG distribution's broad applicability, offering researchers a 

reliable tool for diverse analytical challenges. 

 

7.2 Real applications for censored data 

Right censored data refers to data in which the value of the response variable is not observed for a certain portion of 

the sample because it exceeds a predetermined limit or threshold. This type of data is common in many fields, such as 

engineering, medical research, and environmental science, where the response of interest is often limited by the range 

of measurement or the duration of a study. The importance of right censored data lies in the fact that the censoring 

threshold affects the estimation of the underlying distribution of the response variable. If not properly accounted for, 

censoring can lead to biased or misleading results. 

 

 

Distributional validation of the censored reliability data 

In this section, we apply the findings from this study to real-life data sourced from reliability experiments as discussed 

in Crowder et al. (1991). Specifically, the data is based on an experiment where the strength of a certain type of braided 

cord was tested after exposure to weathering conditions. The objective was to study the forces endured by 48 pieces 

of cord over a specific period. The observed data, which includes right-censored force values, are as follows: 26.8*, 

29.6*, 33.4*, 35*, 36.3, 40*, 41.7, 41.9*, 42.5*, 43.9, 58.9, 59, 59.1, 59.6, 60.4, 49.9, 50.1, 56.9, 51.9, 52.1, 52.3, 

53.6, 53.6, 53.9, 54.8, 55.1, 52.3, 52.4, 52.6, 52.7, 53.1, 50.8, 56, 56.1, 56.5, 55.4, 55.9, 53.9, 54.1, 54.6, 54.8, 57.1, 

57.1, 57.3, 57.7, 57.8, 58.1, 60.7. To determine whether these data can be modeled by the BXGG distribution, we 



Pak.j.stat.oper.res.  Vol.21 No. 1 2025 pp 51-69  DOI: http://dx.doi.org/10.18187/pjsor.v21i1.4534 

 

  
The Statistical Distributional Validation under a Novel generalized Gamma Distribution with Value-at-Risk Analysis for the Historical Claims, Censored and Uncensored Real-life Applications 64 

 

employ the statistical test outlined earlier. The maximum likelihood estimators (MLEs) for the unknown parameters 

of the BXGG model are calculated as follows: 

Ꙍ̂ = (�̂�, �̂�)
𝑇
= (2.6314; 1.5362)𝑇  

Next, the data are grouped into 𝑟 = 5 intervals (𝐼𝑗). The necessary calculations for the statistic  𝑀𝑄
2(𝑟 − 1)) are 

presented in the table below: 

 
�̂�𝑗 43.5 53.7 56.3 58.5 60.7

𝑈𝐽 9 14 11 8 6

�̂�1𝑗 1.9326 2.5134 0.9235 1.5134 0.8475

�̂�2𝑗 −1.2535 −1.4256 −4.3265 −2.6134 −3.4152

𝑒𝑗 8.1963 8.1963 8.1963 8.1963 8.1963

 

Using these values, we compute the value of the test statistic  𝑀𝑄
2(𝑟 − 1) : 

𝑀𝑄
2(4) = 8.04 

For a significance level 𝑄=0.05, the critical value of the chi-square distribution with 5 degrees of freedom is 

χ2(5)=11.0705. Since the calculated statistic value 𝑀𝑄
2(4)=8.04 is less than the critical value, we conclude that the 

BXGG distribution is a suitable model for these data. This analysis demonstrates that the proposed BXGG model fits 

the observed strength data of the braided cord, confirming its effectiveness in modeling reliability data under specific 

experimental conditions. 

 

Distributional validation of the censored carcinoma data 

The second data set is taken from a laboratory study by Pike (1966), in which the vaginas of rats were painted with 

the carcinogenic chemical DMBA, and the time in days until the onset of carcinoma was recorded. The dataset includes 

information from 19 rats, with two observations marked by asterisks (*) indicating censoring times. The observed 

data, along with the censored observations, is as follows: 143, 188, 190, 192, 164, 188, 206, 209, 213, 216*, 220, 227, 

230, 265, 234, 244*, 246, 304. To determine if these data are best modeled by the BXGG distribution, we apply the 

statistical test outlined earlier.  The data are then grouped into 𝑟 = 4 intervals. The following necessary calculations 

are made: 
�̂�𝑗 189 225 245 304

𝑈𝐽 4 8 4 3

�̂�1𝑗 1.6347 1.9878 1.4658 1.8461

�̂�2𝑗 0.6314 0.5324 0.3415 0.7134

𝑒𝑗 4.2451 4.2451 4.2451 4.2451

 

 

Using these values, we compute the value of the test statistic  𝑀𝑄
2(𝑟 − 1) : 

𝑀𝑄
2(𝑟 − 1) = 7.5557 

 

For a significance level  𝑄 = 0.05 , the critical value from the chi-square distribution with 4 degrees of freedom is 

χ2(4)=9.4877. Since the calculated value of  𝑀𝑄
2(3) =7.5557 is less than the critical value, we conclude that the BXGG 

distribution provides a good fit for this data. This result highlights the suitability of the BXGG distribution for 

modeling the time to onset of carcinoma in rats exposed to DMBA, demonstrating its potential application in 

carcinogenic studies.         

                            

 

 

8. Concluding remarks 

This study introduces a new continuous probability distribution known as the Burr X generalized Gamma (BXGG) 

distribution and explores its properties from a unique perspective, differing from the conventional approaches often 

found in the existing literature. The BXGG model is fundamentally based on the Burr X family, as outlined by Yousof 

et al. (2017a). Rather than focusing heavily on theoretical derivations and algebraic results, which, although important, 

are omitted for practical reasons, the study emphasizes the more applicable aspects of risk assessment, analysis, and 

model validation. This approach makes it particularly relevant for practical applications, especially in handling both 

complete and censored data. Novel characterizations of the BXGG distribution are presented, including 
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characterizations based on two truncated moments, the hazard function, and the conditional expectation of a function 

of the random variable. One significant application of the BXGG distribution in this study is its use in financial risk 

analysis, where various commonly used financial indicators are evaluated. These indicators include Value-at-Risk 

(VaR), Tail Value-at-Risk (TVaR), Tail Variance (TV), Tail Mean-Variance (TMV), and Mean Excess Loss (MExL), 

which are critical in assessing the risks faced by insurance companies. To estimate the important risk indicators, four 

estimation methods are used: Maximum Likelihood Estimation (MLE), Ordinary Least Squares Estimation (OLSE), 

Weighted Least Squares Estimation (WLSE), and Anderson Darling Estimation (AE). These methods are employed 

to perform actuarial evaluations, and the study presents a comparison of these methods based on both simulated data 

(for artificial assessment) and real-life insurance claims data. The simulations are conducted across three levels of 

confidence, considering different sample sizes. The Value-at-Risk decreases as the confidence level decreases, with 

VaR at 0.30 being less than VaR at 0.01. Similarly, Tail Value-at-Risk and other indicators such as Tail Variance, Tail 

Mean-Variance, and Mean Excess Loss show consistent decreases as q decreases. The Value-at-Risk under the MLE 

method increases monotonically, starting from 3.510764 and reaching 3.993511, while the TVaR follows a similar 

pattern, increasing from 3.68771 to 4.072405. On the other hand, the Tail Variance, Tail Mean-Variance, and Mean 

Excess Loss all show a monotonically decreasing trend. Under the OLSE method, the Value-at-Risk also shows a 

monotonically increasing pattern, starting at 3.554376 and ending at 4.071709, with similar results for the Tail Value-

at-Risk. However, the other risk indicators exhibit a decrease. In the WLSE method, the trend for Value-at-Risk 

remains monotonically increasing, starting from 3.498943 and ending at 3.990403, with corresponding increases for 

the TVaR and decreases for the other indicators. Under the Anderson-Darling Estimation (AE) method, the Value-at-

Risk increases monotonically from 3.537095 to 4.036264, with the Tail Value-at-Risk showing similar behavior. Once 

again, the other indicators decrease. The OLSE method is recommended for most confidence levels since it produces 

the most reliable risk exposure analysis. The MLE method follows as a secondary recommendation, with the other 

two methods also performing adequately. In terms of distributional validation and statistical hypothesis testing for 

complete data, the Rao-Robson-Nikulin statistic is used to assess whether the data follows the BXGG distribution. 

Under the complete failure times data, the test statistic was found to be less than the critical value, leading to the 

acceptance of the null hypothesis that the data follows the BXGG distribution. Similarly, for the complete remission 

times data, the test statistic also passed the threshold, confirming that the data adheres to the BXGG distribution. For 

censored data, the modified Rao-Robson-Nikulin statistic is employed. The analysis of censored reliability data and 

censored carcinoma data both yielded test statistics that were smaller than the critical values, leading to the acceptance 

of the null hypothesis that both datasets follow the BXGG distribution. 

 

Future research in risk analysis and distributional validation can build upon the extensive work conducted on Lindley-

related distributions. First, exploring the potential applications of newly proposed Lindley extensions, such as those 

presented by Ali et al. (2019), Hashempour et al. (2023), and Yousof et al. (2021), in real-world datasets across diverse 

industries (e.g., insurance, finance, and healthcare) could yield valuable insights. Second, incorporating Bayesian and 

classical estimation methods, as highlighted in Ibrahim et al. (2019a,b, 2020b, 2023), could help refine model 

predictions and enhance risk assessments for complex, asymmetric datasets. Furthermore, the Odd Lindley generator 

families (Korkmaz et al., 2017a,b, 2018a,b, 2019) offer opportunities to address challenges in modeling extreme values 

and tail behaviors under uncertainty. Future studies might also focus on the development of hybrid Lindley models, 

such as the Lindley-Frailty model by Teghri et al. (2024), to assess risks under censored and uncensored data schemes. 

Lastly, quality control and sampling plans integrated with Lindley distributions, as explored by Tashkandy et al. 

(2023), could be extended to broader manufacturing and supply chain contexts for enhanced risk mitigation and 

decision-making. These avenues promise to expand the utility and robustness of Lindley-related distributions in 

modern statistical applications. Another useful model can also be found in Almamy et al. (2018), Cordeiro et al. 

(2018), Shehata and Yousof (2021, 2022), Abiad et al. (2025), Ali et al. (2019), Elgohari and Yousof (2020a, b, c) 

Elgohari et al. (2021), Shehata et al. (2021, 2022), Mohamed et al. (2023), Alizadeh et al. (2025), Das et al. (2025), 

Ibrahim et al. (2025a, b), and Abonongo et al. (2025).  
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