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Abstract  
 
In this paper, a variable chart has been proposed to study a two-stage serial production process. Measurements of 

quality characteristics of products processed at each stage are assumed to be independent and follow normal 

distribution. In order to evaluate performance of the control chart, two cases of equal shifts in both the stages and 

unequal shifts were considered and results were presented accordingly. The necessary measures are given to 

calculate the average run length (ARL) for shifted processes. The tables of ARLs are presented for equal and 

different sample sizes at first- and second- stage. Performance of the proposed control chart is presented using a 

simulation study. 
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1. Introduction 

In the era of competition, manufacturing companies give due importance to statistical quality control (SQC) to monitor 

and control product quality. While control charts help in checking process quality, acceptance sampling is used in 

investigating product quality. Considering the process mean and process variability, control limits are derived for the 

statistic of the desired quality characteristic we wish to monitor and control. If the statistic (of the quality characteristic) 

is falling outside the control limits or any specific pattern is observed in the subsequent values of the statistic, the 

process is considered to be out-of-control state. Depending on the nature of the statistic of quality characteristic, a 

suitable sampling distribution of the statistic would be used to estimate type-1 and type-2 errors. The average run 

length (ARL) is used to assess the efficiency of control charts. If the control chart is able to detect a shift in the process 

quickly compared to other control charts, then the chart is considered to be more powerful than the other charts. Based 

on the nature of the quality characteristic, the control charts are categorized as variable and attribute charts. When the 

quality characteristic is measurable on a continuous scale, variable control charts such as X-bar, range or standard 

deviation charts are used. To control high-quality production process, both acceptance sampling and control charts are 

widely used to monitor quality. Though there are different control charts developed as part of the statistical process 

control, Shewhart's X-bar control chart has been widely used in the control process due to its simple and the ease of 

application (W.A. Shewhart 1925). Details pertaining to use of variable control charts can be found in (Al-Oraini HA 

2002), (Mohammed M.A. 2001). While attribute control charts (p-chart, np- chart, c-chart, etc) are used for monitoring 

attribute data (counts) or qualitative data.   

Pakistan Journal of Statistics and Operation Research 



Pak.j.stat.oper.res.  Vol.20  No. 4 2024 pp 733-744  DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4504 

 

  
Designing a Variable Control Chart for a Two-Stage Production Process 734 

 
 

A production process usually involves processing of raw/ semi-finished material at several stages to make finished 

products. When the number of stages is large, it becomes difficult to monitor the quality of the product using simple 

tools. This poses challenges in monitoring quality of products in multi-stage production processes. Quality of the 

products processed through several stages would be dependent on the quality control mechanism put in place at 

different stages (Duffuaa 2009). (Yang 1997) designed an economic X chart and cause-selecting control chart to 

monitor a two-stage process by considering a cost model. (Yang and Yang 2006) proposed an approach to monitor 

two-stage processes when data are auto-correlated, while a cause selecting control chart was proposed by (Yang and 

Yeh 2011) for the two-stage processes with attribute data. (Linn et.al 2002) developed a method to prioritize process 

variation reduction in multistage processes and thereby to improve the overall process capability index. To monitor 

the quality characteristic in the second stage under the censored and non-censored reliability data by considering 

accelerated failure time (AFT) model, (Azam and Amirhossein 2017) used the exponentially weighted moving average 

(EWMA) and cumulative sum (CUSUM) control charts on the proposed residuals to monitor the two-stage process. 

(Dragon et. al 2017) formulated an automatic control of quality in a multi-stage manufacturing process (MMP) to 

handle inaccurate knowledge of error flow model parameters. Performance of the least‐square estimation method was 

compared with that of Huber's and bi‐square robust estimation methods for different degrees of inter-stage auto-

correlations and different rates and sizes of outlier observations in two‐stage processes by (Farid et.al 2019). (Rasay 

et.al 2019) developed an integrated model for maintenance planning and statistical process control for a two-stage 

dependent process, wherein the quality characteristic of the second stage was related to that of the first stage based on 

a regression formula. Assuming that the process failure mechanism for each stage follows a general continuous 

distribution, the first stage process was monitored using the Shewhart control chart, while the second stage was 

monitored using a cause-selecting control chart.  

 

Extensive research was carried out by a number of authors on the design and use of attribute control charts.  (Aslam 

et al. 2018) designed an attribute control chart to assess performance of a two-stage production process in terms of 

average run lengths (ARLs). Control charts for monitoring the service times of a multi-stage process of a congested 

system which provides a multi-stage service to its customers were studied by (Mohsen Ebadi 2020). An integrated 

control chart system was designed by Zhang Wu and Shamsuzzaman 2005) for monitoring process shifts in mean and 

variance in a multi-stage manufacturing system. For monitoring dependent multi-stage processes, (Shervin 2008) 

reviewed cause selecting chart (CSC). In another communication, (D. Jearkpaporn 2007) discussed a monitoring 

scheme for detecting a mean shift in a multistage manufacturing process for a quality characteristic following gamma 

distribution. 

 

To the best of authors’ knowledge and from the literature review, it is found that there has not been much research 

done on designing variable charts for a two-stage or multi-stage production process when the quality characteristic 

follows normal distribution and the process at each stage is independent of the other. We need a decision rule of 

declaring in-control and out-of-control for a two-stage process. We may use two separate control charts for stage 1 

and stage 2, then make a decision rule for the two-stage process. However, when using two separate control charts, 

we may not derive the run length behavior for the two-stage process. The novelty of this study is to investigate the 

run-length behavior for the two-stage process for the first time if the mean shifts in stage 1 and/or stage 2 occur. 

Further, this study may be the basis for developing control charts for the two-stage process when stage 1 and stage 2 

are not independent. In this paper, Section 1 outlines introduction and review of literature, The rest of this paper is 

organized as follows. In Section 2, designing a variable chart is presented. In Section 3, simulation results and 

discussion are presented. An example is provided in Section 4 to illustrate the process of the chart with simulated data. 

Section 5 illustrates the model with real data and conclusions are given in Section 6.  

 

2. Designing of a variable control chart for a two-stage production process 

Consider a variable control chart for a two-stage serial production system. Let 𝑋11, 𝑋12, . . . . . , 𝑋1𝑛1
 and 

𝑋21, 𝑋22, . . . . . , 𝑋2𝑛2
 be the random samples of sizes 𝑛1 and 𝑛2 measurements of the quality characteristics 𝑋1 and 𝑋2 

drawn from the first- and second-stage processes respectively. It is assumed that 𝑋1 and 𝑋2 follow normal distribution 

with population means of 𝜇
10

 and 𝜇
20

 respectively  with a common and known standard deviation 𝜎′ for both the 

stages.  The sample means of the first- and second-stage processes are denoted by 𝑋1 and 𝑋2. The upper control limit 

(UCL) and lower control limit (LCL) for the first-stage process are given by: 
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𝑈𝐶𝐿1 = 𝜇10 + 𝑘1

𝜎′

√𝑛1

 

𝐿𝐶𝐿1 = 𝜇10 − 𝑘1
𝜎′

√𝑛1
    (1) 

Similarly, the upper and lower control limits for the second-stage process are given by:  

𝑈𝐶𝐿2 = 𝜇20 + 𝑘2

𝜎′

√𝑛2

 

𝐿𝐶𝐿2 = 𝜇20 − 𝑘2
𝜎′

√𝑛2
     (2) 

where 𝑘1, 𝑘2 are control constants calculated for first- and second-stage processes respectively. The probability of 

declaring the first-stage process as in-control when the process is actually in-control is given by 

𝑃(𝐿𝐶𝐿1 ≤ 𝑋1 ≤ 𝑈𝐶𝐿1) = 𝛷 (
𝑈𝐶𝐿1 − 𝜇10

𝜎 ′

√𝑛1

) − 𝛷 (
𝐿𝐶𝐿1 − 𝜇10

𝜎 ′

√𝑛1

) 

 

= 𝛷(𝑘1) −  𝛷(−𝑘1) = 2𝛷(𝑘1) − 1                (3) 

where 𝛷(. ) is the cumulative distribution function of  standard normal distribution.  

Similarly, the probability of declaring the second-stage process as in-control when the process is actually in-control 

is given by 

 

𝑃(𝐿𝐶𝐿2 ≤ 𝑋2 ≤ 𝑈𝐶𝐿2) =  𝛷(𝑘2) −  𝛷(−𝑘2) = 2𝛷(𝑘2) − 1                 (4) 

The probability of declaring the two-stage production process as in-control when the process at both the stages is in-

control becomes: 

𝑃𝑖𝑛
0,0 = 𝑃(𝐿𝐶𝐿1 ≤ 𝑋1 ≤ 𝑈𝐶𝐿1) ∗ 𝑃(𝐿𝐶𝐿2 ≤ 𝑋2 ≤ 𝑈𝐶𝐿2)                   (5) 

𝑃𝑖𝑛
0,0 = [2𝛷(𝑘1) − 1] ∗ [2𝛷(𝑘2) − 1]                  (6) 

Probability of declaring the two-stage process as out-of-control when the first-stage process is in-control and the 

second-stage process is out-of-control is: 

𝑃𝑜𝑢𝑡
0,1 = 𝑃[𝐿𝐶𝐿1 ≤ 𝑋1 ≤ 𝑈𝐶𝐿1] ∗ 𝑃[(𝑋2 > 𝑈𝐶𝐿2)𝑈 (𝑋2 < 𝐿𝐶𝐿2)]                       (7) 

 

Probability of declaring the two-stage process as out-of-control when the first-stage process is out-of-control and the 

second-stage process is in-control is: 

𝑃𝑜𝑢𝑡
1,0 = 𝑃[(𝑋1 > 𝑈𝐶𝐿1)𝑈 (𝑋1 < 𝐿𝐶𝐿1)] ∗ 𝑃[𝐿𝐶𝐿2 ≤ 𝑋2 ≤ 𝑈𝐶𝐿2]                      (8) 

 

Probability of declaring the two-stage process as out-of-control when the processes at both the stages are out-of-

control is: 

𝑃𝑜𝑢𝑡
1,1 = 𝑃[(𝑋1 > 𝑈𝐶𝐿1)𝑈 (𝑋1 < 𝐿𝐶𝐿1)] ∗ 𝑃[(𝑋2 > 𝑈𝐶𝐿2)𝑈 (𝑋2 < 𝐿𝐶𝐿2)]                      (9) 

In a two-stage production system, the process at each stage is considered to be independent and the system would be 

out-of-control in the following scenarios: first-stage process is out-of-control; second-stage process is out-of-control 

or processes at both the stages are out-of-control. Therefore, the probability declaring the two-stage process as out-of-

control considering the above three scenarios is given by 

𝑃𝑜𝑢𝑡 = 𝑃𝑜𝑢𝑡
0,1 + 𝑃𝑜𝑢𝑡

1,0 + 𝑃𝑜𝑢𝑡
1,1                               (10) 

The out-of-control average run length (ARL) is given by 

𝐴𝑅𝐿00 =
1

𝑃𝑜𝑢𝑡
                         (11)         

Now we will derive out-of-control ARL for three different cases: (i) just the first-stage production process shifted, (ii) 

just the second-stage production process shifted, and (iii) processes at both the stages shifted. 
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Shift occurred only in the first-stage process 

Suppose 𝜇
10

 is shifted to 𝜇
11

 = 𝜇
10

+ 𝑐1𝜎′, where 𝑐1 > 0 is the shift constant for the first-stage process, then the 

probability of declaring the first-stage process as out-of-control is given by 

𝑃𝑜𝑢𝑡
1′,0 = 𝑃[(𝑋1 > 𝑈𝐶𝐿1|𝜇11)𝑈 (𝑋1 < 𝐿𝐶𝐿1|𝜇11)] ∗ 𝑃(𝑋2 > 𝑈𝐶𝐿2|𝜇20)𝑈 (𝑋2 < 𝐿𝐶𝐿2|𝜇20)                      (12) 

 

𝑃𝑜𝑢𝑡
1′,0 =

[
 
 
 
1 − 𝛷 (

𝑈𝐶𝐿1 − (𝜇10 + 𝑐1𝜎′)

𝜎′

√𝑛1

) + 𝛷 (
𝐿𝐶𝐿1 − (𝜇10 + 𝑐1𝜎′)

𝜎′

√𝑛1

)

]
 
 
 
∗ 2[1 − 𝛷(𝑘2)]                (13) 

𝑃𝑜𝑢𝑡
1′,0 = [1 − 𝛷(𝑘1 − 𝑐1√𝑛1) + 𝛷(−𝑘1 − 𝑐1√𝑛1)] ∗ 2[1 − 𝛷(𝑘2)]                (14) 

The out-of-control ARL when shift occurred only in the first-stage process is: 

𝐴𝑅𝐿1′0 =
1

𝑃𝑜𝑢𝑡
1′,0                          (15) 

Shift occurred only in the second-stage process 

Suppose 𝜇
20

 is shifted to 𝜇
21

 = 𝜇
20

+ 𝑐2𝜎′, where 𝑐2 > 0 is the shift constant for the second-stage process, then the 

probability of declaring the second-stage process as out of control is given by𝑃𝑜𝑢𝑡
0,1′ = 𝑃[(𝑋1 > 𝑈𝐶𝐿1|𝜇10)𝑈 (𝑋1 <

𝐿𝐶𝐿1|𝜇10)] ∗ 𝑃(𝑋2 > 𝑈𝐶𝐿2|𝜇21)𝑈 (𝑋2 < 𝐿𝐶𝐿2|𝜇21)              (16)  
 

𝑃𝑜𝑢𝑡
0,1′ = 2[1 − 𝛷(𝑘1)]*[1 − 𝛷 (

𝑈𝐶𝐿2−(𝜇20+𝑐2𝜎′)
𝜎′

√𝑛2

) + 𝛷 (
𝐿𝐶𝐿2−(𝜇20+𝑐2𝜎′)

𝜎′

√𝑛2

)]              (17) 

𝑃𝑜𝑢𝑡
0,1′ = 2[1 − 𝛷(𝑘1)]*[1 − 𝛷(𝑘2 − 𝑐2√𝑛2) + 𝛷(−𝑘2 − 𝑐2√𝑛2)]              (18) 

The out-of-control ARL when shift occurred in only in the second-stage process is: 

 

𝐴𝑅𝐿01′ =
1

𝑃𝑜𝑢𝑡
0,1′                      (19) 

Shift occurred in both the first- and second-stage processes 

In this case, 𝜇
10

 is shifted to 𝜇
11

 = 𝜇
10

+ 𝑐1𝜎′,  𝜇
20

 is shifted to 𝜇
21

 = 𝜇
20

+ 𝑐2𝜎′, then the probability of declaring 

the both the processes as out-of-control is given by 

𝑃𝑜𝑢𝑡
1′,1′ = 𝑃[(𝑋1 > 𝑈𝐶𝐿1|𝜇11)𝑈 (𝑋1 < 𝐿𝐶𝐿1|𝜇11)] ∗ 𝑃(𝑋2 > 𝑈𝐶𝐿2|𝜇21)𝑈 (𝑋2 < 𝐿𝐶𝐿2|𝜇21)           (20) 

 

𝑃𝑜𝑢𝑡
1′,1′ = [1 − 𝛷 (

𝑈𝐶𝐿1−(𝜇10+𝑐1𝜎′)
𝜎′

√𝑛1

) + 𝛷 (
𝐿𝐶𝐿1−(𝜇10+𝑐1𝜎′)

𝜎′

√𝑛1

)]*[1 − 𝛷 (
𝑈𝐶𝐿2−(𝜇20+𝑐2𝜎′)

𝜎′

√𝑛2

) + 𝛷 (
𝐿𝐶𝐿2−(𝜇20+𝑐2𝜎′)

𝜎′

√𝑛2

)] 

Upon simplification of the above equation, we get  

 

𝑃𝑜𝑢𝑡
1′,1′ = [1 − 𝛷(𝑘1 − 𝑐1√𝑛1) + 𝛷(−𝑘1 − 𝑐1√𝑛1)]* 

[1 − 𝛷(𝑘2 − 𝑐2√𝑛2) + 𝛷(−𝑘2 − 𝑐2√𝑛2)]                    (21) 

The total probability of declaring the two-stage process as out-of-control when the process is shifted only in first-

stage or process is shifted only in the second stage or process shifted in both the stages, is obtained as: 

𝑃𝑜𝑢𝑡
′′ = 𝑃𝑜𝑢𝑡

1′,0 + 𝑃𝑜𝑢𝑡
0,1′ + 𝑃𝑜𝑢𝑡

1′,1′                  (22) 

 

 

The out-of-control ARL when shift occurred in the processes of both the stages is:  

𝐴𝑅𝐿1′1′ =  
1

𝑃𝑜𝑢𝑡
′′  

The out-of-control ARLs, when the whole process is out-of-control, are derived using the following procedure: 



Pak.j.stat.oper.res.  Vol.20  No. 4 2024 pp 733-744  DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4504 

 

  
Designing a Variable Control Chart for a Two-Stage Production Process 737 

 
 

(1) Specify values of 𝑛1, 𝑛2  and the target in-control ARL (𝑟0). 

(2) Find the control constants 𝑘1 and 𝑘2 such that ARL (𝑟0) ≥ specified ARL (𝑟).  

(3) Obtain the out-of-control ARLs for various values of shift constants 𝑐1 and 𝑐2. 

3. Results and discussion 

For the proposed chart, considering different in-control ARLs of 200, 300 and 370, the average run lengths (ARLs) 

have been derived for two scenarios: (i) when the sample sizes are equal for both the stages (see Table-1), and (ii) 

when the sample sizes are unequal for the two processes (see Table-2). In both the scenarios, ARLs decrease rapidly 

with increase in sample sizes, irrespective of sample size being equal or unequal. 

 

 

Table-1: ARLs when equal sample sizes in stage-1 and stage-2 

𝑛1 5 5 5 10 10 10 20 20 20 

𝑛2 5 5 5 10 10 10 20 20 20 

𝑘1 4.233 5.082 3.604 6.934 3.682 3.000 5.694 2.935 3.000 

𝑘2 2.809 2.935 3.037 2.807 2.957 5.679 2.807 4.800 6.953 

Shift ARL ARL ARL 

0 200.00 300.00 370.00 200.00 300.00 370.00 200.00 300.00 370.00 

0.05 189.56 283.16 347.03 180.18 266.49 329.00 163.63 241.50 295.45 

0.1 163.43 241.53 291.24 137.61 197.03 243.89 102.98 147.35 177.56 

0.15 131.90 192.27 227.03 96.63 133.34 165.68 60.30 83.72 99.46 

0.2 102.57 147.41 170.26 66.13 88.00 109.87 35.71 48.21 56.55 

0.25 78.49 111.28 125.76 45.38 58.29 73.21 21.90 28.79 33.38 

0.3 59.85 83.79 92.70 31.60 39.18 49.57 14.00 17.92 20.55 

0.35 45.79 63.36 68.63 22.43 26.82 34.24 9.33 11.63 13.21 

0.4 35.28 48.28 51.20 16.25 18.71 24.15 6.48 7.86 8.85 

0.5 21.52 28.86 29.30 9.08 9.65 12.81 3.52 4.02 4.49 

0.6 13.65 17.98 17.44 5.51 5.35 7.39 2.21 2.36 2.66 

0.7 9.00 11.68 10.79 3.62 3.17 4.63 1.57 1.53 1.81 

0.8 6.16 7.91 6.93 2.56 2.00 3.12 1.23 1.07 1.39 

0.9 4.37 5.58 4.61 1.94 1.34 2.26 1.02 0.79 1.18 

1 3.20 4.08 3.17 1.57 0.95 1.74 0.86 0.6 1.06 

 

 

Table-2: ARLs when unequal sample sizes in stage-1 and stage-2 

𝑛1 5 5 5 15 15 15 22 22 22 

𝑛2 10 10 10 20 20 20 25 25 25 

𝑘1 5.883 3.08 4.990 3.087 3.107 2.999 2.807 2.935 6.016 

𝑘2 2.807 3.223 3.000 2.969 3.185 5.411 7.671 7.264 2.999 

Shift ARL ARL ARL 

0 200.00 300.00 370.00 200.00 300.00 370.00 200.00 300.00 370.00 

0.05 180.18 274.04 328.99 162.85 242.51 311.42 160.64 236.81 280.86 

0.1 137.61 215.47 243.88 101.27 148.48 206.21 97.85 139.66 155.08 

0.15 96.63 155.16 165.66 58.29 83.93 125.63 55.75 77.18 81.15 

0.2 66.13 107.58 109.86 33.76 47.68 76.21 32.36 43.55 43.86 

0.25 45.38 73.89 73.20 20.16 27.88 47.28 19.56 25.64 24.94 

0.3 31.60 50.96 49.56 12.48 16.88 30.22 12.38 15.81 14.96 

0.35 22.43 35.52 34.23 8.01 10.58 19.94 8.20 10.21 9.46 

0.4 16.25 25.09 24.15 5.32 6.87 13.58 5.68 6.91 6.30 
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0.5 9.08 13.10 12.81 2.60 3.20 6.91 3.11 3.60 3.24 

0.6 5.51 7.29 7.39 1.44 1.70 3.94 1.99 2.21 2.00 

0.7 3.62 4.33 4.62 0.90 1.01 2.49 1.46 1.57 1.44 

0.8 2.56 2.73 3.12 0.63 0.68 1.69 1.21 1.26 1.16 

0.9 1.94 1.83 2.27 0.48 0.51 1.21 1.08 1.10 1.00 

1 1.57 1.30 1.76 0.41 0.42 0.89 1.02 1.02 0.86 

 

ARLs have also been derived (see Tables 3-4) for two different scenarios, viz., process shift is the same in both the 

stages (c = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) and process shifts are unequal in the 

two stages (𝑐1 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1; 𝑐2=0, 0.02, 0.04, 0.04, 0.06, 0.08, 

0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75). Considering three cases of 𝑟0 = 200, 𝑟0 = 300 and 𝑟0 = 370 for the 

target in-control ARL, the results have been presented for 𝑛1 = 𝑛2 and 𝑛1 ≠ 𝑛2. Tables have been prepared for process 

shifts 𝑐1, 𝑐2, whose values are ranging between 0 to 1. When 𝑐1 = 𝑐2 = 0 means the process at both the stages is in-

control. 

Table-3 and 4 present ARLs for equal and unequal process shifts for a fixed 𝑟0= 370 and different combinations of 

𝑛1, 𝑛2, 𝑘1, 𝑎𝑛𝑑 𝑘2 . It is observed that ARLs are decreasing fast with unequal shifts in stage-1 and stage-2 compared 

to that of equal shifts. Similar trend is seen in ARLs when sample sizes at stage-1 and stage-2 are unequal compared 

to ARLs with equal sample sizes. 

For 𝑟0= 400 and with a common process shift at first- and second-stages, the trend in ARLs is presented for different 

combinations of sample sizes. As the sample sizes increase, ARLs are observed to be decreasing rapidly (see Figure-

2). 

Table-3: ARLs when 𝑟0= 370, 𝑛1 = 𝑛2 = 5, 𝑘1= 3.8065, 𝑘2= 3.0159 

Equal shifts in stage-1 and stage-2 Unequal shifts in stage-1 and stage-2 

369.99 369.99 

369.05 347.61 

338.52 293.00 

280.36 229.67 

229.67 173.23 

173.23 128.65 

136.61 95.32 

107.44 70.93 

84.63 53.17 

44.92 30.72 

30.72 18.45 

18.45 11.52 

11.52 7.46 

7.46 5.00 

5.00 3.47 

 

Table-4: ARLs when 𝑟0= 370, 𝑛1 = 5, 𝑛2 = 7, 𝑘1= 3.5398, 𝑘2= 3.0481 

Equal shifts in stage-1 and stage-2 Unequal shifts in stage-1 and stage-2 

370.04 370.04 

358.63 339.83 

300.64 271.01 

226.60 199.00 

162.25 141.13 

114.29 99.32 

80.60 70.25 

57.36 50.23 

41.32 36.38 
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22.35 19.89 

12.77 11.50 

7.71 7.01 

4.89 4.49 

3.25 3.02 

2.26 2.12 

 

 

 
 

Figure 1. Comparison of ARLs for different process shifts with equal sample size 𝑛1 = 𝑛2=10. 

 

 
Figure 2. ARLs for for different sample sizes in first-stage and second-stage process when 𝑟0=400 and 𝑐1 =  𝑐2 

 

4. Example with simulated data 

We illustrate an application of the variable control chart to monitor two quality characteristics - one measured at the 

stage-1 production process and the other measured at the stage-2 process. The two quality characteristics could be 

measured either in the same units or in different units. As the process is a two-stage serial production process, it is 

considered to be in-control when the process in both the stages is in-control. The process is said to be out-of-control, 
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when the stage-1 process is in-control and stage-2 process is out-of-control; or stage-1 process is out-of-control and 

stage-2 process is in-control; or the process in both the stages is out-of-control. 

We implemented the variable control chart for the two-stage process using simulated data to detect shifts in the 

process. For this, we generated random numbers from normal distribution using R-program for the parameters - 

process mean 𝜇
1
 = 5 units and standard deviation 𝜎1 = 1.5 for the first stage process and process mean 𝜇

2
 = 8 units 

and standard deviation 𝜎2= 2.3 for the second stage process. The simulated data was used to test it against the structure 

of the proposed control chart. Actual distribution of process means at stage-1, stage-2 and combined process (of stage-

1 and stage-2), was generated with sample sizes of 𝑛1 = 10 for stage-1 process and 𝑛2= 10 for stage-2. All the three 

scenarios were randomly simulated. In the first case, the first 20 observations were simulated for both stages 

considering that the process is in-control state, and the next 20 observations were generated from the shifted process 

with a shift amount of c = 0.5 in the first stage of the process only. In the second case, the first 20 observations were 

simulated for both stages considering that the process is in control state, after that next 20 observations were generated 

from the shifted process with shift amount of c = 0.5 in the second stage of the process only. In the third case also, 

first 20 observations were simulated for both stages considering that the process is in-control state, after that next 20 

observations were generated from the shifted process with shift amount of c = 0.5 in the first and second stage of the 

process. The three cases were plotted in the figures separately (see Figure 3(a), 3(b) and 3(c)) to clearly indicate the 

shift in all possible scenarios that can be effectively detected. Further, this study may be the basis for developing 

control charts for the two-stage process when stage 1 and stage 2 are not independent. 

 

 

  
Figure 3(a): Control chart for the process when shift occurred only in stage-1 
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Figure 3(b): Control chart for the process when shift occurred only in stage-2 

 

  
Figure 3(c): Control chart for the process when shift occurred in stage-1 and stage-2 

 

 

5. Real-life Example 

In this section, a real-life example data set of inside diameter measurements for automobile engine piston rings from 

multiple samples used by Montgomery (2000) have been to illustrate the application of a two-stage sampling process 

where quality characteristic follows normal distribution.  

 

Table-5: Sample data set of inside diameter measurements (mm) for Automobile Engine Piston Rings 

74.030, 74.002, 74.019, 73.992, 74.008 

73.995, 73.992, 74.001, 74.011, 74.004 
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73.988, 74.024, 74.021, 74.005, 74.002 

74.002, 73.996, 73.993, 74.015, 74.009 

73.992, 74.007, 74.015, 73.989, 74.014 

74.009, 73.994, 73.997, 73.985, 73.993 

73.995, 74.006, 73.994, 74.000, 74.005 

73.985, 74.003, 73.993, 74.015, 73.988 

74.008, 73.995, 74.009, 74.005, 74.004 

73.998, 74.000, 73.990, 74.007, 73.995 

73.994, 73.998, 73.994, 73.995, 73.990 

74.004, 74.000, 74.007, 74.000, 73.996 

73.983, 74.002, 73.998, 73.997, 74.012 

74.006, 73.967, 73.994, 74.000, 73.984 

74.012, 74.014, 73.998, 73.999, 74.007 

 

Manufacturing of automobile engine piston rings involves a multi-stage production process. For validating our 

variable control chart we consider the piston rings production process involving two-stages. In stage-1, piston rings 

are cut from the cylinder of round cross-section and inner diameter of semi-finished piston rings are measured. Then 

in stage-2, the semi-finished piston rings are to be grounded or machined to make it balanced and homogeneous (that 

is, finished piston rings) and inner diameter is again measured to monitor the process.  

For generating the control chart for stage-1, it uses a dataset containing inside diameter measurements of semi-finished 

piston rings from multiple samples. The grand mean is set at 74.001, and the average range is 0.0094, with a sample 

size of 5. The control limits are computed using an estimated standard deviation (𝜎′).  These limits are adjusted by a 

coefficient (𝑘1), and the resulting upper and lower control limits (UCL and LCL) are plotted along with the data on a 

control chart in Fig 4(a) depicting stage-1 process.  In stage-2, the semi-finished piston rings undergo further 

processing to make them balanced and homogeneous, simulated data of inside diameter is generated using a normal 

distribution with the same mean as the grand mean from stage-1, and a standard deviation based on 𝜎′ and the sample 

size. The UCL and LCL for Stage 2 are calculated with a different coefficient (𝑘2, set at 3.037) and are displayed on 

a separate control chart in Fig 4(b). All the inside measurements of piston rings are within the control limits of the 

control chart for stage-2 process, which indicate that the two-stage process is in control. 
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Figure 4(a): Control chart for the stage-1 process 

 

 
Fig 4(b): Control chart for the stage-2 process 

 

 

6. Conclusion 

In this paper, a variable control chart was developed for monitoring a two-stage production process. The simulation 

study has also been conducted using analytical expressions developed for the proposed control chart. The proposed 

chart can be applied effectively for monitoring quality characteristics at each stage of a serial production system and 

detecting shifts in the process. Considering process shift in each stage as a random variable following a certain 

probability distribution, a variable chart may be developed for a serial production process as a future research. 

Data Availability: The data is available with the corresponding author upon a reasonable request.  
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