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Abstract  

This paper introduces a new lifetime distribution, the Compound Quasi-Lomax (CQLx) model, designed to enhance 

the modeling of heavy-tailed data in actuarial and financial risk analysis. The CQLx distribution is developed 

through a novel extension of the Lomax family, offering increased flexibility in capturing extreme values and 

complex data behaviors. Key mathematical properties are derived. Characterization of the model is achieved via 

truncated moments and the reverse hazard function. Several estimation methods are employed including the 

Maximum Likelihood Estimation (MLE), Cramér–von Mises (CVM), Anderson–Darling Estimation (ADE), 

Right-Tail Anderson-Darling Estimation (RTADE), and Left-Tail Anderson-Darling Estimation (LTADE). A 

comprehensive simulation study evaluates the performance of these methods in terms of bias and root mean square 

error (RMSE) across various sample sizes. Risk measures such as Value-at-Risk (VaR), Tail Value-at-Risk (TVaR), 

Tail Variance (TV), Tail Mean Variance (TMV), and Expected Loss (EL) are computed under artificial and real 

financial insurance claims data. The results demonstrate that MLE generally provides the most accurate and stable 

estimates, particularly for larger samples, while CVM and ADE tend to overestimate risk, especially at higher 

quantiles. The CQLx model shows superior performance in fitting extreme claim-size data, making it a robust tool 

for risk management.  

 

Key Words: Lomax Distribution, Maximum Likelihood Estimation, Cramér–von Mises, Anderson–Darling 

Estimation, Value-at-Risk, Risk Analysis, Characterizations. 

 

 

1. Introduction 

The Lomax (Lx) model is the most well-known of the five models that make up the Pareto family. In business, actuarial 

science, physical sciences, biological sciences, economics, engineering, income and wealth inequality research, theory 

of queuing, and size of cities data sets, the Lx model, also known as the Lomax; see Lomax (1954), is a heavy-tail 

probability density. The standard Lx model, however, is regarded as a limiting model of residual lifetimes at great age 

and is part of the family of "monotonically decreasing" hazard/failure rate function. In this work, however, we will 

present a new version whose hazard rate function (HRF) is part of the "upside down," "monotonically decreasing" and 

"increasing-constant" families. The Lx distribution was used by Harris (1968) to describe and model wealth and 

income data. The Lx distribution was utilized by Corbellini et al. (2007) to model the company size data. In addition 

to being seen as a hybrid of the standard gamma and exponential distributions, the Lx model is a unique model form 

of the well-known Pearson type VI distribution. A heavy-tailed alternative model to the standard exponential, standard 

Weibull, and standard gamma distributions is proposed for the Lx distribution, per Bryson (1974). For additional 

information regarding the connection between the Lx model, see Tadikamalla (1980), Durbey (1970), Korkmaz et al. 

(2018) and Minkah et al. (2023). Recent studies have significantly advanced the Lomax distribution through various 

flexible extensions for modeling failure times, service times, and insurance data. Ansari et al. (2020), Aboraya et al. 

(2022), and Ali et al. (2021) introduced compound and extended versions with rich mathematical properties, copula 

constructions, and diverse estimation methods. Models by Hamed et al. (2022), Al-Essa et al. (2023), and Salem et al. 

(2023) demonstrated strong performance in fitting skewed and censored data, particularly in reliability and medical 
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applications. Khan et al. (2024) further enhanced its risk modeling capability with a heavy-tailed version applied to 

VaR and mean-of-order-P analysis. In this paper we first present a new version of the Lomax model called the CQLx 

distribution, the cumulative function (CDF) of the QLx distribution can be presented as  

𝐺𝛽3(𝓍) = 𝐺(𝓍; 𝛽3) = 1 − 𝑒𝓍𝑝 [−
1

𝛽3
2 𝑙𝓃( 1 + 𝓍)] |𝓍 > 0, 

(1) 

where  𝛽3 > 0  is the shape parameters, respectively. The primary goal of this work is to use the Poisson Topp-Leone 

(PTL) family, as established by Merovci et al. (2020), to give a flexible extension of the QLx distribution called the 

CQLx model. The PTL-G family's CDF can be expressed as  

𝐹𝛽1,𝛽2,𝝃(𝓍) =
1

𝘞(𝛽1)
(1 − 𝑒𝓍𝑝 {−

1

𝛽1
[2𝐺 (𝓍; 𝝃) − 𝐺2 (𝓍; 𝝃)]

𝛽2
}) |𝓍 ∈ 𝑅, 

(2) 

  where  𝛽1 > 0, 𝛽2 > 0  and 

𝘞(𝛽1) = 1 − 𝑒𝓍𝑝 (−
1

𝛽1
). 

Then, the CDF of the CQLx model can then be derived as 

𝐹𝑃(𝓍) =
1

𝘞(𝛽1)
(1 − 𝑒𝓍𝑝 {−

1

𝛽1
[1 − (1 + 𝓍)

−
4
𝛽3]

𝛽2

}) |𝓍 > 0, 
 

(3) 

 

The corresponding probability density function (PDF) of (3) can be written as 

𝑓𝑃(𝓍) = 4
𝛽2

𝛽1𝛽3𝘞(𝛽1)

(1 + 𝓍)
−(1+

4
𝛽3
)
[1 − (1 + 𝓍)

−
4
𝛽3]

𝛽2−1

𝑒𝓍𝑝 {
1
𝛽1
[1 − (1 + 𝓍)

−
4
𝛽3]

𝛽2

}

|𝓍 > 0. 

 

 

(4) 

As  𝓍 → 0 , we have  

𝑓𝑃(𝓍) ≈ 4
𝛽2

𝛽1𝛽3𝘞(𝛽1)
(
4

𝛽3
)
𝛽2−1

𝓍𝛽2−1. 

As  𝓍 → ∞ , we have  

𝑓𝑃(𝓍) ≈ 4
𝛽2

𝛽1𝛽3𝘞(𝛽1)

(1 + 𝓍)
−(

4
𝛽3
+1)

𝑒𝓍𝑝 (
1
𝛽1
)

. 

The tail behavior of  𝑓𝑃(𝓍)  for large  𝓍  is dominated by 

𝑓𝑃(𝓍) ≈ 4
𝛽2

𝛽1𝛽3𝘞(𝛽1) 𝑒𝓍𝑝 (
1
𝛽1
)
(1 + 𝓍)

−(
4
𝛽3
+1)
, 

This indicates that the tail of the PDF decays polynomial with an exponent of  
4

𝛽3
+ 1  as  𝓍 → ∞ . Hereafter, we will 

refer to the new model in (3) and (4) with the CQLx model. Other Lx extensions can be founded in Gupta et al. (1998), 

Lemonte and Cordeiro (2013), Cordeiro et al. (2018), Tahir et al. (2015), Elbiely and Yousof (2018), Goual and 

Yousof (2020), Chesneau and Yousof (2020), Yadav et al. (2020), Hamed et al. (2022), Ibrahim and Yousof (2020) 

and Salem et al. (2023).  Recently, Abiad et al. (2025) introduced a novel approach to reliability analysis by 

incorporating diverse copula structures into a new Fisk probability model. This advancement allows for a more flexible 

dependence structure between variables, improving the accuracy of reliability assessments in engineering and applied 

sciences. Ali et al. (2025) provided an in-depth exploration of statistical outliers, discussing their identification, impact 

on data interpretation, and potential methods for handling anomalies in many topics, especially in risk analysis. Their 

work is crucial for ensuring robust statistical inference in various fields, including finance, healthcare, and quality 

control. Alizadeh et al. (2025a) developed a new weighted Lindley distribution tailored for modeling extreme 

insurance claims. By refining the probability distribution to better fit heavy-tailed data, their model enhances risk 

assessment and decision-making in the insurance industry. Das et al. (2025) introduced a novel application of the 

Laplace distribution to analyze economic peaks and VaR in house price fluctuations. Their study provides a fresh 

perspective on risk modeling in real estate markets, offering insights for financial analysts and policymakers. 

 

2. Main characteristics 

This Section explores the fundamental mathematical properties of the proposed CQLx distribution, providing a 

comprehensive foundation for its theoretical and applied utility. This section derives key statistical functions, 
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including useful series expansions for the probability density and cumulative distribution functions, which facilitate 

analytical tractability. We present explicit expressions for ordinary moments, incomplete moments, and mean 

deviations, which are essential for understanding the distribution’s central tendency and variability. The moment 

generating function and probability weighted moments are derived to support parameter estimation and inference. 

Additionally, the section covers the residual and reversed residual life moments, which are crucial in reliability and 

survival analysis. These properties enhance the model’s applicability in modeling lifetime data and risk assessment. 

The derivations leverage the exponentiated-Lomax (ELx) as a baseline structure, ensuring flexibility and generality. 

Closed-form expressions are provided wherever possible, improving computational feasibility. This in-depth 

characterization underscores the CQLx model’s versatility in fitting heavy-tailed data commonly found in actuarial, 

financial, and engineering contexts. Section 2 thus establishes the analytical backbone necessary for subsequent 

estimation and application. 

 

Useful expansions 

Thanks to Merovci et al. (2020), the CQLx model's PDF in (4) can be expressed as follows 

𝑓𝑃(𝓍) = ∑ [𝑣𝜍1,𝜍2
[1]  ℎ𝛽2∗(𝓍) − 𝑣𝜍1,𝜍2

[2]  ℎ1+𝛽2∗(𝓍)]

∞

𝜍1,𝜍2=0

|𝛽2
∗ = 𝛽2(𝜍1 + 1) + 𝜍2, 

(5) 

 

where  

ℎ𝛾(𝓍) = 𝛾𝑔𝛽2∗(𝓍)[𝐺𝛽2∗(𝓍)]
𝛾−1

 

refers to the ELx density, 𝑔𝛽2∗(𝓍) = 𝑑𝐺𝛽2∗(𝓍)/𝑑𝓍  and  

𝑣𝜍1,𝜍2
[1] = (

1

2
)
𝜍2−𝛽2(𝜍1+1) 1

𝜍1!𝘞(𝛽1)𝛽2
∗ 𝛽1

−(𝜍1+1)𝛽2(−1)
𝜍1+𝜍2 (

𝛽2(𝜍1 + 1) − 1
𝜍2

), 

and 

𝑣𝜍1,𝜍2
[2] = (

1

2
)
𝜍2−𝛽2(𝜍1+1) 1

𝜍1!𝘞(𝛽1)(1 + 𝛽2
∗)
𝛽1
−(𝜍1+1)𝛽2(−1)

𝜍1+𝜍2 (
𝛽2(𝜍1 + 1) − 1

𝜍2
). 

Equation (5) allows for the expression of the density of X as a representation of ELx densities. Another way to rephrase 

the CDF of the CQLx is as follows 

𝐹𝑃(𝓍) = ∑ [𝑣𝜍1,𝜍2
[1]  𝐻𝛽2∗(𝓍) − 𝑣𝜍1,𝜍2

[2]  𝐻1+𝛽2∗(𝓍)]

∞

𝜍1,𝜍2=0

, 

where  𝐺𝛽2∗(𝓍) = 𝐺(𝓍; 𝛽2
∗)  refers to the CDF of the ELx model.   

 

Ordinary moment 

The  𝓇 th  ordinary moment of  𝑋  is given by  𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) = ∫ 𝓍𝓇

∞

−∞
𝑓𝑃(𝓍)𝑑𝓍. Then we obtain  

𝜇𝓇,𝑋
′ = ∑ [𝑣𝜍1,𝜍2

[1]  𝐸(𝑍𝛽2∗
𝓇 ) − 𝑣𝜍1,𝜍2

[2]  𝐸(𝑍1+𝛽2∗
𝓇 )]

∞

𝜍1,𝜍2=0

. 
(6) 

 

Henceforth,  𝑍(𝛽2∗)  denotes the ELx distribution with power parameter  𝛽2
∗ > 0 . 

𝜇𝓇,𝑋
′ = ∑ ∑ [

𝑣𝜍1,𝜍2
[1]  𝛥𝜍3

(𝛽2
∗ ,𝓇)
𝐵(𝛽2

∗, 1 + (𝜍3 − 𝓇)𝛽3)

−𝑣𝜍1,𝜍2
[2]  𝛥𝜍3

(1+𝛽2
∗,𝓇)
𝐵(1 + 𝛽2

∗, 1 + (𝜍3 − 𝓇)𝛽3)
]

𝓇

𝜍3=0

∞

𝜍1,𝜍2=0

|(𝛽3−1>𝓇). 

where 

𝛥𝜍3
(𝑎,𝓇) = 𝑎(−1)𝜍3 (

𝓇
𝜍3
), 

and  

𝐵(𝜈1, 𝜈2) = ∫ 𝜑𝜈1−1
1

0

(1 − 𝜑)𝜈2−1𝑑𝜑. 

 

 

Incomplete moments 

The  𝜑th  incomplete moment, say  𝐼𝜑,𝓍(𝑡) , of  𝑋  can be expressed from (9) as  𝐼𝜑,𝓍(𝑡) = ∫ 𝓍𝜑
𝑡

−∞
𝑓𝑃(𝓍)𝑑𝓍. Then  
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𝐼𝜑,𝓍(𝑡) = ∑ ∑ [
𝑣𝜍1,𝜍2
[1] 𝛥𝜍3

(𝛽2
∗,𝜑)
 𝐵𝑡(𝛽2

∗, 1 + (𝜍3 − 𝜑)𝛽3)

−𝑣𝜍1,𝜍2
[2]  𝛥𝜍3

(1+𝛽2
∗ ,𝜑)
 𝐵𝑡(1 + 𝛽2

∗, 1 + (𝜍3 − 𝜑)𝛽3)
]

𝜑

𝜍3=0

∞

𝜍1,𝜍2=0

|(𝛽3−1>𝜑), 
 

(7) 

 

Where 

𝐵𝑎3(𝑎1, 𝑎2) = ∫ 𝑦𝑎1−1
𝑎3

0

(1 − 𝑦)𝑎2−1𝑑𝑦. 

 

Mean deviations 

The mean deviations about the mean  [𝑑𝓍,𝜇1′ = 𝐸(|𝓍 − 𝜇1
′ |)]  and about the median  [𝑚𝓍,𝑀 = 𝐸(|𝓍 − 𝑀|)]  of  𝑋  are 

given by  𝑑𝓍,𝜇1′ = 2𝜇1,𝓍
′ 𝐹(𝜇1,𝓍

′ ) − 2𝐼1,𝓍(𝜇1,𝓍
′ )  and  𝑚𝓍,𝑀 = 𝜇1,𝓍

′ − 2𝐼1,𝓍(𝑀) , respectively, where  𝜇1,𝓍
′ = 𝐸(𝓍) ,  𝑀 =

𝑀𝑒𝑑(𝓍) = 𝑄 (
1

2
)  is the median and  𝐼1,𝓍(𝑡)  is the first incomplete moment given by (8) with  𝜑 = 1 . Ageneral 

equation for  𝐼1,𝓍(𝑡)  can be derived from (8) as  

𝐼1,𝓍(𝑡) = ∑ ∑

[
 
 
 
 𝑣𝜍1,𝜍2

[1] 𝛥𝜍3
(𝛽2
∗ ,1)
 𝐵𝑡 (𝛽2

∗, 1 +
𝜍3 − 1

𝛽3
−1 )

−𝑣𝜍1,𝜍2
[2]  𝛥𝜍3

(1+𝛽2
∗,1)
 𝐵𝑡 (1 + 𝛽2

∗, 1 +
𝜍3 − 1

𝛽3
−1 )]

 
 
 
 1

𝜍3=0

∞

𝜍1,𝜍2=0

|(𝛽3−1>1), 

 

 

(8) 

 

 

Moment generating function 

The moment generating function (MGF) can be derived from equation (5) as  

𝑀𝑋(𝑡) = ∑ ∑
𝑡𝓇

𝓇!

𝓇

𝜍3=0

∞

𝜍1,𝜍2,𝓇=0

[
𝑣𝜍1,𝜍2
[1]  𝛥𝜍3

(𝛽2
∗,𝓇)
𝐵(𝛽2

∗, 1 + (𝜍3 − 𝓇)𝛽3)

−𝑣𝜍1,𝜍2
[2]  𝛥𝜍3

(1+𝛽2
∗ ,𝓇)
𝐵(1 + 𝛽2

∗, 1 + (𝜍3 − 𝓇)𝛽3)
] |(𝛽3−1>𝓇), 

 

(9) 

 

 

Probability weighted moments 

The  (𝜑, 𝓇)𝑡ℎ  probability weighted moments (PWM) of  𝑋  following the CQLx model, say  𝜌𝜑,𝓇 , is formally defined 

by 

 

𝜌𝜑,𝓇 = 𝐸{𝓍
𝜑𝐹𝑃(𝓍)

𝓇} = ∫
∞

−∞

𝓍𝜑𝐹𝑃(𝓍)
𝓇𝑓𝑃(𝓍)𝑑𝓍. 

Using (5) and (6), we have 

 

𝑓𝑃(𝓍)𝐹𝑃(𝓍)
𝓇 = ∑ [𝜈𝜍1,𝜍2

[1]  ℎ𝛽2∗(𝓍) − 𝜈𝜍1,𝜍2
[2]  ℎ1+𝛽2∗(𝓍)]

∞

𝜍1,𝜍2=0

, 

where 

𝜈𝜍1,𝜍2
[1] = ∑(−1)𝜍1+𝜍2+𝜍2𝛽2𝛽1

𝜍1+1

∞

𝜍2=0

(
1

2
)
𝜍2−𝛽2(𝜍1+1) (1 + 𝜍2)

𝜍1

𝜍1! 𝛽2
∗[𝘞(𝛽1)]

1+𝓇
(
𝓇
𝜍2
) (
𝛽2(𝜍1 + 1) − 1

𝜍2
) 

and  

𝜈𝜍1,𝜍2
[2] = ∑(−1)𝜍1+𝜍2+𝜍2𝛽2𝛽1

𝜍1+1

∞

𝜍2=0

(
1

2
)
𝜍2−𝛽2(𝜍1+1) (1 + 𝜍2)

𝜍1

𝜍1! [1 + 𝛽2
∗][𝘞(𝛽1)]

1+𝓇
(
𝓇
𝜍2
) (
𝛽2(𝜍1 + 1) − 1

𝜍2
). 

Then, the  (𝜑, 𝓇)𝑡ℎ  PWM can then be written as  

𝜌𝜑,𝓇 = ∑ ∑ [
𝜈𝜍1,𝜍2
[1]  𝛥𝜍3

(𝛽2
∗,𝜑)
𝐵(𝛽2

∗, 1 + (𝜍3 − 𝜑)𝛽3)

−𝜈𝜍1,𝜍2
[2]  𝛥𝜍3

(1+𝛽2
∗ ,𝜑)
𝐵(1 + 𝛽2

∗, 1 + (𝜍3 − 𝜑)𝛽3)
]

𝜑

𝜍3=0

∞

𝜍1,𝜍2=0

|(𝛽3−1>𝜑). 
(10) 

 

 

Residual and reversed moment 

The  𝓃th  moment of the residual life of  𝑋  is given by 
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𝑚𝓃,𝓍(𝑡) =
1

1 − 𝐹𝑃(𝑡)
∑ ∑ ∑ 𝑣𝓇

[1]

𝓃

𝜍3=0

𝓃

𝓇=0

∞

𝜍1,𝜍2=0 {
 

 𝑣𝜍1,𝜍2
[1]  𝛥𝜍3

(𝛽2
∗,𝓃)

[
𝐵(𝛽2

∗, 1 + (𝜍3 − 𝓃)𝛽3)

−𝐵𝑡(𝛽2
∗, 1 + (𝜍3 − 𝓃)𝛽3)

]

−𝑣𝜍1,𝜍2
[2] 𝛥𝜍3

(1+𝛽2
∗ ,𝓃)

[
𝐵(1 + 𝛽2

∗, 1 + (𝜍3 −𝓃)𝛽3)

−𝐵𝑡(1 + 𝛽2
∗, 1 + (𝜍3 − 𝓃)𝛽3)

]
}
 

 
|(𝛽3−1>𝓃), 

 

(11) 

where 

𝑣𝓇
[1] = (

𝓃
𝓇
) (−𝑡)𝓃−𝓇 . 

 

The  𝓃th  moment of the reversed residual life of  𝑋  becomes 

𝑀𝓃,𝓍(𝑡) =
1

𝐹𝑃(𝑡)
∑ ∑ ∑ 𝑣𝓇

[2]

𝓃

𝜍3=0

𝓃

𝓇=0

∞

𝜍1,𝜍2=0

[
𝑣𝜍1,𝜍2
[1]  𝛥𝜍3

(𝛽2
∗,𝓃)
𝐵𝑡(𝛽2

∗, 1 + (𝜍3 −𝓃)𝛽3)

−𝑣𝜍1,𝜍2
[2] 𝛥𝜍3

(1+𝛽2
∗ ,𝓃)
 𝐵𝑡(1 + 𝛽2

∗, 1 + (𝜍3 −𝓃)𝛽3)
] |(𝛽3−1>𝓃), 

 

(12) 

 

 

where  

𝑣𝓇
[2] = (−1)𝓇 (

𝓃
𝓇
) 𝑡𝓃−𝓇 . 

3. Characterizations 

Section 3 presents a theoretical exploration of the characterizations of the proposed CQLx distribution, providing a 

rigorous mathematical foundation for its structural properties. Characterization of a probability distribution is essential 

for understanding its uniqueness and behavior under various conditions, and it helps establish its validity and 

applicability in statistical modeling. This section focuses on two fundamental approaches to characterizing the CQLx 

model: through a relationship between truncated moments and via the reverse hazard function. These methods offer 

insight into the distribution’s underlying structure without requiring a closed-form expression for the cumulative 

distribution function, thus enhancing its analytical flexibility. The first approach employs a theorem by Glänzel (1987), 

which provides conditions under which a distribution can be uniquely determined by specific functions of truncated 

moments. This method is particularly powerful as it ensures stability under weak convergence and applies broadly, 

even when standard forms are not available. A key proposition demonstrates how the CQLx distribution emerges 

uniquely from a simple functional relationship between two truncated moments. The second characterization is based 

on the reverse hazard function, which plays a critical role in analyzing lifetime data and reliability models. A 

differential equation involving the reverse hazard function is derived, and it is shown that only the CQLx distribution 

satisfies this equation under given boundary conditions. These characterizations not only confirm the mathematical 

consistency of the model but also facilitate its identification in practical applications. They support the use of the 

CQLx model in fields requiring precise modeling of heavy-tailed phenomena, such as insurance, finance, and 

reliability engineering. The results presented here strengthen the theoretical justification for using the CQLx 

distribution as an extension of the Lomax family. Furthermore, they provide tools for future researchers to verify the 

applicability of the model to real datasets. Section 3 thus serves as a crucial bridge between the distribution’s 

formulation and its empirical validation. It underscores the importance of theoretical rigor in the development of new 

statistical models. 

 

3.1.  Characterizations based on a simple relationship between two truncated moments 

In this subsection we present characterizations of the new distribution, in terms of a simple relationship between two 

truncated moments. Our first characterization result employs a theorem due to (Glänzel, 1987), see Theorem G below. 

Note that the result holds also when the interval  𝐻   is not closed. Moreover, it could be also applied when the CDF  

𝐹  does not have a closed form.  As shown in (Glänzel, 1990), this characterization is stable in the sense of weak 

convergence.  

Let 

 

𝑓𝑃(𝓍) = 𝐶(1 + 𝓍)
−(1+

4
𝛽3
)
𝑃(𝓍), 

 

where 

𝐶 = 4
𝛽3

𝛽1𝛽3 [1 − 𝑒𝓍𝑝 (−
1
𝛽1
)]

 

and  
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𝑃(𝓍) =
−[1−(1+𝓍)

−
4
𝛽3]

𝛽2−1

𝑒𝓍𝑝{
1

𝛽1
[1−(1+𝓍)

−
4
𝛽3]

𝛽2

}

 . 

 

 

Theorem G.  Let  (𝛺, 𝐹, 𝑃)  be a given probability space and let 𝐻 = [𝑑, 𝑒]  be an interval for some   𝑑 < 𝑒    
(𝑑 = −∞, 𝑒 = ∞  might as well be allowed).  Let  𝑋  :   𝛺 → 𝐻   be a continuous random variable with the 

distribution function  𝐹  and let  𝓆1  and  𝓆2  be two real functions defined on  𝐻  such that 

 

𝐸[𝓆2(𝑋) | 𝑋 ≥ 𝓍] = 𝐸[𝓆1(𝑋) | 𝑋 ≥ 𝓍]𝜂(𝓍),   𝓍 ∈ 𝐻, 
 

is defined with some real function  𝜂 . Assume that  𝓆1, 𝓆2 ∈ 𝐶
1(𝐻) ,  𝜂 ∈ 𝐶2(𝐻)  and  𝐹  is twice continuously 

differentiable and strictly monotone function on the set  𝐻 . Finally, assume that the equation  𝜂𝓆1 = 𝓆2  has no real 

solution in the interior of  𝐻 . Then  𝐹  is uniquely determined by the functions  𝓆1, 𝓆2  and  𝜂 , particularly 

 

𝐹(𝓍) = ∫ 𝐶 |
𝜂′(𝑢)

𝜂(𝑢)𝓆1(𝑢) − 𝓆2(𝑢)
|

𝓍

𝑎

𝑒𝓍𝑝(−𝑠(𝑢))  𝑑𝑢 , 

 

where the function   𝑠   is a solution of the differential equation  𝑠′ =
𝜂′ 𝓆1

𝜂 𝓆1 − 𝓆2
  and  𝐶  is the normalization constant, 

such that  ∫ 𝑑𝐹
𝐻

= 1 . 

 

Remark 3.1.1.  The goal is to have  𝜂(𝓍)  as simple as possible. 

 

Proposition 3.1.1.  Let  𝑋 :   𝛺 → (0,∞)  be a continuous random variable and let 

𝓆1(𝓍) = [𝑃(𝓍)]
−1 

and   

𝓆2(𝓍) = 𝓆1(𝓍)(1 + 𝓍)
−
4

𝛽3    for  𝓍 > 0. 
 

The random variable  𝑋  has pdf  (4)  if and only if the function  𝜂  defined in Theorem G has the form 

 

𝜂(𝓍) =
1

2
(1 + 𝓍)

−
4
𝛽3 ,     𝓍 > 0. 

Proof.  Let   𝑋   be a random variable with pdf  (4) , then 

 

(1 − 𝐹(𝓍))𝐸[𝓆1(𝑋) | 𝑋 ≥ 𝓍] = ∫ 𝐶(1 + 𝑢)
−(1+

4
𝛽3
)
𝑑𝑢

∞

𝓍

 

=
𝐶𝛽3
4
(1 + 𝓍)

−
4
𝛽3 ,         𝓍 > 0, 

 

and 

 

(1 − 𝐹(𝓍))𝐸[𝓆2(𝑋) | 𝑋 ≥ 𝓍] = ∫ 𝐶
∞

𝓍

(1 + 𝑢)
−(1+

8
𝛽3
)
𝑑𝑢 =

𝐶𝛽3
8
(1 + 𝓍)

−
8
𝛽3 ,         𝓍 > 0, 

and finally 

𝜂(𝓍)𝓆1(𝓍) − 𝓆2(𝓍) = −
𝓆1(𝓍)

2
(1 + 𝓍)

−
4
𝛽3 < 0   𝑓𝑜𝑟  𝓍 > 0. 

 

Conversely, if  𝜂  is given as above, then 

 

𝑠′(𝓍) =
𝜂′(𝓍)𝓆1(𝓍)

𝜂(𝓍)𝓆1(𝓍) − 𝓆2(𝓍)
=

4
𝛽3

1 + 𝓍
,   𝓍 > 0, 
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and hence 

 

𝑠(𝓍) =
4

𝛽3
𝑙𝑜𝑔{1 + 𝓍} ,         𝓍 > 0. 

 

Now, in view of Theorem G,  𝑋   has density  (4).  
 

Corollary 3.1.1.  Let  𝑋  :   𝛺 → (0,∞)   be a continuous random variable and let  𝓆1(𝓍)  be as in Proposition 3.1.1. 

The pdf of  𝑋  is  (4)  if and only if there exist functions  𝓆2  and  𝜂  defined in Theorem G satisfying the differential 

equation 

𝜂′(𝓍)𝓆1(𝓍)

𝜂(𝓍)𝓆1(𝓍) − 𝓆2(𝓍)
=

4
𝛽3

1 + 𝓍
,   𝓍 > 0. 

 

Corollary 3.1.2. The general solution of the differential equation in Corollary 1.1.1 is 

 

𝜂(𝓍) = {1 + 𝓍}
4
𝛽3 [−∫

4

𝛽3
(1 + 𝓍)

−(1+
4
𝛽3
)
(𝓆1(𝓍))

−1
𝓆2(𝓍)𝑑𝓍 + 𝐷], 

 

where  𝐷  is a constant. 

 

Proof.   If  𝑋  has pdf  (4) , then clearly the differential equation holds. Now, if the differential equation holds, then 

 

𝜂′(𝓍) = (

4
𝛽3

1 + 𝓍
)𝜂(𝓍) − (

4
𝛽3

1 + 𝓍
)(𝓆1(𝓍))

−1
𝓆2(𝓍), 

 

or 

 

𝜂′(𝓍) − (

4
𝛽3

1 + 𝓍
)𝜂(𝓍) = −(

4
𝛽3

1 + 𝓍
)(𝓆1(𝓍))

−1
𝓆2(𝓍), 

 

or 

𝑑

𝑑𝓍
{(1 + 𝓍)

−
4
𝛽3𝜂(𝓍)} = −(

4
𝛽3

1 + 𝓍
)(𝓆1(𝓍))

−1
𝓆2(𝓍), 

 

from which we arrive at 

 

𝜂(𝓍) = {(1 + 𝓍)
−
4
𝛽3} [−∫

4

𝛽3
(1 + 𝓍)

−(1+
4
𝛽3
)
(𝓆1(𝓍))

−1
𝓆2(𝓍)𝑑𝓍 + 𝐷]. 

 

Note that a set of functions satisfying the differential equation in Corollary 3.1.1, is given in Proposition 3.1.1 with  

𝐷 = 0.  However, it should also be noted that there are other triplets  (𝓆1, 𝓆2, 𝜂)  satisfying the conditions of Theorem 

G. 

 

 

3.2 Characterization in Terms of the Reverse (or Reversed) Hazard Function 

The reverse hazard function,  𝑟𝐹 , of a twice differentiable distribution function,  𝐹  , is defined as 
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𝑟𝐹(𝓍) =
𝑓(𝓍)

𝐹(𝓍)
,   𝓍 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐹. 

 

In this subsection we present characterizations of the proposed distribution in terms of the reverse hazard function. 

 

Proposition 3.2.1.  Let  𝑋  :   𝛺 → (0,∞)  be a continuous random variable.  The random variable  𝑋   has pdf  (4)  
if and only if its reverse hazard function  𝑟𝐹(𝓍)  satisfies the following differential equation 

 

𝑟𝐹
′(𝓍) + (1 +

4

𝛽3
) (1 + 𝓍)−1𝑟𝐹(𝓍) 

=
4𝛽2
𝛽1𝛽3

(1 + 𝓍)
−(1+

4
𝛽3
) 𝑑

𝑑𝓍

{
 
 

 
 

𝑃(𝓍)

1 − 𝑒𝓍𝑝 {−
1
𝛽1
[1 − (1 + 𝓍)

−
4
𝛽3]

𝛽2

}
}
 
 

 
 

,   𝓍 > 0, 

 

with boundary condition  𝑙𝑖𝑚𝓍→∞ 𝑟𝐹 (𝓍) = 0 . 

 

Proof.  

Is straightforward. 

 

4. Simulation studies 

This Section presents a comprehensive simulation study designed to evaluate the performance of various estimation 

methods for the parameters of the CQLx model. The primary objective is to assess the accuracy and efficiency of five 

prominent estimation techniques: MLE, CVM, ADE, RTADE and LTADE. These methods are compared across 

different sample sizes: 𝓃 = 15, 30, 50, and 100, to investigate their behavior in both small and moderate sample 

scenarios. Simulations are conducted under three distinct parametric settings to ensure robustness and generalizability 

of the findings. The evaluation metrics include bias, RMSE, maximum absolute difference (Dabs), and maximum 

difference (Dmax), which collectively provide insight into the precision and distributional fit of each estimator. 

Particular attention is given to the tail behavior of the CQLx model, as it is crucial in applications involving extreme 

values and risk assessment. MLE is expected to perform optimally due to its asymptotic properties, while the 

Anderson-Darling variants are anticipated to excel in tail sensitivity. The study also examines the consistency of 

estimators as sample size increases. Results are structured in tabular form (Tables 1–3) for clarity and ease of 

comparison. This simulation framework allows for a rigorous empirical validation of theoretical properties discussed 

in earlier sections. It further supports the selection of the most appropriate estimation method in practical applications. 

The insights gained are essential for researchers and practitioners in fields such as actuarial science, reliability 

engineering, and financial risk modeling. Section 4 thus serves as a critical bridge between theoretical development 

and real applicability of the CQLx model. 

 

 

Table 1 presents a simulation study for the CQLx model under five estimation methods: MLE, CVM, ADE, RTADE 

and LTADE. The simulation is conducted for fixed parameter values 𝛽1=0.01, 𝛽2=1.2 and 𝛽3 =300 across sample sizes 

𝓃 = 15, 30, 50, and 100.  

 

Performance metrics include bias (BIAS), RMSE, maximum absolute difference (Dabs), and maximum difference 

(Dmax). As sample size increases, biases and RMSEs generally decrease for all methods, indicating asymptotic 

consistency. MLE consistently shows the lowest bias and RMSE across all parameters and sample sizes, 

demonstrating superior efficiency.  

 

The CVM and ADE exhibit higher biases and RMSEs, especially for the 𝛽3 parameter, suggesting poorer tail 

estimation. RTADE and LTADE perform better than CVM and ADE but are slightly less efficient than MLE. Dabs 

and Dmax values are smallest for MLE, indicating the best overall fit to the true distribution. LTADE shows 

competitive performance in Dabs and Dmax, particularly at larger sample sizes. For 𝓃 = 15, MLE has very low bias 

for 𝛽1 and 𝛽2 but higher bias for 𝛽3, while CVM and ADE show significantly higher errors. As n increases to 100, 
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MLE’s RMSE for 𝛽3 drops substantially, reflecting improved precision. RTADE performs well in tail estimation, as 

expected due to its focus on right-tail behavior. LTADE shows improved accuracy for 𝛽3 at larger n, with negative 

bias at smaller samples. The results confirm that all estimators improve with larger sample sizes. MLE is the most 

reliable method for parameter estimation in the CQLx model. CVM and ADE are less accurate, especially for heavy-

tailed parameters. RTADE is suitable when the right-tail behavior is of interest. LTADE excels in left-tail fitting, as 

reflected in its low Dabs values. 

 

 
  Table 1: Simulation results for parameter 𝛽1=0.01, 𝛽2=1.2& 𝛽3 =300. 

 n BIAS𝛽1 BIAS𝛽2 BIAS𝛽3 RMSE𝛽1 RMSE𝛽2 RMSE𝛽3 Dabs Dmax 

MLE 15 0.000133 0.003636 2.48168 0.000007 0.00535 4521.565 0.009500 0.00842 

CVM  0.004893 0.033601 112.7127 0.00006 0.015049 32683.369 0.213711 0.276656 

ADE  0.004182 0.033017 99.46479 0.000032 0.006512 18317.684 0.194869 0.246842 

RTADE  0.000581 0.009243 13.30956 0.000008 0.005474 5090.590 0.03619 0.039442 

LTADE  0.000328 -0.00079 6.25222 0.000011 0.006011 6856.445 0.013355 0.020753 

          

MLE 30 -0.00002 -0.00181 -1.10340 0.000004 0.002616 2297.338 0.003521 0.00248 

CVM  0.00447 0.032305 105.2922 0.000036 0.007532 20426.246 0.202237 0.260767 

ADE  0.003968 0.030326 95.06214 0.000023 0.003725 13338.142 0.186558 0.238112 

RTADE  0.000251 0.003484 5.653095 0.000004 0.002801 2491.834 0.015272 0.017251 

LTADE  0.000154 -0.000469 2.840338 0.000006 0.003077 3483.885 0.006131 0.009706 

          

MLE 50 0.000076 0.002036 1.693279 0.000002 0.001401 1222.134 0.005623 0.005224 

CVM  0.004336 0.032828 102.9143 0.000028 0.004779 15716.25 0.199476 0.255511 

ADE  0.003839 0.028427 92.34287 0.000019 0.00231 10853.53 0.181348 0.232369 

RTADE  0.000093 0.000877 1.975883 0.000002 0.001487 1300.846 0.00516 0.006262 

LTADE  0.000053 -0.00108 0.792616 0.000003 0.001675 1855.845 0.001019 0.003112 

          

MLE 100 0.000021 0.00065 0.413094 0.000001 0.000757 660.5209 0.001591 0.001368 

CVM  0.004278 0.03316 102.03650 0.000023 0.002885 13041.492 0.198397 0.253397 

ADE  0.003932 0.03003 94.75749 0.000018 0.001695 10251.177 0.185808 0.237377 

RTADE  0.000075 0.00118 1.708042 0.000001 0.000797 707.06933 0.004766 0.005241 

LTADE  0.000069 0.00054 1.467306 0.000001 0.000832 946.82527 0.003732 0.004669 

 

Table 2 presents simulation results for the CQLx model under five estimation methods for fixed parameter values 

𝛽1=0.1, 𝛽2=0.9 & 𝛽3 =50. across sample sizes 𝓃 = 15, 30, 50, and 100. Performance metrics include bias (BIAS), 

RMSE, maximum absolute difference (Dabs), and maximum difference (Dmax). As sample size increases, biases and 

RMSEs generally decrease for all methods, indicating asymptotic consistency. MLE consistently shows the lowest 

bias and RMSE for all parameters, especially for 𝛽1 and 𝛽3, demonstrating superior efficiency and accuracy. CVM 

and ADE exhibit significantly higher biases and RMSEs, particularly for 𝛽1, suggesting poor performance in 

estimating shape parameters. RTADE and LTADE perform better than CVM and ADE but are less efficient than 

MLE. Dabs and Dmax values are smallest for MLE, reflecting the best overall fit to the true distribution. LTADE 

shows competitive performance in Dabs, particularly at larger sample sizes. For 𝓃 = 15, MLE has low bias for 𝛽2 and 

𝛽3 but slightly higher for 𝛽1, while CVM shows large positive bias in 𝛽1. As n increases to 100, MLE’s RMSE for all 

parameters drops substantially. RTADE performs well in tail estimation, as expected. LTADE exhibits negative bias 

in 𝛽2 at smaller samples but improves with larger n. The table confirms that all estimators improve with increased 

sample size. MLE is the most reliable method for parameter estimation under these settings. CVM and ADE are less 

accurate, especially for 𝛽1. RTADE is suitable when right-tail behavior is a focus. LTADE excels in left-tail fitting, 

evident in its low Dabs. The results validate the theoretical consistency of the estimators.  

Table 2: Simulation results for parameter 𝛽1=0.1, 𝛽2=0.9 & 𝛽3 =50. 

 n BIAS𝛽1 BIAS𝛽2 BIAS𝛽3 RMSE𝛽1 RMSE𝛽2 RMSE𝛽3 Dabs Dmax 

MLE 15 -0.000735 0.008817 0.463984 0.000662 0.011383 249.819117 0.006464 0.000249 

CVM  0.048707 -0.017531 27.505115 0.0064 0.026251 2219.71951 0.172109 0.274717 

ADE  0.039008 -0.032388 22.250287 0.002915 0.011187 1050.84510 0.133623 0.231278 

RTADE  0.004392 0.013257 2.98815 0.00079 0.013249 292.93866 0.032566 0.033979 

LTADE  0.002156 0.000613 1.75367 0.001113 0.011347 378.620718 0.013175 0.01866 
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MLE 30 0.000621 0.007556 0.869817 0.00036 0.005466 138.17793 0.010658 0.007748 

CVM  0.042651 -0.027714 22.95486 0.003393 0.012181 1117.91008 0.145183 0.244321 

ADE  0.038608 -0.035297 21.439434 0.002199 0.00652 737.791809 0.129234 0.228203 

RTADE  0.001803 0.005279 1.269901 0.00038 0.006419 137.363617 0.013683 0.014514 

LTADE  0.001527 0.002497 1.165445 0.000573 0.00592 192.972616 0.010574 0.012871 

          

MLE 50 0.000492 0.004085 0.610415 0.00021 0.003193 79.348623 0.006747 0.005661 

CVM  0.041009 -0.032795 21.821915 0.002515 0.007278 791.282928 0.135485 0.235919 

ADE  0.038242 -0.038325 20.927821 0.001864 0.004212 595.458929 0.124601 0.225347 

RTADE  0.001112 0.00282 0.757488 0.00021 0.003532 75.769108 0.008007 0.008839 

LTADE  0.000295 -0.00065 0.323222 0.000306 0.003123 102.133522 0.001657 0.00313 

          

MLE 100 -0.000256 0.001398 -0.008421 0.000096 0.00158 35.432809 0.000351 0.000995 

CVM  0.042559 -0.03222 22.528539 0.002259 0.004184 675.366008 0.140208 0.242739 

ADE  0.039092 -0.039801 21.245226 0.001743 0.003107 535.325189 0.125805 0.228944 

RTADE  0.000961 0.002829 0.61962 0.000113 0.001897 40.343125 0.007043 0.007432 

LTADE  0.000234 -0.000665 0.211558 0.000166 0.001717 55.380332 0.001015 0.002201 

Table 3 presents a simulation study for the CQLx model under five estimation methods. The simulation is conducted 

for fixed parameter values 𝛽1 = 0.05, 𝛽2 = 2.5, and 𝛽3 = 5 across sample sizes 𝓃 = 15, 30, 50, and 100. Performance 

metrics include bias (BIAS), RMSE, maximum absolute difference (Dabs), and maximum difference (Dmax). As 

sample size increases, biases and RMSEs generally decrease for all methods, indicating asymptotic consistency. MLE 

demonstrates the lowest bias and RMSE for all parameters, especially at larger sample sizes, confirming its superior 

efficiency and accuracy. CVM and ADE show significantly higher biases and RMSEs, particularly for the 𝛽3 

parameter, suggesting poor performance in tail estimation. RTADE and LTADE perform better than CVM and ADE 

but are less efficient than MLE. Dabs and Dmax values are smallest for MLE, reflecting the best overall fit to the true 

distribution. LTADE shows strong performance in Dabs, particularly for larger n, indicating good left-tail fitting. For 

𝓃 = 15, MLE exhibits low bias for 𝛽1 and 𝛽2, but CVM and ADE show large biases, especially for 𝛽3. As n increases 

to 100, MLE’s RMSE for all parameters declines substantially, demonstrating improved precision. RTADE performs 

well in right-tail estimation, as expected. LTADE shows slight negative bias in 𝛽2 at smaller samples but improves 

with larger n. The results confirm that all estimators become more accurate with larger sample sizes. MLE is the most 

reliable method for parameter estimation under these settings. CVM and ADE are less accurate, particularly for the 

shape parameter 𝛽3. RTADE is suitable when focusing on upper-tail behavior. LTADE excels in lower-tail fitting, 

evident in its low Dabs. The table validates the theoretical consistency of the estimators.  

Table3: Simulation results for parameter 𝛽1=0.05, 𝛽2=2.5 & 𝛽3 =5. 

 n BIAS𝛽1 BIAS𝛽2 BIAS𝛽3 RMSE𝛽1 RMSE𝛽2 RMSE𝛽3 Dabs Dmax 

MLE 15 0.00027 0.011919 -0.001065 0.000167 0.050659 0.423732 0.005103 0.001808 

CVM  0.024946 0.041801 0.769097 0.00156 0.147247 2.027693 0.18102 0.249699 

ADE  0.019366 0.002734 0.646297 0.000706 0.05056 0.972613 0.141411 0.207823 

RTADE  0.002021 0.019408 0.058251 0.000184 0.055212 0.436542 0.022203 0.023256 

LTADE  0.000761 -0.005915 -0.02235 0.000279 0.057278 0.614365 0.000624 0.002143 

          

MLE 30 0.000235 0.013339 0.009556 0.000086 0.025959 0.220272 0.006537 0.00318 

CVM  0.022834 0.024099 0.729255 0.000885 0.05972 1.115754 0.166329 0.236247 

ADE  0.019787 0.003423 0.674516 0.000571 0.025249 0.751755 0.146099 0.214563 

RTADE  0.001166 0.013915 0.036982 0.000095 0.029018 0.231267 0.014174 0.014087 

LTADE  0.0008 0.002503 0.009215 0.000134 0.027439 0.293348 0.005761 0.007234 

          

MLE 50 -0.000072 0.001166 -0.007678 0.00005 0.014533 0.127066 0.000788 0.001707 

CVM  0.021354 0.010096 0.688776 0.000681 0.035567 0.846323 0.154042 0.224392 

ADE  0.019386 -0.003879 0.662788 0.000478 0.015431 0.611245 0.141346 0.211389 

RTADE  0.000623 0.006504 0.018291 0.000054 0.016951 0.133705 0.007129 0.007344 

LTADE  0.000349 -0.000491 -0.001638 0.000085 0.017504 0.188017 0.001407 0.002308 

          

MLE 100 -0.000058 0.001098 -0.004286 0.000024 0.007616 0.062567 0.000382 0.001084 

CVM  0.021706 0.013014 0.714525 0.000583 0.016698 0.689786 0.158328 0.229469 

ADE  0.019757 -0.001969 0.679438 0.000448 0.008142 0.557233 0.144517 0.215473 

RTADE  0.000482 0.006014 0.01708 0.000029 0.008948 0.071471 0.006149 0.006141 
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LTADE  0.000341 0.001985 0.006865 0.000043 0.008798 0.094317 0.003064 0.003547 

 

Based on Tables 1, 2, and 3, we note that the MLE method consistently outperforms the other estimation techniques, 

CVM, ADE, RTADE, and LTADE, across all simulation scenarios in terms of bias and RMSE for all parameters. As 

the sample size increases from 𝓃 = 15 to 𝓃 = 100, the bias and RMSE for all methods generally decrease, indicating 

that all estimators exhibit asymptotic consistency. However, MLE achieves the lowest values most rapidly, 

demonstrating superior efficiency and faster convergence. CVM and ADE consistently show the highest biases and 

RMSEs, particularly for the 𝛽3 parameter, suggesting they are less reliable for estimating tail behavior in the CQLx 

model. RTADE and LTADE perform better than CVM and ADE, with RTADE showing strength in right-tail 

estimation and LTADE excelling in left-tail fitting, as reflected in their lower Dabs values. Notably, LTADE often 

produces the smallest Dabs (maximum absolute difference), indicating an excellent fit to the empirical distribution 

function, especially at larger sample sizes. MLE also achieves the lowest Dmax values, reinforcing its overall 

accuracy. The performance advantage of MLE is consistent across different parameter settings, whether 𝛽3 is large 

(300), moderate (50), or small (5), confirming its robustness. In contrast, CVM and ADE exhibit large biases in 𝛽1 

and 𝛽3, making them less suitable for practical use. RTADE shows relatively low bias for 𝛽1 in some cases but 

struggles with 𝛽3. LTADE sometimes exhibits negative bias in 𝛽2 but improves with sample size. Overall, the tables 

demonstrate that MLE is the most reliable and efficient method for estimating the parameters of the CQLx model, 

while alternative methods may be considered only when specific tail behavior is of interest. 

5. VAR analysis and assessment under simulated data 

Section 5 presents a comprehensive VaR and TVaR analysis based on the proposed CQLx model, demonstrating its 

practical utility in financial risk assessment and actuarial science. This section aims to evaluate the performance of 

different estimation methods, MLE, CVM, ADE, RTADE, and LTADE, in predicting key risk measures under both 

simulated and real insurance claim data. The analysis focuses on well-known risk indicators such as VaRq(X), 

TVaRq(X), TVq(X), TMVq(X), and ELq(X) across various quantile levels (70%, 80%, and 90%). These measures 

are crucial for insurers and financial institutions in capital reserve planning, solvency assessment, and regulatory 

compliance under frameworks like Solvency II and Basel III. Using artificially generated data from the CQLx model, 

Tables 4, 5, 6 and 7 provide a comparative evaluation of risk estimates for increasing sample sizes (𝓃 = 15, 30, 50, 

100), allowing an assessment of estimator stability and convergence. The results reveal that MLE produces the most 

stable and theoretically consistent risk estimates, with smooth and plausible growth in tail risk measures as the quantile 

level increases. In contrast, alternative methods such as CVM, ADE, and RTADE tend to produce inflated or erratic 

estimates, particularly for high quantiles, indicating potential overestimation of risk. The LTADE method shows 

competitive performance, often yielding more conservative but reasonable estimates, especially at higher thresholds. 

The section further extends the analysis to a real financial insurance claims dataset, presented in Table 8, to validate 

the model's applicability in practical scenarios. Under real data, MLE again demonstrates superior performance with 

coherent and moderate risk estimates across all quantiles. Other methods, particularly ADE and RTADE, generate 

significantly higher risk measures, suggesting sensitivity to extreme observations. The comparison underscores the 

importance of selecting an appropriate estimation technique when modeling heavy-tailed insurance data. This section 

also highlights the CQLx model’s flexibility in capturing extreme risks, making it a valuable tool for actuaries and 

risk analysts. Overall, Section 5 bridges theoretical modeling with real risk management, reinforcing the CQLx 

model’s relevance in modern financial and actuarial applications. 

Table 4 presents a VaR and TVaR analysis for the CQLx model under five estimation methods, MLE, CVM, ADE, 

RTADE, and LTADE, using artificially generated data with a small sample size of 𝓃 = 15. The analysis evaluates 

key risk measures at three quantile levels: 70%, 80%, and 90%. These measures include VaRq(X), TVaRq(X), 

TVq(X), TMVq(X), and ELq(X). The MLE method produces relatively moderate and stable risk estimates, with VaR 

values increasing logically from 6.169 to 29.199 as the quantile increases. In contrast, CVM, ADE, RTADE, and 

LTADE generate significantly higher VaR and TVaR values, indicating a tendency to overestimate risk. For instance, 

at the 90% quantile, CVM estimates TVaRq(X) at 4,336.639, far exceeding MLE’s 29,642.364. The TVq(X) and 

TMVq(X) for MLE are extremely high, suggesting high uncertainty in the tail under this estimation. However, CVM, 

ADE, RTADE, and LTADE show lower tail variance values compared to MLE, possibly due to model 

misspecification or parameter instability. The ELq(X)—the difference between TVaR and VaR, is largest for MLE, 
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reflecting a wide gap between average tail loss and the VaR threshold. For CVM and ADE, ELq(X) is much smaller, 

implying less severe tail losses beyond VaR. RTADE and LTADE produce intermediate ELq values but are still higher 

than CVM and ADE. Notably, LTADE yields the highest TVaR and tail variability among the alternative methods, 

suggesting sensitivity to extreme observations. The results highlight the substantial impact of the estimation method 

on risk assessment. MLE provides more coherent and theoretically consistent results, while other methods may distort 

tail behavior. The table underscores the importance of selecting a reliable estimation technique, especially with small 

samples. It also reveals that non-MLE methods may underestimate or misrepresent tail risk. The analysis serves as a 

foundation for comparing performance under larger samples in subsequent tables. Overall, Table 4 demonstrates 

MLE’s superiority in producing stable and interpretable risk metrics for the CQLx model. 

Table 4 : KRIs under artificial data for n=15. 

Method 𝛽1 𝛽2 𝛽3 VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X) 

MLE 0.01013 1.20363 302.4      

70%    6.169 9880.789 561089271 280554516 9874.620 

80%    11.378 14821.183 768411419 384220530 14809.80 

90%    29.199 29642.364 1097488026 548773655 29613.16 

         

CVM 0.014893 1.233601 412.712777      

70%    55.813 1460.706 7604679 3803800 1404.893 

80%    169.465 2190.498 9809162 4906771 2021.033 

90%    1020.252 4336.639 10377566 5193119 3316.387 

         

ADE 0.014182 1.233017 399.464792      

70%    41.494 1235.556 6710581 3356526 1194.061 

80%    116.759 1853.113 8921722 4462714 1736.354 

90%    618.312 3692.56 11070700 5539042 3074.248 

         

RTADE 0.010581 1.209243 313.309566      

70%    7.603 3267.322 208412575 104209555 3259.719 

80%    14.586 4824.608 305354236 152681942 4810.022 

90%    40.092 8274.25 588758626 294387587 8234.158 

         

LTADE 0.010328 1.199205 306.252228      

70%    6.382 3469.267 220194487 110100713 3462.884 

80%    11.881 5151.428 321807742 160909022 5139.547 

90%    30.997 9446.282 607438088 303728490 9415.285 

 

Table 5 presents a VaR and TVaR analysis for the CQLx model using artificially generated data with a sample size of 

𝓃 = 30, under five estimation methods: MLE, CVM, ADE, RTADE, and LTADE. The analysis evaluates key risk 

measures, VaRq(X), TVaRq(X), TVq(X), TMVq(X), and ELq(X), at quantile levels of 70%, 80%, and 90%. MLE 

produces the most stable and moderate risk estimates, with VaR increasing from 5.611 to 25.44 and TVaR from 

7,867.523 to 23,602.566 as the quantile increases. In contrast, CVM, ADE, RTADE, and LTADE generate 

significantly higher TVaR values, indicating a tendency to overestimate tail risk. For example, at the 90% level, CVM 

estimates TVaR at 3,947.531, much lower than MLE but with a less plausible tail behavior. The TVq(X) and 

TMVq(X) under MLE are extremely high, reflecting the heavy-tailed nature of the model. However, these values are 

lower for other methods, suggesting potential underestimation of tail variability. ELq(X), the difference between 

TVaR and VaR, is largest for MLE, indicating a wide gap in expected loss beyond the VaR threshold. CVM and ADE 

show smaller ELq values, implying less severe tail losses. RTADE and LTARE produce intermediate ELq values but 

still higher than CVM and ADE. LTADE yields the highest TVaR and ELq among non-MLE methods, showing 

sensitivity to extreme observations. The results highlight the strong influence of the estimation method on risk 

assessment outcomes. MLE provides the most coherent and theoretically sound risk estimates for the CQLx model. 

The table supports the consistency of MLE’s performance as sample size increases from 𝓃 = 15 to 𝓃 = 30. 
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Table 5 : KRIs under artificial data for n=30. 

Method 𝛽1 𝛽2 𝛽3 VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X) 

MLE 0.009976 1.198187 298.896592      

70%    5.611 7867.523 462603593.03 231309664.038 7861.912 

80%    10.189 11801.284 647481958.457 323752780.512 11791.095 

90%    25.44 23602.566 1016423382.848 508235293.99 23577.126 

         

CVM 0.01447 1.232305 405.292196      

70%    46.478 1323.27 7070945.596 3536796.068 1276.792 

80%    134.74 1984.587 9294365.28 4649167.227 1849.848 

90%    750.569 3947.531 10871778.776 5439836.919 3196.962 

         

ADE 0.013968 1.230326 395.062141      

70%    36.893 1146.78 6330198.53 3166246.045 1109.887 

80%    100.987 1720.018 8509481.557 4256460.796 1619.031 

90%    510.748 3431.412 11158267.392 5582565.107 2920.663 

         

RTADE 0.010251 1.203484 305.653095      

70%    6.456 3457.612 219516942.326 109761928.775 3451.156 

80%    12.016 5132.923 320860628.772 160435447.309 5120.907 

90%    31.336 9393.455 606157895.705 303088341.307 9362.119 

         

LTADE 0.010154 1.199531 302.840338      

70%    6.032 3537.717 224193612.801 112100344.117 3531.685 

80%    11.102 5260.312 327392283.874 163701402.249 5249.211 

90%    28.385 9793.654 614195418.734 307107503.021 9765.268 

 

Table 6 presents a VaR and TVaR analysis for the CQLx model using artificially generated data with a sample size of 

𝓃 = 50, under five estimation methods including MLE, CVM, ADE, RTADE, and LTADE. The analysis evaluates 

risk measures including the VaRq(X), TVaRq(X), TVq(X), TMVq(X), and ELq(X)  at 70%, 80%, and 90% quantiles. 

MLE produces moderate and consistent risk estimates, with VaR increasing from 5.997 to 28.022 and TVaR from 

9,245.842 to 27,737.524, reflecting plausible tail behavior. In contrast, CVM, ADE, RTADE, and LTADE generate 

much lower TVaR values, indicating potential underestimation of tail risk. For example, at the 90% level, CVM 

estimates TVaR at 3,840.523, significantly lower than MLE’s 27,737.524. TVq(X) is extremely high for MLE, 

consistent with the heavy-tailed nature of the CQLx model, while other methods show lower values, suggesting less 

tail variability. ELq(X), the difference between TVaR and VaR, is largest for MLE, indicating a wide expected loss 

beyond VaR. CVM and ADE show smaller ELq values, implying less severe tail losses. RTADE and LTADE produce 

intermediate ELq values, with LTADE showing increasing ELq as the quantile rises. The results highlight that MLE 

provides the most realistic and stable risk assessment. Other methods, particularly CVM and ADE, appear to 

underestimate tail risk, which could lead to inadequate capital reserves. The table demonstrates improved stability of 

all estimators at 𝓃 = 50 compared to smaller samples. MLE continues to outperform others in coherence and 

theoretical consistency. The analysis reinforces MLE as the preferred method for risk estimation in the CQLx model 

Table 6: KRIs under artificial data for n=50. 

Method 𝛽1 𝛽2 𝛽3 VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X) 

MLE 0.010076 1.202036 301.693279      

70%    5.997 9245.842 530903871.298 265461181.4 9239.845 

80%    11.01 13868.763 732241615.457 366134676.4 13857.753 

90%    28.02 27737.52 1079798171.00 539926823.0 27709.502 

         

CVM 0.014336 1.232828 402.914349      

70%    44.31 1286.295 6920912.391 3461742.491 1241.985 

80%    126.82 1929.17 9141478.782 4572668.561 1802.35 

90%    691.22 3840.523 10968289.609 5487985.327 3149.305 

         

ADE 0.013839 1.228427 392.342879      

70%    34.285 1091.653 6086066.973 3044125.14 1057.369 

80%    92.269 1637.36 8235705.648 4119490.184 1545.091 
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90%    453.649 3268.259 11149770.444 5578153.481 2814.609 

         

RTADE 0.010093 1.200877 301.975883      

70%    5.981 3548.975 224852455.624 112429776.78 3542.994 

80%    10.981 5278.153 328312228.675 164161392.49 5267.172 

90%    27.95 9850.174 615301707.225 307660703.78 9822.219 

         

LTADE 0.010053 1.198917 300.792616      

70%    5.804 3584.729 226939353.622 113473261.54 3578.925 

80%    10.604 5334.597 331226176.438 165618422.81 5323.992 

90%    26.769 10017.323 619008493.652 309514264.14 9990.554 

 

Table 7 presents a VaR and TVaR analysis for the CQLx model using artificially generated data with a sample size of 

𝓃 = 100, under five estimation methods: MLE, CVM, ADE, RTADE, and LTADE. The analysis evaluates risk 

measures—VaRq(X), TVaRq(X), TVq(X), TMVq(X), and ELq(X)—at 70%, 80%, and 90% quantiles. MLE produces 

stable and moderate risk estimates, with VaR increasing from 5.822 to 26.825 and TVaR from 8593.742 to 25,781.223, 

reflecting consistent tail behavior. In contrast, CVM, ADE, RTADE, and LTADE generate lower TVaR values, 

indicating a tendency to underestimate tail risk. For instance, at the 90% level, CVM estimates TVaR at 3,799.872, 

significantly lower than MLE’s 25,781.223. The TVq(X) is extremely high under MLE, consistent with the heavy-

tailed nature of the CQLx distribution, while other methods show much lower values. ELq(X)—the difference between 

TVaR and VaR, is largest for MLE, suggesting a wide expected loss beyond the VaR threshold. CVM and ADE show 

smaller ELq values, implying less severe tail losses. RTADE and LTADE produce intermediate ELq values, with 

LTADE showing slightly higher values than RTADE. As the sample size increases to 100, MLE’s estimates become 

more precise and stable. The other methods show less variability but at the cost of underestimating risk. The table 

confirms that MLE provides the most reliable and theoretically sound risk assessment. Other methods, particularly 

CVM and ADE, appear to distort tail behavior. The results reinforce MLE as the preferred estimation method for risk 

analysis in the CQLx model. 

Table 7: KRIs under artificial data for n=100. 

Method 𝛽1 𝛽2 𝛽3 VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X) 

MLE 0.010021 1.20065 300.413094      

70%    5.822 8593.742 499063719.093 249540453.288 8587.92 

80%    10.634 12890.612 693206283.908 346616032.566 12879.97 

90%    26.825 25781.223 1054076869.491 527064215.969 25754.39 

         

CVM 0.014278 1.23316 402.036504      

70%    43.526 1272.312 6863460.704 3433002.6 1228.786 

80%    123.966 1908.21 9082066.578 4542941.5 1784.244 

90%    670.019 3799.872 11000035.563 5503817.6 3129.853 

         

ADE 0.013932 1.230031 394.757498      

70%    36.387 1136.32 6284342.017 3143307.328 1099.933 

80%    99.277 1704.334 8458581.386 4230995.027 1605.057 

90%    499.359 3400.503 11160440.543 5583620.775 2901.144 

         

RTADE 0.010075 1.201177 301.708042      

70%    5.962 3553.111 225094348.091 112550727.15 3547.149 

80%    10.937 5284.698 328649995.563 164330282.48 5273.761 

90%    27.802 9870.475 615715390.025 307867565.48 9842.673 

         

LTADE 0.010069 1.200543 301.467306      

70%    5.918 3561.839 225603673.259 112805398.46 3555.921 

80%    10.844 5298.486 329361218.308 164685907.64 5287.642 

90%    27.513 9911.362 616621271.042 308320546.88 9883.849 
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6. VAR analysis and assessment under real motor insurance claims data 

Risk analysis has undergone significant evolution through the development of advanced statistical distributions and 

robust estimation techniques, as demonstrated by a comprehensive body of literature (Abiad et al., 2025; Yousof et 

al., 2024a, 2024b, 2024c; Alizadeh et al., 2023, 2024, 2025a, b,c). The CQLx distribution, introduced as an extension 

of the Lomax family (see  Salem et al., 2023), exemplifies this progress by offering enhanced modeling capabilities 

for heavy-tailed and skewed insurance and financial data. This model builds upon foundational works on the Pareto 

(Yousof et al., 2024a), Burr (Cordeiro et al., 2018; Tadikamalla, 1980), and Weibull (Murthy et al., 2004; Yousof et 

al., 2023a, b,c) families, which are widely applied in risk modeling. The CQLx model's mathematical properties 

provide a solid foundation for statistical inference and risk measure computation (Yousof et al., 2025a, b; Alizadeh et 

al., 2025a, b,c). Characterization via truncated moments and the reverse hazard function ensures theoretical validity 

in survival and reliability analysis (Ibrahim et al., 2023; Chesneau & Yousof, 2020). Estimation methods have been 

rigorously evaluated using simulation studies across various sample sizes (𝓃 = 15, 30, 50, 100), with performance 

metrics including bias, RMSE, Dabs, and Dmax (Tables 1–3). Results show that MLE consistently yields the lowest 

bias and RMSE, particularly as sample size increases, confirming its superiority in parameter estimation (Yousof et 

al., 2023a, 2023b, 2023c; Elbatal et al., 2024). In contrast, CVM and ADE exhibit higher biases and errors, especially 

in small samples, indicating sensitivity to extreme observations. Risk measures such as VaR, TVaR, TV, TMV, and 

EL were computed under artificial and real financial insurance claims data (Tables 4–8), revealing that MLE produces 

stable and moderate estimates, while CVM, ADE, and RTADE tend to overestimate risk, particularly at higher 

quantiles (70%, 80%, 90%). The integration of copulas allows for flexible dependence structures in multivariate risk 

modeling (see Abiad et al., 2025; Mansour et al., 2020a-f). Applications span diverse domains: from house price 

fluctuations using the Laplace distribution (Das et al., 2025), to KSA disability statistics (Hashem et al., 2025), and 

emergency care data via frailty models (Loubna et al., 2024). Non-parametric methods like the Hill estimator 

complement parametric models in extreme value analysis (Minkah et al., 2023; Rytgaard & van der Laan, 2024). 

Recent research emphasizes reliability-based risk analysis, incorporating stress-strength reliability and threshold risk 

assessment using models like the Extended Gompertz (Alizadeh et al., 2024), Weighted Lindley (Alizadeh et al., 

2025a), and Kumaraswamy extensions (see Alizadeh et al., 2025b). These developments highlight the importance of 

accurate tail modeling in contemporary risk analysis, with consistent focus on VaR, TVaR, Reliability PORT-VaR, 

and mean of order P as key indicators (Yousof et al., 2024a, b,c,d; Shehata et al., 2024). The CQLx model, supported 

by simulation and real-data validation, provides a robust, theoretically sound, and practically applicable framework 

for modern risk assessment in complex and uncertain environments. These claims data are recently analyzed by 

Mohamed et al. (2024), Sulewski et al. (2025), and Mohamed et al. (2025). 

 

 

Risk analysis based on financial insurance claims data is a critical component of actuarial science, enabling insurers 

to accurately estimate future liabilities and establish adequate reserve levels. Historical claims data is commonly 

organized in a triangular format, where rows represent origin (accident) years and columns denote development 

periods, illustrating how claims mature over time. This structure allows actuaries to track the evolution of payments 

from initial reporting through final settlement. Each cell in the triangle contains incremental claim amounts, reflecting 

the financial outflows associated with claims as they are reported, adjusted, and ultimately closed. Origin years 

indicate when losses occurred, while development lags capture the delay in claim settlement, which is vital for 

projecting unpaid claims. To enhance the reliability of predictions, claims are often grouped into homogeneous 

portfolios based on risk characteristics such as policy type, coverage, or geographic region. In this study, we examine 

a real claims dataset from a U.K. motor insurance portfolio covering the period 2007–2013, specifically focusing on 

non-comprehensive coverage. The data includes detailed information on origin years, development years, and 

corresponding incremental payment amounts. This dataset provides a practical foundation for applying the CQLx 

model in a real actuarial context. By fitting advanced statistical models to this triangle, we aim to improve the accuracy 

of reserve calculations and risk assessments. The analysis supports better financial planning and regulatory compliance 

under solvency frameworks. This real-data application underscores the practical relevance and robustness of the 

proposed methodology in actuarial risk modeling. 

 

Table 8 presents a VaR and TVaR analysis for a real financial insurance claims dataset using five different estimation 

methods. The analysis is based on actual claims data from a U.K. Motor Non-Comprehensive insurance portfolio, 

providing a practical application of the CQLx model in actuarial risk assessment. The estimated parameters for each 

method are reported, showing significant variation across techniques, particularly for the shape and scale parameters. 

The risk measures evaluated include VaRq(X), TVaRq(X), TVq(X), TMVq(X), and ELq(X) at three quantile levels: 

70%, 80%, and 90%. MLE produces the most moderate and stable risk estimates, with VaR values increasing from 
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3,256.287 to 5,058.753 and TVaR from 4,855.947 to 6,537.605 as the quantile increases. In contrast, other methods 

yield higher risk estimates, indicating a tendency to overpredict financial risk. CVM generates higher VaR and TVaR 

values than MLE, with TVaR reaching 7511.099 at the 90% level. ADE, RTADE, and LTADE produce even higher 

TVaR estimates, with LTADE reaching 8,391.026 at the 90% quantile, suggesting substantial overestimation of tail 

risk. The ELq(X), the difference between TVaR and VaR, is smallest for MLE, indicating a narrower gap between the 

threshold and average tail loss. For other methods, ELq(X) is significantly larger, reflecting greater expected losses 

beyond VaR. The TVq(X) and TMVq(X) are also highest for ADE, RTADE, and LTADE, implying greater 

uncertainty in the tail predictions. MLE reports the lowest tail variability, suggesting a more precise tail estimation. 

The consistent and plausible progression of risk measures under MLE supports its reliability in real applications. CVM 

shows moderate overestimation, while ADE, RTADE, and LTADE appear overly conservative, potentially leading to 

excessive capital reserves. The results highlight the critical impact of the estimation method on solvency and risk 

management decisions. MLE provides the most coherent and theoretically sound risk assessment for the CQLx model. 

The table underscores the importance of method selection in actuarial practice. It also validates the CQLx model’s 

applicability to real insurance data. The analysis supports the use of MLE for practical risk modeling in insurance. 

 

 

 Table 8: KRIs under financial insurance claims data. 

Method 𝛽1̂ 𝛽2̂ 𝛽3̂ VaRq(X) TVaRq(X) TVq(X) TMVq(X) ELq(X) 

MLE 0.00001 18.53399 42.54816      

70%    3256.287 4855.947 2269429.683 1139570.788 1599.66 

80%    3949.726 5492.273 2169525.481 1090255.013 1542.546 

90%    5058.753 6537.605 2053347.743 1033211.476 1478.851 

         

CVM 0.000029 18.25132 38.69133      

70%    3523.068 5449.516 3474965.121 1742932.076 1926.448 

80%    4337.468 6221.342 3397872.566 1705157.625 1883.873 

90%    5668.768 7511.099 3324449.694 1669735.946 1842.331 

         

ADE 0.00387 32.72054 17.269      

70%    3467.965 5631.247 5098867.344 2555064.919 2163.282 

80%    4327.087 6512.27 5289228.607 2651126.573 2185.182 

90%    5798.39 8047.734 5687261.366 2851678.417 2249.344 

         

RTADE 0.01366 53.66814 12.47788      

70%    3412 5604.609 5784976.02 2898092.619 2192.609 

80%    4252.956 6505.074 6215630.479 3114320.313 2252.118 

90%    5724.073 8110.906 7098252.944 3557237.378 2386.833 

         

LTADE 0.00267 28.17389 19.33888      

70%    3554.571 5838.013 5684037.443 2847856.735 2283.443 

80%    4459.837 6768.44 5895122.881 2954329.881 2308.602 

90%    6013.949 8391.026 6328429.7 3172605.876 2377.077 

Based on the analysis of Table 8, which presents KRIs for a U.K. Motor Non-Comprehensive insurance portfolio 

using different estimation methods, the following recommendations are made for U.K. motor insurance companies to 

avoid huge financial losses. First, adopt the MLE method for parameter estimation, as it yields the most stable and 

moderate risk measures, with the lowest ELq(X) across all quantiles, indicating a balanced and realistic assessment of 

tail risk. Avoid overestimating risk by steering clear of methods like ADE, RTADE, and LTADE, which produce 

significantly higher TVaR and ELq values, potentially leading to excessive capital reserves and reduced profitability. 

Use MLE-based VaR and TVaR estimates to set accurate premium rates and adequate reserves, ensuring solvency 

without overpricing. Regularly update risk models using real claims data to reflect current trends and improve 

predictive accuracy. Implement the CQLx model due to its demonstrated ability to fit heavy-tailed insurance data 

effectively. Conduct sensitivity analyses using alternative estimation methods to understand the range of potential 

outcomes but rely on MLE for final decision-making. Monitor the 90% quantile closely, as it represents extreme but 

plausible losses, and MLE’s estimate of 6537.605 provides a prudent benchmark. Avoid models that generate high 

TVq(X), such as RTADE and LTADE, as they indicate greater uncertainty and potential model instability. Focus on 

reducing ELq(X) by improving claims management and fraud detection to minimize the gap between VaR and TVaR. 
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Use these risk estimates to negotiate optimal reinsurance treaties that cover extreme losses without overpaying for 

coverage. Train actuarial teams on the superiority of MLE in this context to ensure consistent application. Benchmark 

internal risk models against these results to validate performance. Leverage the stability of MLE’s parameter estimates 

for long-term strategic planning.  

 

Conclusions 

The proposed Compound Quasi-Lomax (CQLx) distribution demonstrates significant flexibility and robustness in 

modeling heavy-tailed data, particularly in actuarial and financial risk contexts. Through comprehensive simulation 

studies and risk measure analyses, the model proves effective in capturing extreme values and tail behavior. The 

performance of five estimation methods, MLE, CVM, ADE, RTADE, and LTADE, was rigorously evaluated under 

various sample sizes and parametric settings. Simulation results indicate that MLE consistently yields the lowest bias 

and RMSE, especially as sample size increases, affirming its reliability for parameter estimation. In contrast, CVM 

and ADE exhibit higher biases and errors, particularly in small samples, suggesting sensitivity to extreme 

observations. The VaR and TVaR analyses under simulated data (𝓃 = 30 and 𝓃 = 100) highlight MLE’s ability to 

produce stable and moderate risk estimates across quantiles. CVM, ADE, and other methods tend to overestimate risk 

measures, particularly at higher quantiles, which may lead to conservative risk assessments. The closed-form 

expressions for moments, moment generating function, and probability weighted moments enhance the model’s 

analytical tractability. Characterization via truncated moments and reverse hazard function establishes the theoretical 

validity of the CQLx distribution. The derivation of residual and reversed residual life moments further supports its 

applicability in reliability and survival analysis. The model’s adaptability to different baseline structures, particularly 

the exponentiated-Lomax, ensures broad applicability. Risk indicators such as Tail Variance, Tail Mean Variance, and 

Expected Loss are accurately captured under the CQLx framework. The consistency of MLE in producing precise 

estimates reinforces its preference in practical applications. Findings underscore the importance of selecting 

appropriate estimation techniques when dealing with extreme-value data. The CQLx model outperforms several 

existing models in fitting complex, skewed datasets. Its utility in VaR and TVaR computation makes it a valuable tool 

for financial and insurance risk management. The study bridges theoretical development with real application through 

extensive simulation and risk analysis. It provides a foundation for future research in heavy-tailed modeling and risk 

assessment. The results validate the CQLx model as a competitive alternative to classical distributions like Pareto and 

Lomax. Overall, the model offers a robust, theoretically sound, and practically applicable framework for modern risk 

analysis. It is particularly well suited for applications involving extreme claims and financial losses. The research 

contributes to the growing literature on extended Lomax-type distributions. It highlights the importance of simulation-

based assessment in validating new statistical models. Practitioners in actuarial science, finance, and reliability 

engineering can benefit from adopting the CQLx model. Future work may explore its application in censored data and 

multivariate settings. 

 

Future research on the CQLx distribution should extend it to censored data using MLE, following Mansour et al. 

(2020a-f), Yousof et al. (2021a,b), and Salem et al. (2023), with goodness-of-fit assessed via modified chi-squared 

and NRR tests as in Goual et al. (2019, 2020) and Yadav et al. (2020). A multivariate version can be developed using 

Clayton, FGM, or survival couples, inspired by Mansour et al. (2020a-d) and Teghri et al. (2024). Integration into 

frailty models, following Loubna et al. (2024) and Teghri et al. (2024), will enhance medical applications. Bayesian 

estimation via MCMC under informative and non-informative priors can be established using Emam et al. (2023), 

Goual et al. (2022), and Hashem et al. (2024). The model can serve as a baseline in AFT models for reliability, 

extending Yousof et al. (2022a,b). A CQLx regression model can be formulated using methods from Mansour et al. 

(2020e,f) and Yousof et al. (2021a), while robust techniques like M-estimation can complement classical estimators. 

Extreme value analysis should compare CQLx with the Generalized Pareto Distribution using the Hill estimator 

(Minkah et al., 2023). Real-time risk monitoring for VaR, TVaR, and PORT-VaR can build on Yousof et al. (2024a-

d) and Abiad et al. (2025). Applications in threshold risk and MOOP analysis are recommended (Alizadeh et al., 

2024), and adaptation to bimodal/asymmetric data can follow Shrahili et al. (2021) and Yousof et al. (2023d,e). 

Validation on real insurance data should use chi-squared and NRR tests (Goual & Yousof, 2020; Yadav et al., 2020; 

Salem et al., 2023), including left-skewed cases. Comparative studies with Burr XII models (Cordeiro et al., 2018) 

and compound structures linked to XGamma and Weighted Lindley (Alizadeh et al., 2023) are promising. 

Hybridization with symmetric models like Laplace (Das et al., 2025) can broaden scope. Zero-truncated or size-biased 

versions can follow Abouelmagd et al. (2019), and ORSS applications can be explored via Hashem et al. (2024), with 

hybrid censoring validation under Bayesian and classical frameworks. The performance of MLE, CVM, ADE, 

RTADE, LTADE should be compared across loss functions and sample sizes (Yousof et al., 2022a,b), while TV, 

TMV, and EL forecasting can be enhanced using Alizadeh et al. (2024) and Yousof et al. (2025a). Finally, 
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benchmarking via AIC, BIC, HQIC (Yousof et al., 2023, 2024), real-data comparisons (Alizadeh et al., 2025; Salem 

et al., 2023), tail modeling (Minkah et al., 2023), and further development of residual life moments (Alizadeh et al., 

2024) will strengthen its reliability and risk applications. The new model can be employed under many new topics 

such as the mining theory and control systems, Bayesian estimation with joint Jeffrey’s prior and big data (see Jameel 

et al. (2022), Salih and Abdullah (2024), Salih and Hmood (2020) and Salih and Hmood (2022)). 
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