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Abstract  

Model selection uncertainty would occur if we selected a model based on one data set and subsequently 

applied it for statistical inferences, because the “correct” model would not be selected with certainty. When 

the selection and inference are based on the same dataset, some additional problems arise due to the 

correlation of the two stages (selection and inference). In this paper model selection uncertainty is 

considered and model averaging is proposed. The proposal is related to the theory of James and Stein of 

estimating more than three parameters from independent normal observations. We suggest that a model 

averaging scheme taking into account the selection procedure could be more appropriate than model 

selection alone. Some properties of this model averaging estimator are investigated; in particular we show 

using Stein's results that it is a minimax estimator and can outperform Stein-type estimators. 

Keywords: James and Stein estimator, Model selection, Model averaging, Minimax, 

Normal multivariate mean. 

1.   Introduction 

Stein (1956) considered the problem of estimating several parameters from independent 

normal observations, and showed that it was possible to uniformly improve on the 

maximum likelihood estimator under the total squared error risk measure in dimension 

three and higher. The setting relating to Stein's estimation is as follows: Let 

1= ( , , )pX X X  have a p -dimensional multivariate normal distribution 

 
2( , ),p pN I X        (1) 

with unknown mean 1= ( , , )p    ,   known (for simplicity) and pI  the identity 

covariance matrix; thus X  can be observed from p  independent experiments. An 

estimator 
1

ˆ ˆ ˆ= ( , , )p     of   is evaluated by the risk function 

 
2ˆ( , ) = ,R E     

where 2 2

=1
ˆ ˆ= ( )

p

i ii
      and E  stands for averaging over the sample space with 

respect to the distribution (1). 

 

Under (1), the maximum likelihood estimator (MLE) is  

 ˆ = .ML X  

It is easy to show that the MLE has risk 
2ˆ( , ) =ML MLR p   .  
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This MLE was long though to be the “best” estimator for the multivariate mean 

estimation problem; i.e. it was believed that no estimator existed that achieved a lower 

risk. Pursuing the work of Stein (1956), James and Stein (1961) showed that if 3p   the 

following estimator of the multivariate mean  

 
2

2

( 2)
ˆ = (1 )JS p 



 X

X
 

achieves uniformly lower risk than the MLE for all parameter values  ; i.e.  

 ˆ ˆ( , ) < ( , ) .JS JS ML MLR R      

 

The statistical community was astonished by the proof of James and Stein estimator 

(JSE) in 1961 (Efron and Morris 1977). Many statisticians were skeptical about JSE 

(mainly) because it does not share many of the nice properties of the MLE; e.g. it is 

nonlinear, biased and with probability density function (pdf) which cannot be expressed 

in a closed form (Efron and Morris 1977, Richards 1998). JSE is now well known and 

accepted among statisticians and econometricians (Judge and Bock 1978, Greenberg and 

Webster 1998, Lehman and Casella 1998, Gruber 1998). Several other drawbacks of JSE 

have been pointed out and many efforts have been made to improve. One major 

drawback is that the region of the parameter space where the risk of JSE (or some other 

estimators of a similar type) is significantly smaller than that of the MLE is quite limited 

(see Akai 1989, Stein 1981, Berger 1982).  

 

Stein (1966) discussed Stein-type estimators for designs admitting a completely 

orthogonal analysis of variance. He showed that for large sample size, the Stein-type 

estimator applied separately to each orthogonal subspace is approximatively better than 

the estimator which shrinks observations towards the general average. Haff (1978) 

considered the estimator of normal means which are close to each other. He obtained a 

minimax estimator which is a modification of a Stein-type estimator shrinking 

observations towards the grand average. Efron and Morris (1973) considered the 

estimation of normal means divided in two groups with different prior variances and 

proposed a compromise estimator which improved the risk of Stein-type estimator. 

Berger and Dey (1983) did the same for k  groups, leading also to an improvement of 

Stein-type estimator. George (1986a,b,c,d) considered situations where only conflicting 

or vague prior information is available; and proposed minimax estimators called multiple 

shrinkage Stein estimators. Akai (1989) proposed improvement over MLE when 

observations are classified into several groups. Since the discovery of JSE, many others 

shrinkage techniques have evolved. References include Efron and Morris (1975), Fay and 

Herriot (1979), Rubin (1981), Morris (1983), Jones (1991), Brown (2008), and Brown et 

al. (2011).  

 

In many applications, several models are plausible a priori, and one of them has to be 

selected, to be the basis of all subsequent analysis. Overviews, explanations, discussions 

and examples of model selection procedures can be found in the books by Linhart and 

Zucchini (1986), McQuarrie and Tsai (1998), Zucchini (2000), Burnham and Anderson 

(2002), and Claeskens and Hjort (2008). An alternative to selecting a single model for 

estimation purposes is to use a weighted average of the estimates resulting from each of 
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the models under consideration. This leads to the class of model averaging estimators. 

Several options are available for specifying the weights; e.g. they can be based on the 

Akaike's information criterion, AIC (Akaike 1973) or Bayesian information criterion, 

BIC (Schwarz 1978). It is not the  construction of the estimator that causes difficulties; 

the problem is to determine its properties. The same problem arises for estimators 

obtained after model selection. We refer to these estimators as  post-model selection 

estimators (PMSE, Leeb and Pötscher 2005). The inferences are invalid even if different 

datasets are used for selection and inference because the uncertainty (variation) in the 

selection is ignored.  

 

Let 1= { , , }KM M M  be a set of K  plausible models to estimate ̂ , the quantity of 

interest. Denote by ˆ
k  the estimator of k  obtained when using model kM . Model 

averaging involves finding non-negative weights, 1, , Kw w , that sum to one, and then 

estimating   by  

 
=1

ˆ ˆ= .
K

k k

k

w 
       

 (2) 

 

Clearly, model selection is a special case of model averaging, with one of the weights set 

to unity, and all the others to zero, i.e the estimator based on a selection procedure is a 

mixture (0-1 weight) of the candidate estimators 1
ˆ ˆ, , K  . 

 

Literature on PMSEs includes, inter alia, Bancroft (1944) for pretest estimators, Breiman 

(1992), Hjorth (1994), Chatfield (1995), Draper (1995), Buckland et al. (1997), Zucchini 

(2000), Candolo et al. (2003), Hjort and Claeskens (2003), Efron (2004), Leeb and 

Pötscher (2005), Longford (2005), Claeskens and Hjort (2008), Zucchini et al. (2011), 

Nguefack-Tsague and Zucchini (2011), Nguefack-Tsague et al. (2011), Nguefack-Tsague 

(2013a,b,c), and Zhang et al. (2014). 

 

Some model averaging weights base the weights on penalized likelihood values. Some 

classical weights can be seen in Buckland et al. (1997), Hjort and Claeskens (2003). 

Hansen (2007, 2008, 2009, 2010) and Wan et al. (2010) derived optimal weighting 

scheme by minimizing a Mallows' Cp  criterion (Mallows 1973). Nguefack-Tsague 

(2014) derived optimal weights with squared error loss and showed that they may exist in 

theory but once estimated they are no longer optimal. Bayesian model averaging can be 

found in Hoeting (1999) and Wasserman (2000). Numerous applications of Akaike 

weights are given in Burnham and Anderson (2002). 

 

The model selection criterion determines which model is assigned the weight one and 

hence used to estimate  . The index of the selected model, k , is a random variable. We 

denote the selected model by 
k

M , and the PMSE of the quantity of interest by ˆ
k

 . Let 

()I  denote the indicator function that has the value 1 if the argument is true, and 0 if it is 

false. Then  

 =1 =1

ˆ ˆ= ( ) , = ( ) .
K K

k kk k
k k

M I model k is selected M I model k is selected    
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Clearly, the properties of ˆ
k

  depend on (among other things) the set of candidate models, 

, and on the selection procedure, which we denote by S . 

 

Nguefack-Tsague and Zucchini (2011) proposed a model averaging estimator in which 

the selection procedure is taken into account. Their proposal depends on estimators 

( | ) = Pr( | ), =1,k kp M S M is selected S k K  and the maximized likelihood value kL  for 

each model kM . These weights are given by  

 

=1

( | )
( ) = , = 1,2, , ;

( | )

k k
k K

i i

i

p M S L
W S k K

p M S L
    (3) 

with its associated model averaging estimator given by  

 
=1

ˆ ˆ( ) = ( ) .
K

k k

k

S W S         (4) 

 

Nguefack-Tsague and Zucchini (2011) showed that this weighting scheme dominates 

classical model averaging estimators and PMSEs in a simple linear regression example. 

The problem that needs to be solved is that of constructing estimators, ( | )kp M S , of the 

model selection probabilities. Hjort and Claeskens (2003) showed that a naive bootstrap 

estimator of the selection probability of model kM  (namely the proportion of resamples 

in which kM  is selected) does not work. If the selection probabilities depend on some 

parameter for which a closed form expression exists, and if one can find an estimator of 

the parameter, then it is possible to obtain estimators for these probabilities. For the case 

where there is no closed form, Miller (2002) suggested using a Monte Carlo method 

based on projection. 

 

We consider the estimation of a multivariate mean when many estimators are plausible 

for a set of K  models. Instead of selecting one of them using a specific selection 

criterion, we average over all these estimators by taking account this selection criterion 

(see Nguefack-Tsague and Zucchini 2011). Although each of the competing estimators 

does not necessary follow a multivariate normal distribution, it is assumed that the true 

model (i.e. the one that generated the data) does. It is also assumed that the model 

selection probabilities are computed independently from the data, for example using the 

Monte Carlo procedure of Miller (2002). 

 

An example of estimators for each model kM  could be those proposed by George 

(1986a, page 189):  

 
2

2
ˆ = ( )[min(1, )]k

k
k

p
 




 


X X

X
    (5) 

where p

k R  is fixed, thus X  shrinks towards a target k  for each model kM . In 

particular if for each model kM , =k 0 , then 0̂  is the original positive part of Stein 

estimator which shrinks towards 0 . 
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This paper considers Stein's estimation problem where many models are a-priori 

plausible. In this situation one often uses the data to select the ``best" model; this model 

is then used to make inferences, ignoring  model selection uncertainty, i.e. the fact that 

the selection step and inference were carried out using the same data. We suggest that a 

model averaging scheme taking into account the selection procedure could be more 

appropriate than model selection alone. For example, instead of selecting one estimator 

over those given in Equation (5), we propose to average over K  estimators in which the 

selection procedure is taken into account in the weighting scheme. In particular, this 

example shows that it is possible to average over Stein-type estimators (which already 

outperform MLE ) and obtain a better estimator. Some properties of this model averaging 

estimator are investigated; in particular we showed using Stein's results that it is a 

minimax estimator and can outperformed Stein-type estimators. A Bayesian approach for 

estimating a multivariate mean under model uncertainty is considered in Nguefack-

Tsague (2013c). 

 

This paper is organized as follows. In Section 2 we define some concepts and the 

properties of the model averaging estimator. We show in Section 3 that it can improve 

over Stein-type estimators while Section 4 deals with a construction of confidence 

interval using this estimator. Our article ends with concluding remarks. 

2.   Definitions and properties of the model averaging estimator 

2.1  Definitions 

Definition 1. An estimator   is  minimax if  

 ( , ) ( , ) ;sup supR R for any other estimator
 

      

i.e. the largest risk of   is no greater than that of any other estimator (the best worst-case 

scenario). 

 

Definition 2. An estimator   is said to  dominate estimator   if  

*( , ) ( , ) .R R for all and if thereexists somevalue for whichtheinequality is strict     

 

Definition 3. An estimator   is said to  admissible if there is no other estimator that 

dominates it (otherwise it is  inadmissible).  

 

Definition 4. A function : R Rph   is said to be  almost differentiable if there exists a 

function : R Rph   such that, for all z , 

 
1

0
( ) ( ) = ( )h x z h x z h x tz dt     

for almost all R px ; where   is the vector differential operator of first partial 

derivatives with i th coordinate =i

ix





. A function : R Rp pg   is  almost 

differentiable if all its coordinate functions are. 
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Definition 5. A lower semicontinous function : R R { }pf     is  superharmonic at 

point 0x R p  if for every > 0r , the average of f  over the sphere 

 2 2

0 0( ) ={ : } =rS x x x x r  

of radius r  centered at 0x  is not greater than 0( )f x . 

 

Definition 6. A twice continuously differentiable function : R Rpf   is harmonic at 0x

R p  if 2

0( ) = 0;f x  where 2 2

=1
=

p

ii
   is the Laplacian. 

2.2  Properties of the model averaging estimator 

Let : R RpH   be defined by ( | , )H S MX =
=1

( | )
K

k kk
p M S L  (denominator of the 

model averaging weight defined in Equation (3). In addition, suppose that for each model 

kM , the estimator ˆ
k  is of the form log ;k kL M M  X , where 

1

log log
log = ( , , )k k

k

p

L L
L

x x

 


 
. The estimator of the form " log kLX " is motivated 

by Stein (1981) who explains that small risk may be obtained by such estimator (see also 

George (1986a, page 190)). We write down in the following the risk of the proposed 

model averaging estimator given in Equation (4) and prove that it is a minimax estimator 

for  . 

Assumptions 

A.1. 
2( , )p pN I X ,   known. 

A.2. H  is almost differentiable for which H  is also almost differentiable. 

A.3. H  is superharmonic. 

A.4. 
2 2( | , ) /

| |< ,
( | , )

iH S M X
E

H S M


 


X

X
for =1, ,i p . 

A.5. 
2log ( | , ) < .E H S M  X  

Lemma 1.The model averaging estimator in Equation (4) becomes  

 ˆ( ) = log ( | , ).S H S M X X      (6) 
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Proof. Denote 
1

= ( , , )
p

f f
f

x x

 


 
 and =

f
Logf

f


 .  

=1 =1

=1

=1

=1

=1

( | )
ˆ ˆ ˆ( ) = ( ) = { }

( | , )

1
= ( | ) [ log ]

( | , )

1
= ( | ) [ ]

( | , )

1
= ( | )

( | , )

1
= ( ( | ) )

( | , )

1
= ( | , ) = log (

( | , )

K K k k
k k kk k

K

k k kk

K k
k kk

k

K

k kk

K

k kk

p M S L
S W S

H S M

p M S L X L
H S M

L
p M S L

H S M L

p M S L
H S M

p M S L
H S M

H S M H
H S M

  






 

 

  

 









X

X

X
X

X
X

X
X

X X X
X

| , )S MX

 

Lemma 2 (Lemma 1 of Stein (1981, page 1136)). Let Y  be a (0,1)N  real random 

variable and let : R Rg   be an indefinite integral of the Lebesgue measurable function 

g , essentially the derivative of g . If | ( ) |<E g Y  , then { ( )} = { ( )}E g Y E Yg Y . 

Lemma 3 (Lemma 2 of Stein (1981, page 1137)). If : R Rph   is an almost 

differentiable function with ( ) <E h  X , then ( ) = {( ) ( )}E h E h   X X X . 

Lemma 4 (Theorem 4.8 of Helms (1969, page 63)). If : R Rpf   is twice continuous 

differentiable, then f  is superharmonic in R p  if and only if, for all R pX , 
2 ( ) 0f X . 

Lemma 5 (Theorem 1 of Stein (1981, page 1138)). Consider an estimator ( )gX X  for 

  such that : R Rp pg   is an almost differentiable function for which 

=1
{ | ( ) |} < 0

p

i ii
E g  X , then for each {1, , }i p ,  

 
2 2{ ( ) } = 1 { ( ) 2 ( )},i i i i i iE X g E g g     X X X  

and consequently  

 
2 2( ) = { ( ) 2 . ( )}.E g p E g g     X X X X

  
 (7) 

Theorem 1. Under the assumptions A.1-A.5, ˆ ( )S  has risk  

 

2

2 ( | , )
ˆ ˆ( ( ), ) = ( ) = 4 [ ]

( | , )

H S M
R S E S p E

H S M
    


 

X

X
 

and is a minimax estimator for  . 
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Proof. Let : R Rp pg   be defined by  

 = log = .
H

g H
H


        (8) 

 

Then 
2 2

2
. = . log = ,

H H
g H

H H

 
    it follows from Equation (7) that  

Note that 
2 ( | , )

( | , ) = . ( | , ) = .
2 ( | , )

H S M
H S M H S M

H S M


  

X
X X

X
 

 
2 ( | , ) ( | , )

= .
2 ( | , ) 4[ ( | , )] ( | , )

H S M H S M

H S M H S M H S M

 


2
X X

X X X
   (9) 

 

Thus 

2
2

2

2 ( | , ) ( | , )
4 ( | , ) =

( | , ) [ ( | , )] ( | , )

2 ( | , ) ( | , ) ( | , ) ( | , )
=

( | , ) ( | , )

H S M H S M
H S M

H S M H S M H S M

H S M H S M H S M H S M

H S M H S M

 
 

 


2

2

2

X X
X

X X X

X X X X

X X

. 

It follows that 

2 24 ( | , ) 2 ( | , ) ( | , )
=

( | , ) ( | , )( | , )

H S M H S M H S M

H S M H S MH S M

  


2

2

X X X

X XX
. 

Thus 

2 ( | , )
ˆ( ( ), ) = 4 [ ]

( | , )

H S M
R S p E

H S M
 



X

X
. 

From Equation (9), 
2

2 ( | , )
( | , ) 0

2 ( | , )

H S M
H S M

H S M


  

X
X

X
 since H  is superharmonic 

and by Lemma 4, 
2 ( | , )H S M X  0. 

 

Since X  is minimax for   with risk p , 

it then follows that ˆ( ( ), ) = ( )supinf gR S p E g
    X X  

3.   Improvement over James-Stein estimator 

Efron and Morris (1971, 1972) propose the following modification of the James-Stein 

estimator  

 
2

2

( 2)
ˆ = (1 )JSM p 
 


X

X
 

where = ( 0)a aI a  .  

 

This modification was based on requiring that no coordinate be changed by more than a 

predetermined quantity d . This resulted in an improvement of ˆ JSM  when the empirical 
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distribution of ˆ| |i  is skewed. We now also consider a modification of Efron and Morris 

based on order statistic. 

 

Let =| |i iY X  and the order statistics defined by 
(1) ( )< < pY Y . Let j p  be a positive 

integer. Suppose also that the coordinates of ( | , )g S MX  in Equation (8) as = logg H  

are now defined as 

 

2 2 1

( ) (j)

=1

2 2 1

( )

=1

[ (min( , ))] if

( | , ) =

[ (min( , ))] sign otherwise

p

l j i i

l

i p

l j i i

l

c X Y X Y Y

g S M

c X Y X X






 









X   (10) 

 

where c  is a constant. Let ( )S  the corresponding model averaging estimator from 

Equation (6) with g  defined as in Equation (10). 

 

Theorem 2. The risk of ( )S  is given by  

2 2 2 2 1

( )

=1

( ( ), ) = ( ) = ( 2( 2) ) [ (min( , ))] ].
p

l j

l

R S E S p c j c E X Y           (11) 

Proof: Using equation (7) of Lemma 5,  

2 2 2 1 2 2 1

( ) ( )=1 =1 =1

1 2 2 2 2 2 2 2 2

( ) ( ) ( )=1 =1 =1

2 2 2 1

( )=1

( ( ), ) = [ [ (min( , ))] ] 2 ([ (min( , ))] )

4 [ (min( , ))] 4 ( 1) [ (min( , ))] ]

= ( 2( 2) ) [ (min( , ))]

p j p

l j l jl i l

j p p

i l j j l ji l l

p

l jl

R S p E c X Y c X Y

c X X Y c p j Y X Y

p c j c E X Y





   

  



 

   

  

  

  

 ]

 

 

Corollary 1. The optimum choice of c  is 
* = 2c j   with its associated risk given by  

2 2 2 2 1

( )

=1

( ( ), ) = ( ) = ( 2) [ (min( , ))] ].
p

l j

l

R S E S p j E X Y          (12) 

 

Proof: Taking the derivative of the risk in Equation (11) with respect to c  and equating 

to 0  yields 
* = 2c j  ; replacing c  by 2j   in Equation (11) yields the risk in Equation 

(12)  

Assume that p  is large ( p  ) and =
j

z
p

, so that j  is close to p ; and that ( )i S  are 

independently normally distributed with variance 
2 . The estimated improvement risk 

for ( )S  and ˆ JSM  over the MLE ˆ ML  are denoted respectively by ˆ( ( ), )MLImp S   and 

ˆ ˆ( , )JSM MLImp   : 

2 2 2 1

( )=1

2 2 1

=1

ˆ ˆˆ ˆ ˆ ˆ( ( ), ) = ( , ) ( ( ), ) = ( 2) [ (min( , ))] ( , )

ˆ ˆˆ ˆ= ( , ) ( , ) = ( 2) [ ] .

pML ML JSM ML

l jl

pML JSM

ll

Imp S R R S j X Y Imp

R R p X

       

   





 

 




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The asymptotic relative efficiency (Stein, 1981; page 1146) of ( )S  compared to the 

modified James-Stein estimate ˆ JSM  is defined by  

 
2

2

ˆ ˆ( , )
( ) = = ,

ˆ( ( ), ) (1 ) 2 ( )

JSM ML

ML

Imp z
eff z

Imp S z w w w z

 

       

 (13) 

where 
1= (0.5(1 ))w z  , with   and   respectively as density and distribution 

functions of standard normal.   

 

Figure (1) shows that the relative efficiency is an increasing function of z , i.e. as the 

proportion of data increases, the relative efficiency also increases. It also shows that in 

Equation(13), eff ( ) <1, (0,1)z z  ; thus ˆ ˆ ˆ( ( ), ) < ( , )JSMR S R    . 

 

Asymptotic relative efficiency of ( )S  compared to the modified James-Stein estimate 

ˆ JSM  as a function of the proportion of the dimension of the parameter  . 

 

This means that the modified version of the weighted estimator (model averaging) given 

in Equation (10) is better than Jame-Stein estimator, for any proportion z  of the data. 

When =1z , that is =p j , eff(1)=1, then both estimators have the same improvement 

over the maximum likelihood estimator. 

4.   Confidence sets for the mean 

Here we illustrate how to obtain an approximate confidence sets for the parameter  . 

Lemma 6. (Theorem 3 of Stein (1981, page 1149)). Let X  be a random p -dimensional 

coordinate vector, normally distributed with mean   and the identity as covariance 

matrix. Let : R Rp pg   be a twice continuously differentiable function such that  

 
2 2 2

, ,

{ ( ) ( ) ( )} < ,ij iij

i j i j

E g g g    X X X     (14) 
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where =ij j ig g  and =iij i j ig g . Then  

2 2[ ( ) ( )] = ( )E g U V   X X X X      (15) 

where 

2( ) = ( ) 2 ( )U p g g  X X X  and 

2 2( ) = 2 4 [ ( ) 2 ( ) { ( )} ]V p E g g tr g
     X X X X , 

and g  denotes the vector-value function whose value is the transpose of the value of the 

function g . 

 

Theorem 3. Let ( | , ) = log ( | , )g S M H S MX X . Under ((14)) with p ,  

2ˆ[ ( ) ( | , )] = 2 4 [ ( | , )],E S U S M p E U S M   X X     (16) 

where 
2( | , ) = ( | , ) 2 ( | , )U S M p g S M g S M  X X X  and 

2 2( | , ) = 2 4 [ ( | , ) 2 ( | , ) { ( | , )} ]V S M p E g S M g S M tr g S M
     X X X X  

 

Proof. This is a straightforward application of Lemma 6 with 

( | , ) = log ( | , )g S M H S MX X . 

 

As noted by Stein (1981, page 1150), 

2 2 2ˆ[ ( ) { ( | , ) 2 ( | , )}]E S p g S M g S M       X X  is approximately normally 

distributed with mean 0  and that 
2 22 4 [ ( | , ) 2 ( | , ) { ( | , )} ]p E g S M g S M tr g S M

     X X X  is approximately 

constant. 

 

Thus a confidence sets for   with approximately 1   of covering   can be given by 

2

1
ˆ= { : ( ) < ( | , ) ( | , )}CS S U S M Z W S M    X X , 

where  

2 2( | , ) = 2 4[ ( | , ) 2 ( | , ) { ( | , )} ]W S M p g S M g S M tr g S M     X X X X  

5.   Concluding Remarks 

In this paper, we have considered the estimation of a multivariate mean when many 

estimators are plausible for a set of models. Instead of selecting one of them using a 

specific selection criterion, we average over all these models by taking account this 

selection criterion. We have derived some properties of this estimator and showed that it 

can outperform Stein-type estimators. This method is particularly useful when prior 

information suggests that several choices of the estimation of the multivariate mean are 

feasible. 
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