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The Measurement Error Model (MEM) is employed to fit the relationship between two or more variables when all 
variables are subject to measurement errors. In the specific case of only two variables, this model is referred to as 
the Error in Variables model. This paper proposes two new estimation methods for a multiple structural 
measurement error model, applicable when all variables are subject to errors. The proposed methods, the Repetitive 
Weighted Grouping and the Iterative Weighted Grouping, are extensions of the Wald estimation method. To 
evaluate the performance of these new estimators compared to classical estimators-namely, the Maximum 
Likelihood Estimator (MLE) and the Method of Moments (MOM), a Monte Carlo experiment was conducted. The 
simulation results showed that the proposed estimators outperform the classical estimators in terms of root mean 
square error and bias. Additionally, real data analysis was performed to assess the relationships between national 
GDP, unemployment rate, and human development index using the proposed estimation methods. The results reveal 
that, based on mean square error (MSE), the proposed methods with r =3 and r =4 yield more accurate estimators 
than other methods in weight case 1, while the proposed method with r =4 proves more accurate in weight case 2. 
Furthermore, the proposed procedures demonstrate greater efficient than MLE and MOM in fitting the model. 
 
 
Key Words: Measurement Error Model, Weighted Grouping Method, Wald Estimators, Iterative Estimator, 
Unemployment Rate, Monte Carlo Simulation. 
 

 

1. Introduction  

When modelling the relationship between two variables, the structural Measurement Error Model (MEM) 
(Adusumilli and Otsu, (2018); Fuller, (1987)) can be used as an extension of the standard linear regression model by 
accounting for independent errors in both the response and predictor variables. This study explores linear MEMs with 
vector-valued explanatory variables, i.e., models involving more than one x variable, by employing new estimation 
methods- the Repetitive Weighted Grouping and the Iterative Weighted Grouping, which are extensions of the Wald 
estimation method. These methods represent a modification of the classical MEM model. 

 
Consider the following equation error model: 

             �� �  � � ���	�� �  ��
	�
 � ⋯ �  ���	��    
 � 1, 2, … , � ,  � � 1, 2, … , �                       (1) 

where                                       

�� �  �� �  �� and         ��� �  	�� �  ���   
 � 1, 2, … , � ,  � � 1, 2, … , �                    (2)   

The measurement errors ���� , ���  are random vectors that are independent and identically distributed, while the latent 
variable 	�� is generally assumed to be independent and normally distributed. However, the true distribution of 	�� 
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may deviate from normality in cases of skewness, outliers, or multimodality. Therefore, using more flexible models 
as alternatives to the standard one can be advantageous (Cabral et al., (2020)).    

The main issue in (1) is estimating the unknown parameters � ��� �. (Cao et al., (2018b)) provides a comprehensive 
review of this issue. Unless further prior information is taken into consideration, standard estimation methods like 
Maximum Likelihood Estimation (MLE) fail to accurately estimate the unknown parameters of MEM. Consequently, 
researchers have been exploring alternative estimation methods to overcome the difficulties associated with MLE 
(Cheng and Van Ness, (1999); Adusumilli and Otsu, (2018); Ahmad and Ahmad, (2019); Salem, (2018); Fuller, 
1987)). In this paper, an iterative estimation and weighted grouping method are proposed to fit various structural 
MEMs.   

Measurement error, which occurs when an important variable is not correctly observed, is a significant issue 
that frequently raises concerns about the validity of an analysis. While there are numerous methods to address the 
effects of measurement inaccuracy, these methods lose their validity when their fundamental assumptions are violated. 
The problem is exacerbated when assumptions, such as those pertaining to the distribution of error terms, are difficult 
or impossible to assess using the available data. In the measurement error literature, an additive model with normally 
distributed errors is typically assumed. Although this assumption is simple and appealing, it is often incorrect in 
practical applications (Spicker et al., (2021)).   

Numerous authors have discussed various techniques for estimating structural MEMs. The least squares and 
MLE methods are among the most popular. The MLE method is applied (by Schennach and Hu, (2013)) after certain 
assumptions are considered. Madansky, (1959) also provided a detailed explanation of how to use MLE to fit a 
straight-line model when both variables are measured with errors. Adusumilli and Otsu, (2018) offered a broad 
overview of the normal theory for structural MEMs. Additionally, Al-Nasser, (2004) demonstrated that the General 
Maximum Entropy (GME) method outperforms the Partial Least Squares (PLS) approach in terms of mean squares 
of error (MSE) when analysing distributions without relying on conventional assumptions.  

Nonparametric or semiparametric approaches are important because they provide flexible strategies to 
mitigate the impacts of measurement error by avoiding assumptions about the distribution of the error components. 
Green, (2011) highlighted that adapting to non-normal errors is a significant area of research. Contributors to this field 
include Yi, (2017), Schennach, (2013), and Xu et al., (2017). On the other hand, Cao et al., (2018a) proposed a 
discretionary Expectation-Maximization (EM) algorithm combined with an empirical Bayesian technique to generate 
maximum likelihood estimates for MEMs with or without equation error. Similar results were achieved (by Cao et al., 
(2018b)), who developed an iterative maximum likelihood estimation procedure using the EM algorithm for 
heteroscedastic MEMs. An alternative estimation method, suggested (by Nair and Shrivastava, (1942)), involves 
generalized average grouping by plotting the first-third and last-third means of all observations, providing a more 
accurate slope estimate than Wald's method. Recently, information theory has been applied (by Al-Nasser, (2004, 
2005)). Other authors (by Al-Nasser, (2011); (Carroll et al., 2007)) have proposed non-parametric estimators of 
regression functions using data contaminated by measurement errors. Furthermore, robust non-parametric estimation 
procedures were suggested (by Al-Nasser et al., (2016); Al-Nasser, (2012); Xu et al., (2017)). Additional insights into 
various estimation techniques within the context of MEMs have been provided (by Surajit, (2015); Gillard, (2010); 
Carroll et al., (2006); Adusumilli and Otsu, (2018); Bartlett, (1949); Wiedermann et al., (2018); Green, (2011)).  

This article proposes two new non-parametric estimation methods: the repetitive weighted grouping and the 
iterative weighted grouping. The performance of these methods is demonstrated through Monte Carlo simulations and 
real data applications in estimating the parameters of multiple linear regression model with two independent variables 
in the presence of measurement errors. The rest of the paper is organized as follows: Section 2 provides a review of 
the Maximum Likelihood Estimation (MLE) and Method of Moments (MOM) approaches. Section 3 details the newly 
proposed procedures, including the iterative and weighted grouping (weighted Wald-type). Section 4 showcases the 
performance of these methods through Monte Carlo simulations, followed by a real data application in Section 5. 
Finally, Section 6 concludes the article. 

2. Classical Estimation Methods for Multiple MEM 
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 This section briefly discusses the common estimation techniques used for fitting multiple structural measurement 
error models: The Maximum Likelihood Estimation (MLE) and Method of Moment (MOM).  
 
 
2.1 Maximum Likelihood Estimator  

MLE is the most commonly used estimation method. The estimation problem for the simple MEM using the MLE 
was initially addressed (by Lindley, (1947)) and further elaborated (by Kendall and Stuart, (1979)). A major drawback 
of this method is that it requires the assumption of normality for the unknown error terms. Consider the models given 
in (1) and (2) written in matrix form: 

      � �   ! ";  $% � &% � '%                           (3)  

where  

$% � �(%, )%�;  '% � �*%, '%�. 

�: Linear predictor or the expected value of the response variable. 

 : Vector of explanatory variables or predictors. 

": Vector of coefficients. 

$%: Observed data vector at time t. 

&%: Deterministic component or the part of the model that the predictors explained. 

'%: Error term at time t. 

(% and )% : The components of the observed data vector $%. 
*% and '% : The components of the error vector  '%. 
Then, under the multivariate normal distribution (i.e., '%~,-�., /'')) assumption, the variance-covariance is known 
and given as: 

/'' � 0''1
 

where  

/'': The covariance matrix of the error terms  '%.  
23: Variance of the error terms. 

0'': Known matrix representing the structure of the error covariance. 

Accordingly, the unknown parameters can be estimated by finding the first derivative of the log-likelihood function 
of a random sample of size n: 

4��, 5, 6;  �, 7�  �  8 9 :���|<� , =�;  ��:>7��, … . . , 7�?@|<� , =�;  5A:�<�| =�;  6� ���
B

� C �
 

DEF D � G −  I
3  JEF|3K0''23| − L

3 23  ∑ �$% − &%�I%CL 0''NL�$% − &%�!. 
Solving the first order conditions of the log likelihood function, the unknown parameters can be estimated as: 

"O � PQ(( − �RS − LI  T�U**VNL PQ() − �RS − LI  T�U*WV 

where 
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Q&&  �  L
INL  �$%  −  $X�′  �$%  −  $X� ; 5Z is the smallest root of |[\\ − 5]^^|=0; and ]^^ is an unbiased estimator of /''.  

 

2.2 Method of Moments for Multiple MEM 

The method of moments (MOM) is a commonly used technique for estimating MEM. Originally introduced (by Geary, 
(1942)), MOM relied on sample and population moments, and was later modified to incorporate cumulates in his 
research. Although Drio, (1951) also applied MOM in his study, it has not been frequently cited. In more recent years, 
researchers such as Cragg, (1997), Gillard and Iles, (2006), Van Montfort, (1988), and Pal, (1980) have explored the 
use of moments to develop optimal estimators, particularly those based on higher moments. Dunn, (2000) developed 
several slope estimators using the MOM but did not provide details on estimators based on higher moments. Following 
Pal, (1980), the MOM estimator for the model given in (1) can be derived by computing the deviations of all variables 
specified in the model: 

�! �  � − �X;  _! �  _ −  X̀ ; a! � a − aX and b_! � b_ − bX̀                         (4)  

Also, the error terms are assumed symmetrically distributed, then 

c>a!b_!3A � ∑ "dc>bd!b_!3A; _ � L, 3, … , efdCL . 

Therefore,  

g" � h. 

Hence 

" � gNLh 

where 

g � i>j_dAk  l_%m j_d � c>b_!3bd!A 

h! �  >c>a!bL!3A, c>a!b3!3A, … , c�a!be!3� A 

and 

"! � �"L, "3, … , "e�. 

Finally, �Z � nZN�oS   a consistent estimator provided |n| ≠ 0; where nZ ��� oS  are the sample estimates of A and B. 
Therefore, unless additional information about the relationship beyond the observations is available, only MOM 
estimators can be used, and the variances of such estimators remain unknown. 

3. The New Proposed Procedures. 
 
This article proposes two new procedures for fitting a multiple structural measurement error model when all variables 
are subject to errors. These new estimation methods extend the Wald estimation method, commonly referred to as the 
grouping method which involves splitting the data into two or three groups and estimating the slope of the MEM based 
on the group centers (by Wald, (1940), Gillard, (2010)). The proposed methods include a weighted grouping technique 
and an iterative weighted procedure. 
 

3.1 The Weighted Grouping Method 

The weighted grouping method is utilized to avoid the unpredictability of individual results and multicollinearity 
across explanatory variables by multiplying the weight of each group by its sample mean in the Wald equation and 
iterative equation. The general idea behind this process is as follows: 
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• Sort the data from smallest to largest with their corresponding values �� ′r,  
 �  1, 2, … , �. 
• Split the data into r-subgroups of similar size (i.e. the sub-sample size is k) so that  s ≤ uB


v.  
• Compute the parameters,   �Z� as: 

 

  �Z� �  w@xyz@x N w@�x{|�yz@�x{|�
w@x}̅@x N w@�x{|�}̅@�x{|� ,    � � 1, 2, … … , s, 
 �  1, 2, … , �                                   (5) 

 where ��� is the weighted group. 

• Determine the weight ���  for two cases: 
 
(i) Case One: compute weight as: 

l_�eNL� � GE�>b_�eNL�, a�eNL�A                            (6) 

l_e � GE��b_e, ae�                    (7)    

(ii)  Case Two: compute weight as: 

��� �  ��@x�
∑ ��@��@�|                    (8) 

����N�� � 1 −  ���              (9) 

                   where: 

∑�l_e �  l_�eNL�� � L      

 

Theorem: Assuming the model in (1) and (2) holds, the estimator based on Weighted Grouping Method given in (5) 
is unbiased estimator if and only if ��� = ����N�� in the first case, and ���  �  ����N�� �  0.5 in the second case 
(refer to Gupta and Amanullah, (1970)). 

Proof: 

  �Z� �   w@xyz@x N w@�x{|�yz@�x{|�
w@x}̅@x N w@�x{|�}̅@�x{|�   

�� �  �z −   �   �Z�  �̅�
�

�C�
 

� > �Z�A � � � w@xyz@x N w@�x{|�yz@�x{|�
w@x}̅@x N w@�x{|�}̅@�x{|��                  (10)  

However,  

� ���� � 0,          � >����A � 0, ���    � ���
� � 1
. 

Then,  

  �Z� �   �� �  w@x�z@x N w@�x{|��z@�x{|�
w@x}̅@x N w@�x{|�}̅@�x{|�   

where  

��̅� and ��̅��N�� are the means of ��� and  ����N�� disturbances ��.  
By the theorem, when ��� = ����N��, and using the results (from Raj and Koerts, (1992)), we obtain: 
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 � > �Z�A �  �� , 
with associated variance given as:  

��s >  �Z�A �  1
>����̅��  −  ����N�� �̅���N��A
  ���s>����z��  ,  ����N���z���N��A� 

�  w@x���?�yz@x�� w@�x{|����?>yz@�x{|�AN
w@x w@�x{|� ���>yz@x ,yz@�x{|�A
>w@x}̅@x N w@�x{|� }̅@�x{|�A� .                         (11) 

Also, 

[ � ���� � � ��z −  �   �Z�  �̅�
�

�C�
� 

�  >� �  ∑   �Z�  �̅���C� −  ∑   �Z�  �̅���C� A �  � ]                             (12) 

with 

��s ���� � ��s ��z −   �   �Z�  �̅�
�

�C�
� 

� ��s��z� � �̅�  ��s> �Z�A − 2 ��� ��z�� , �z���N���                                                               (13) 

 

3.2 The Iterative Weighted Procedure 
 

Meanwhile, the proposed iterative weighted procedure is an extension of the repetitive estimation method 
described (by Al-Dibi’i and Al-Nasser, (2019)). The general idea of this procedure can be summarized as follows:  

 
• Sort the � values in ascending order, from smallest to largest, along with their associated >��[��, �
[��A 

values, where 
 �  1, 2 … , �.  
• Divide the data into r-subgroups of equal size (i.e the sub-sample size is k) such that  s ≤ uB


v.  
• Compute the mean for each subgroup >�̅�� , �̅
� , �z�A; � � 1, 2, … , s. 
• Estimate the unknown parameters. At this stage, this article proposes two procedures, which are 

described in the following subsections. 
 

3.2.1 Repetitive Weighted Grouping Procedure 
 
The idea of this procedure is to take the center of all possible slopes (Figure 1), as has been suggested (by Al-Dibi’i 
and Al-Nasser, (2019)). This can be done by defining the j-th slope as:  

 

  �Z�� �  wx�yzx� N w�x{|��yz�x{|��wx�}̅x� N w�x{|��}̅�x{|�� ,    � �  1, 2, … … � ,     � � 1, 2, … … , s,   � � 1, 2, . . . , >?
A     

 
Figure 1: All possible slopes between the subgroups 

 

G1 G2 G3 Gr 



Pak.j.stat.oper.res.  Vol.20  No. 3 2024 pp 471-488  DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4483 

 

 
Weighted Grouping Estimation Method for Fitting Multiple Structural Regression Model when all Variables are Subject to Errors 477 

 

 
• Finally, the unknown parameters of MEM can be estimated as: 

 

�Z�� �  �
>��A  ∑ βSfd>��A�C�      and       �� � �z − ∑ �Z�  �̅�?N��C�                       (14) 

 
 

 
3.1.2 An Iterative Weighted Grouping Procedure 
 
The idea in this procedure is to compute the pairwise slopes continuously and gradually from each sub-group 
to another sub-group as illustrated in Figure 2. Therefore, the j-th slope iteratively as: 

 

  �Z�� �  wx�yzx� N w�x{|��yz�x{|��wx�}̅x� N w�x{|��}̅�x{|�� ,    � �  1, 2, … … � ,     � � 1, 2, … … , s,   � � 1, 2, . . . , �s − 1�                  (15)  

 

 
Figure 2: Pairwise slope between the subgroups 

 
• Finally, the unknown parameters of MEM can be estimated as: 

 �Z�� �  �
�?N��  ∑ βSfd�?N���C�      and       �� � �z − ∑ �Z�  �̅�?N��C�                       (16) 

 
 

4. Monte Carlo Experiment 

Two random samples, consisting of inlier and outlier samples, were generated using Python, each based on 10,000 
iterations with a sample size of n, from the standard normal MEM described in (1). These samples were analyzed 
under the following procedures and assumptions. 

• Order the data from smallest to largest with their respective associated ¡
 values,  
 �  1, 2, … , �.  
             where: 

    �� �  � � ���	�� �  ��
	�
          
 � 1, 2, … , � 

                 �� �  �� �  ��                                                                    

   ��� �  	�� �  ���           
 � 1, 2, … , �,    � � 1, 2, … . , �              

where 

��� �  	�� �  ��� 

��
 �  	�
 �  ��
 

• Set the initial values as � = 1, β1 = 2, β2 = 3, σє
 =1, σ¤�
 =1 and σ¤

 =1. 
• Generate the error terms from a standard normal distribution. 
• Consider three different data sizes: n = 100, 200 and 500. 
• Contaminate the data with outliers. At each step a certain percentage (10%) of the observations were deleted 

and replaced with outliers generated according to the following different cases: 
 

G1 G2 G3 Gr 
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(i) Outliers only in y ( є�  ~ ¥�0, σє 
 �, σє
 � 16. 
(ii)  Outliers only in �� ( δ�  ~ ¥�0, σ¤�
 �, σ¤�
 �  16. 
(iii)  Outliers only in �
 ( δ
  ~ ¥�0, σ¤

 �, σ¤

 �  16. 
(iv) Outliers in both ����� �
 ( δ�  ~ ¥�0, σ¤

 � and ( δ
  ~ ¥�0, σ¤

 �, (σ¤�
 , σ¤

 ) = (16, 16). 
(v) Outliers in y, ����� �
, (σє
, σ¤�
 , σ¤

 ) = (16, 16, 16). 

 
The properties of these estimators were investigated using the simulated bias and mean square error, defined as  

( )
=

−=
10000

1

ˆ
10000

1

i
iBias µµ ;                   ( )

=

−=
10000

1

2ˆ
10000

1

i
iMSE µµ          (17) 

where iµ̂ is the estimates given by one of the proposed estimators for the ith sample. 

Table 1-6 present the bias and MSE values of  �� and �Z for each contaminated case across different sample sizes: n = 
100, 200 and 500. The simulated results indicate that weighted technique 1 outperformed technique 2 when there were 
no outliers, while technique 2 showed better performance in the presence of outliers. Overall, the bias and mean 
squared error (MSE) of the estimations decreased as the sample size increased. Compared to classical methods like 
Maximum Likelihood Estimation (MLE) and Method of Moments (MOM), the newly proposed weighted grouping 
procedures exhibited lower bias and MSE values. Additionally, the study found that weighted technique 2 was more 
efficient than technique 1 in the presence of outliers. 

Table 1: The Bias and MSE of �� and �Z for samples without outlier. 
n Parameter Statistic Weight case 1 Weight case 2 Classical 

   
Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

0.0001 0.0001 0.0005 0.0001 -0.0088 -0.0045 0.0023 -0.001 -0.0014 
-0.0495 

MSE 
0.0035 0.0026 0.0207 0.013 0.0820 0.0839 0.0518 0.0219 0.2334 

0.3387 

"OL 
Bias 

-0.0186 -0.0198 0.0339 -0.02 -0.0057 0.0136 0.0488 -0.0194 0.327 
0.6429 

MSE 
0.0737 0.0389 0.201 0.1245 0.0623 0.0512 0.0279 0.0381 0.0782 

0.5076 

"O3 
Bias 

-0.0295 -0.0295 0.008 -0.0296 0.0622 -0.0459 0.0066 -0.0296 -0.8378 
0.2111 

MSE 
0.0873 0.0873 0.0915 0.0877 0.0592 0.0316 0.0209 0.0219 0.8187 

0.6803 

200 

T̈ 
Bias 

-0.0001 0.0001 -0.032 0.0024 0.0022 0.0001 -0.0028 0.0021 0.0049 
0.0218 

MSE 
0.0007 0.0007 0.0092 0.0055 0.0212 0.0264 0.0258 0.0356 0.0926 

0.3036 

"OL 
Bias 

-0.0098 -0.0095 0.0188 -0.0078 0.002 -0.0005 -0.0017 -0.0098 0.1817 
0.3847 

MSE 
0.0193 0.0190 0.0707 0.0784 0.0292 0.0104 0.0206 0.0247 0.7759 

0.4736 

"O3 
Bias 

-0.0149 -0.0140 0.0037 -0.0131 0.0249 0.0093 0.0028 -0.0159 -0.8608 
0.0768 

MSE 
0.0443 0.0440 0.0901 0.0743 0.0499 0.0185 0.0198 0.0245 0.7925 

0.5327 

500 

T̈ 
Bias 

0.00001 0.0001 0.051 -0.0014 0.0001 0.0001 -0.001 0.0006 0.0009 
0.0034 

MSE 
0.0001 0.0001 0.0083 0.0028 0.0041 0.0112 0.0109 0.0201 0.035 

0.589 

"OL 
Bias 

-0.004 -0.0034 0.0063 -0.0055 0.0006 0.0006 0.0067 0.0069 0.1203 
0.9089 

MSE 
0.0079 0.0078 0.0172 0.0069 0.0202 0.0102 0.0160 0.0184 0.3831 

0.3516 

"O3 
Bias 

-0.006 -0.0056 0.0026 -0.0013 0.0044 0.0048 0.0014 0.002 -0.8712 
0.0332 

MSE 
0.0179 0.0166 0.0811 0.0579 0.1518 0.0116 0.0096 0.0087 0.7791 

0.424 

 

Table 2: The Bias and MSE for �� and �Z when σ¤�
 � 16 with outliers in x1. 

n Parameter Statistic Weight case 1 Weight case 2 Classical 
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Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

-0.0001 0.0001 0.0002 0.0047 0.0009 -0.0034 0.0034 0.0005 
-0.009 0.1412 

MSE 
0.0048 0.0045 0.2862 0.2457 0.1755 0.1864 0.5892 0.5737 

0.9498 0.5451 

"OL 
Bias 

-0.0198 -0.0187 0.0326 -0.0195 0.0148 0.0045 0.0352 -0.0197 
-0.8448 0.4498 

MSE 
0.0378 0.0391 0.1179 0.1300 0.1448 0.1254 0.1461 0.1460 

0.9722 0.7382 

"O3 
Bias 

-0.0295 -0.0291 0.0148 -0.0296 0.0591 0.0452 0.0152 -0.0296 
0.1294 0.1836 

MSE 
0.0871 0.0870 0.2011 0.1989 0.1712 0.1663 0.1937 0.1901 

0.3265 0.2918 

200 

T̈ 
Bias 

-0.001 0.0001 0.0311 -0.0018 0.0004 -0.0005 0.0006 0.0058 
0.055 0.0344 

MSE 
0.0009 0.0022 0.2349 0.2050 0.1031 0.1004 0.4022 0.3127 

0.349 0.2656 

"OL 
Bias 

-0.0098 -0.0093 0.0166 -0.0099 0.0021 0.0011 0.0249 -0.0099 
0.2975 0.3279 

MSE 
0.0194 0.0191 0.1081 0.995 0.1342 0.1309 0.0841 0.0711 

0.2775 0.583 

"O3 
Bias 

-0.0149 0.0190 0.0042 -0.0149 0.0193 0.0044 0.0036 -0.0149 
0.0004 0.0733 

MSE 
0.0443 0.0440 0.1701 0.1544 0.1016 0.1498 0.0914 0.0901 

0.2263 0.2811 

500 

T̈ 
Bias 

-0.0001 -0.0002 0.0001 0.0021 0.0007 -0.0004 0.0001 0.0002 
0.0147 -0.0567 

MSE 
0.0002 0.0002 0.2209 0.1998 0.0224 0.0302 0.1292 0.1234 

0.2814 0.2213 

"OL 
Bias 

-0.004 -0.0033 0.0069 -0.004 0.0006 0.0006 0.0075 0.0069 
0.2372 0.241 

MSE 
0.0079 0.0066 0.0920 0.0900 0.0444 0.0873 0.0332 0.0311 

0.2645 0.2955 

"O3 
Bias 

-0.006 -0.005 0.0011 -0.006 0.0014 0.0064 0.0011 0.0013 
-0.5327 0.0138 

MSE 
0.0179 0.015 0.0804 0.0778 0.0283 0.0107 0.0687 0.0581 

0.1875 0.1794 

 

Table 3: The Bias and MSE for �� and �Z when σ¤

 � 16 with outliers in x2. 

n Parameter Statistic Weight case 1 Weight case 2 Classical 

   
Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

0.001 0.0001 -0.0662 -0.0040 0.0045 0.0026 0.0043 -0.0079 
-0.0099 -0.3700 

MSE 
0.0073 0.0070 0.1185 0.0936 0.1502 0.1394 0.0714 0.0487 

0.9089 0.6376 

"OL 
Bias 

-0.0185 -0.0192 -0.0602 -0.0193 0.0075 0.0106 0.0174 -0.0193 
0.1614 0.1955 

MSE 
0.0588 0.0419 0.1209 0.1200 0.2963 0.1995 0.0415 0.0228 

0.5679 0.7781 

"O3 
Bias 

-0.0296 -0.0274 0.0059 -0.0296 0.0268 0.0498 0.011 -0.0296 
-0.0974 -0.8605 

MSE 
0.0874 0.0712 0.0148 0.0879 0.2785 0.2178 0.0432 0.0416 

0.2595 0.4314 

200 

T̈ 
Bias 

0.0001 -0.0002 -0.0078 -0.0007 0.0005 -0.0001 0.0005 -0.0014 
-0.0019 -0.2851 

MSE 
0.0013 0.00012 0.097 0.0026 0.0817 0.1255 0.0612 0.0324 

0.8886 0.6183 

"OL 
Bias 

-0.0099 -0.0098 -0.1023 -0.0098 0.0022 0.0028 0.0197 -0.0099 
0.1596 0.1693 

MSE 
0.0197 0.0193 0.096 0.0911 0.1924 0.1291 0.0883 0.0197 

0.4712 0.6722 

"O3 
Bias 

-0.0148 -0.0146 0.0032 -0.0149 0.0116 0.0217 0.0038 -0.0149 
-0.0758 -0.6878 

MSE 
0.0466 0.0358 0.0023 0.0025 0.2033 0.1463 0.0213 0.0404 

0.2179 0.3466 

500 

T̈ 
Bias 

-0.0001 -0.0001 0.001 -0.0015 0.007 -0.003 0.041 -0.0011 
0.0775 -0.1193 

MSE 
0.0001 0.0001 0.009 0.0076 0.0079 0.0035 0.0302 0.0301 

0.5917 0.4216 

"OL 
Bias 

-0.004 -0.0036 0.0078 -0.0085 0.0008 0.0007 0.0071 -0.004 
0.2358 0.1679 

MSE 
0.008 0.0073 0.0513 0.0144 0.0804 0.0103 0.0282 0.0178 

0.2825 0.6641 

Bias 
-0.006 -0.0054 0.0014 0.0026 0.0051 0.0038 0.0014 -0.006 

-0.9269 -0.4754 
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"O3 MSE 
0.0181 0.0163 0.0019 0.0013 0.0905 0.0391 0.0201 0.0169 

0.1333 0.2971 

 

 

 

Table 4: The Bias and MSE for �� and �Z when (σ¤�
 , σ¤

 ) = (16, 16) with outliers in both (x1, x2). 

n Parameter Statistic Weight case 1 Weight case 2 Classical 

   
Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

-0.0003 0.0001 0.0071 -0.0075 0.0009 -0.0034 0.041 -0.346 
-0.3903 -0.1765 

MSE 
0.0099 0.0088 0.4007 0.3902 0.1755 0.1864 0.5009 0.4515 

0.5573 0.4166 

"OL 
Bias 

-0.0198 -0.0191 0.0615 -0.0195 0.0148 0.0045 0.022 -0.0197 
-0.176 0.4669 

MSE 
0.0392 0.0386 0.2053 0.2008 0.2448 0.2254 0.1478 0.1066 

0.6702 0.5008 

"O3 
Bias 

-0.0303 -0.0291 0.0088 -0.0299 0.0591 0.0452 0.2589 -0.0372 
0.6054 -0.7889 

MSE 
0.0972 0.0872 0.1908 0.1524 0.1712 0.1663 0.3124 0.1946 

0.6821 0.4622 

200 

T̈ 
Bias 

-0.0001 0.0002 0.0007 -0.0097 0.0004 -0.0005 -0.0022 -0.0052 
-0.2256 -0.1529 

MSE 
0.0015 0.0022 0.2862 0.2481 0.1031 0.1804 0.3808 0.2526 

0.377 0.3547 

"OL 
Bias 

-0.0098 -0.0015 0.0211 -0.0101 0.0021 0.0011 0.0244 -0.0099 
-0.4022 0.3909 

MSE 
0.0193 0.0190 0.1944 0.1085 0.1342 0.1309 0.0955 0.0923 

0.208 0.4425 

"O3 
Bias 

-0.0151 -0.012 0.0038 -0.0149 0.0193 0.0044 -0.003 -0.0149 
0.1096 -0.4725 

MSE 
0.0843 0.0818 0.1007 0.9444 0.1516 0.1498 0.0952 0.0944 

0.5781 0.2472 

500 

T̈ 
Bias 

-0.0004 -0.0002 0.001 -0.0019 0.0007 -0.0004 0.001 -0.0012 
0.3113 -0.0946 

MSE 
0.0002 0.0002 0.1992 0.1877 0.0924 0.1302 0.1933 0.1713 

0.3353 0.2665 

"OL 
Bias 

-0.004 -0.0033 0.0770 -0.046 0.0006 0.0006 0.0079 -0.004 
0.118 0.1777 

MSE 
0.0076 0.0066 0.1356 0.9979 0.0444 0.0873 0.0259 0.0184 

0.173 0.2097 

"O3 
Bias 

-0.006 -0.005 0.0026 -0.017 0.0014 0.0064 0.0014 -0.006 
0.1554 -0.2105 

MSE 
0.0181 0.0151 0.0622 0.0619 0.1283 0.1107 0.0728 0.0571 

0.2385 0.1731 

 

Table 5: The Bias and MSE for �� and �Z when σє
 �  16 with outliers in y. 

n Parameter Statistic Weight case 1 Weight case 2 Classical 

   
Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

0.0001 0.0001 0.0004 -0.0012 0.0045 0.0026 0.0806 -0.3095 
-0.0566 -0.3533 

MSE 
0.0029 0.0002 0.1921 0.1642 0.2502 0.2094 0.1321 0.1095 

0.3392 0.8736 

"OL 
Bias 

-0.0192 -0.0189 0.0447 -0.0195 0.0075 0.0106 0.0276 -0.0373 
0.2062 0.2733 

MSE 
0.0372 0.0350 0.258 0.1897 0.1963 0.1955 0.1709 0.1194 

0.4143 0.3996 

"O3 
Bias 

-0.0295 -0.0274 0.0095 -0.0296 0.0268 0.0498 0.0123 -0.0296 
-0.3901 0.1234 

MSE 
0.0872 0.0821 0.1606 0.1078 0.2485 0.2178 0.1004 0.1503 

0.4639 0.2641 

200 
T̈ 

Bias 
0.0003 -0.0001 0.0201 -0.0303 0.0005 -0.0001 -0.0004 -0.0073 

-0.0235 0.0061 

MSE 
0.0007 0.0001 0.0941 0.0761 0.2017 0.2055 0.0822 0.0788 

0.1122 0.1229 

Bias 
-0.0098 -0.0081 0.0201 -0.0099 0.0022 0.0028 0.02 -0.0103 

0.0883 0.2431 
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"OL MSE 
0.0193 0.0176 0.123 0.1195 0.1924 0.1291 0.0723 0.0721 

0.3886 0.2127 

"O3 
Bias 

-0.0148 -0.0119 0.0042 -0.0149 0.0116 0.0217 0.0033 -0.0149 
-0.330 0.0457 

MSE 
0.0466 0.0358 0.0868 0.0844 0.2033 0.1463 0.0535 0.0445 

0.2832 0.1022 

500 

T̈ 
Bias 

-0.0001 -0.0001 0.011 0.0018 0.007 -0.003 0.001 0.0028 
-0.0182 0.0872 

MSE 
0.0001 0.0001 0.0781 0.0551 0.1979 0.1035 0.0383 0.0297 

0.1081 0.1023 

"OL 
Bias 

-0.004 -0.0036 0.0074 -0.008 0.0008 0.0007 0.0045 -0.006 
0.0595 0.1686 

MSE 
0.008 0.0078 0.0919 0.0910 0.1004 0.1103 0.0132 0.0119 

0.1639 0.2108 

"O3 
Bias 

-0.006 -0.0054 0.0015 -0.01 0.0051 0.0038 0.001 0.008 
-0.2901 0.0365 

MSE 
0.0181 0.0163 0.0212 0.0208 0.0905 0.0891 0.0106 0.0110 

0.1553 0.0916 

 

Table 6: The Bias and MSE for �� and �Z when (σ¤�
 , σ¤

 , σє
) = (16, 16, 16) with outliers in all (x1, x2, y). 

n Parameter Statistic Weight case 1 Weight case 2 Classical 

   
Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 

Repetitive  

r = 3 

Repetitive  

r = 4 

Iterative 

r = 3 

Iterative 

r = 4 
MLE MOM 

100 

T̈ 
Bias 

0.0002 0.0002 -0.0042 -0.0001 0.0044 0.0081 -0.0242 -0.0001 0.1915 
0.3141 

MSE 
0.0104 0.0107 0.4113 0.2068 0.2434 0.2299 0.5075 0.4072 0.8117 

0.6594 

"OL 
Bias 

-0.0188 -0.019 0.0465 -0.0194 0.0063 0.0033 -0.0532 -0.0192 -0.1953 
0.7951 

MSE 
0.0455 0.047 0.3683 0.2004 0.1392 0.1747 0.3336 0.1812 0.8682 

0.6918 

"O3 
Bias 

-0.0295 -0.0296 0.022 -0.0296 -0.0138 0.0839 0.0115 -0.0296 0.1169 
-0.1741 

MSE 
0.0872 0.0876 0.2462 0.1877 0.1272 0.1243 0.1262 0.1106 0.6714 

0.2756 

200 

T̈ 
Bias 

-0.0001 0.0002 0.0324 -0.013 -0.0002 -0.0018 0.0003 -0.0023 0.061 
-0.3119 

MSE 
0.0016 0.0015 0.2899 0.1921 0.1466 0.1361 0.4970 0.1569 0.7348 

0.5576 

"OL 
Bias 

-0.0098 -0.0098 0.0215 -0.0148 0.0023 0.0023 0.0243 -0.0099 0.1463 
0.6997 

MSE 
0.0198 0.0193 0.2798 0.1442 0.1182 0.1179 0.1210 0.1198 0.7709 

0.4717 

"O3 
Bias 

-0.0152 -0.0149 0.0041 -0.0199 0.0229 0.0133 0.0049 -0.0149 -0.103 
-0.7063 

MSE 
0.0443 0.0440 0.1301 0.0992 0.1174 0.1130 0.0913 0.0445 0.415 

0.2176 

500 

T̈ 
Bias 

0.0001 0.0001 0.0901 -0.0942 -0.002 -0.0001 -0.001 0.003 -0.1491 
0.2984 

MSE 
0.0002 0.0002 0.1093 0.1892 0.004 0.0154 0.0574 0.0411 0.5395 

0.2902 

"OL 
Bias 

-0.004 -0.0033 0.0074 -0.006 0.0009 0.0006 0.032 -0.054 0.097 
0.4496 

MSE 
0.0079 0.0077 0.0998 0.0979 0.0036 0.0018 0.0247 0.0183 0.4286 

0.3317 

"O3 
Bias 

-0.0075 -0.006 0.0014 -0.008 0.005 0.007 0.0015 -0.006 -0.1713 
-0.4424 

MSE 
0.0225 0.0189 0.0938 0.0919 0.0962 0.0685 0.0318 0.0164 0.2774 

0.1816 

 

5. Real Data Application  

In the past, a nation's overall development levels were determined by its national income because it was 
believed that the more a nation produced, the more progress it would make both economically and socially. However, 
we acknowledge that there may be significant differences between societal progress or overall development and GDP 
growth. Over the past two decades, there has been much discussion about the limitations of using GDP as a gauge of 
a country's quality of life or social well-being. The fact that a large portion of the population's quality of life has not 
improved despite a high GDP growth rate has led some people to believe that the GDP measure should be expanded 
to consider human well-being and life quality.  

Unemployment is a critical issue for developing countries because it has a direct and significant impact on a 
country's economy. It is defined as someone who is willing and able to work but does not have a paid job. Meanwhile, 
the unemployment rate is the most used indicator for assessing labour market conditions. It is the percentage of people 
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in the labour force who are out of work. Understanding the patterns of unemployment rates is critical these days, and 
it has piqued the interest of researchers from all fields of study all over the world. For policymakers and researchers, 
unemployment is important when planning a country's monetary progress.  

An advanced modelling approach is required to determine the effect of the unemployment rate efficiently. 
Several studies have recently relied on traditional testing methods to estimate the effect of the unemployment rate. 
Furthermore, unemployment is typically non-stationary. As a result, using traditional methods to demonstrate them 
will yield unpredictable results. To address the issue associated with traditional techniques, a better approach is 
required to deal with the effect of the unemployment rate (Shi et al., (2022)). The Human Development Index (HDI), 
a multidimensional indicator of development, has proven to be more reasonable in comparison to the measure of GDP 
growth, which is one-dimensional in income. This is in line with the general belief that well-being is a 
multidimensional concept that cannot be measured by market production or GDP alone (Surajit, (2015)), so the value 
of all goods produced in a nation during a fiscal year is used to define its GDP. It is discovered to be one of the 
economic growth and production indicators, and to play a crucial strategic role in employment, development, and the 
balance of payments (Volker, (2005)). In this article, the new procedures were applied to determine the relationships 
between GDP and HDI. Data were collected from the yearly Jordan’s economic report (1990–2021) (Country 
Economy. Jordan - Human Development Index - HDI 2019 | countryeconomy.com), (Jordan | Data (worldbank.org)) 
and are presented in Table 7.  

Table 7: Yearly Dataset of HDI, GDP and Unemployment Rate of Jordan (1990–2021) 

Year HDI GDP Unemployment Rate 

1990 0.625 1166.611 16.810 

1991 0.636 1155.234 19.513 

1992 0.657 1335.288 19.274 

1993 0.668 1334.229 19.700 

1994 0.679 1414.339 17.171 

1995 0.693 1466.045 14.600 

1996 0.695 1463.888 13.700 

1997 0.699 1494.511 13.686 

1998 0.702 1600.398 13.703 

1999 0.706 1619.536 13.707 

2000 0.711 1651.622 13.700 

2001 0.717 1720.361 14.700 

2002 0.715 1802.055 15.300 

2003 0.720 1876.259 14.500 

2004 0.726 2044.964 14.580 

2005 0.738 2183.395 14.800 

2006 0.741 2513.029 14.000 

2007 0.744 2735.379 13.100 

2008 0.745 3455.770 12.700 

2009 0.743 3559.692 12.900 
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2010 0.737 3736.645 12.500 

2011 0.734 3852.890 12.900 

2012 0.735 3910.347 12.200 

2013 0.729 4044.427 12.600 

2014 0.729 4131.447 11.900 

2015 0.730 4164.109 13.080 

2016 0.729 4175.357 15.280 

2017 0.726 4231.518 18.140 

2018 0.728 4308.151 18.270 

2019 0.729 4405.487 16.810 

2020 0.729 4282.766 19.026 

2021 0.730 4405.839 19.252 

 

A descriptive analysis of the data is tabulated in Table 8 with correlations between variables are presented in Table 9. 
It is noted that there is a strong positive and significant correlation between GDP and HDI (r = 0.739, p < 0.001) and 
a strong negative and significant correlation between the unemployment rate and HDI (r = -0.538, p < 0.001). 

Table 8: Descriptive Statistics 

Variable Min Max Mean STDEV 
Unemployment Rate 11.9 19.7 15.1 2.5 

GDP 1155.2 4405.8 2726.3 1242.6 
HDI .63 .75 .71 .03 

 

Table 9: Correlation Matrix between the dependent variable (HDI) and independent variables (GDP and 
Unemployment rate).   

Variable HDI 

GDP 
.739**  

(0.000) 

Unemployment Rate 
-.538**  

(0.001) 
Note: ** significant at 0.01 level. Values in () represent the p-value. 

 

The trend of the variables within the study period is given in Figures 3, 4 and 5. 
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       Figure 3: The trend of the HDI within 1990-2021.     Figure 4: The trend of the national GDP within 1990-2021. 

 

 
Figure 5: The trend of the unemployment rate within 1990-2021 

 
Moreover, the scatter plots in Figures 6 and 7 suggest that there is almost a linear relationship between the variables, 
Also, based on the linearity test, the result indicates there is a weak linear relationship between the variables (F = 
0.316, P.=0.98), as shown in Figure 8. Moreover, the scatter plots in Figure. 9. indicate that there is a heteroscedasticity 
problem in fitting the model. 
 

  
    Figure 6: The line plot of HDI and Unemployment rate.           Figure 7: The line plot of HDI and GDP 
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Figure 8: The residual plot  

 

 
 

Figure 9: The scatter plot of HDI, GDP and unemployment rate 
 

These analyses suggest that the GDP, unemployment rate, and HDI can be modelled as linear relationships; however, 
it is believed that all variables are subject to error because their value is affected by several other factors. As a result, 
it is suggested to consider MEM for studying the relationship between HDI, unemployment rate, and GDP. The model 
under consideration can therefore be reformulated as follows: 

 
        HDI = α + �� × (GDP - ẟ�) + �
 × (Unemployment Rate - ẟ
) + ϵ.                                     (18) 

 
Table 10 displays the outcomes of the estimation methods considered in this article: The Repetitive Weighted, Iterative 
weighted, MLE and MOM. The results indicate that, based on mean square residual (MSR), the proposed methods 
with r =3 and r =4 produced more accurate estimators than the other estimation methods in weight case 1, Additionally, 
the proposed method with r=4 provided more accurate estimators than the other methods in weight case 2. 
Furthermore, the results show that the proposed estimators using weighted technique 1, outperformed those using 
technique 2. Overall, the proposed procedures demonstrated greater efficiency than MLE and MOM in fitting the 
model, as illustrated in Figures 10 and 11, which display the residuals for each estimation method. 

 
Table 10: Parameter Estimation of HDI vs GDP and Unemployment rate 

Weight 
case 

Method Criterion βSL βS3 �� MSR 

1 
Repetitive weighted  

r = 3 5e-06 0.0009 0.6658 0.00095 
r = 4 5e-06 0.0009 0.6658 0.00095 

Iterative weighted  r = 3 0.0002 0.0459 -0.4868 0.0527 
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r = 4 0.0003 0.0461 -0.6882 0.0949 

2 
Repetitive weighted  

r = 3 0.0002 0.0199 -0.2246 0.0589 
r = 4 0.0001 0.0202 0.0478 0.0160 

Iterative weighted  
r = 3 0.0002 0.0244 -0.2951 0.0801 
r = 4 0.0001 0.0433 -0.3008 0.0334 

Classical 
MLE  1.6e-05 0.0026 0.651 0.1926 
MOM  1.15e-05 0.00624 0.3481 0.1083 

Note: MSR = 
∑ ^�ª@�|B �  ∑ �« N y���ª@�| B , where, �� �  �� −  �̅�βSL −  �̅
βS
 , y is a HDI observations.  

 

 
Figure 10: Residual of each estimation method for Case 1 

 

 
Figure 11: Residual of each estimation method for Case 2 

 
 
6. Concluding Remarks  
 

This study proposed two new nonparametric estimation procedures for fitting multiple structural MEMs: The 
Repetitive Weighted Grouping procedure and the Iterative Weighted Grouping procedure. Monte Carlo simulations 
illustrate the superiority of the proposed estimation procedures over the classical methods (MLE and MOM) across 
various sample sizes. Additionally, the results indicate that both proposed procedures perform better in weight case 2 
compared to weight case 1, highlighting their greater efficiency in fitting multiple structural MEMs. A key 
contribution of this work is the introduction of these new techniques, which were not covered in earlier studies. When 
comparing these techniques to those from prior research (by Ahmad and Ahmad, (2019), Salem, (2018), Schennach 
and Hu, (2013), Cheng and Van Ness, (1999), Adusumilli and Otsu, (2018), and Fuller, (1987)) that used MLE and 
MOM approaches, the proposed methods showed improved performance. Furthermore, real data analysis was 
conducted to explore the effects of GDP and the unemployment rate on the HDI. The findings revealed a strong 
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positive relationship between GDP and HDI, while a strong negative relationship was observed between the 
unemployment rate and HDI. 
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