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Abstract 

 

In certain situations, probability computations can become complex, particularly when dealing with compound 

distributions. This computational complexity can be simplified by using approximation techniques such as the 

“saddle-point” approximation. In this paper, the authors have proposed the bivariate compound zero-truncated 

Poisson-Gamma distribution. This distribution is obtained by compounding the zero-truncated Poisson distribution 

with independent Gamma variates. To demonstrate the effectiveness of the proposed approach, the authors have 

provided an illustrative example to showcase the approximate computation of the bivariate compound zero-

truncated Poisson−Gamma distribution. Furthermore, an extensive simulation study has been conducted to evaluate 

the performance of the proposed saddle-point approximation. The results indicate that the proposed saddle-point 

approximation is an excellent approximation of the distribution function of the bivariate compound zero-truncated 

Poisson-Gamma distribution which validates the effectiveness of the proposed approach. The high accuracy of the 

saddle-point approximation method is demonstrated by comparisons among saddle-point approximations, normal 

approximations, and exact calculations. 
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1. Introduction 

Modelling complex phenomena often requires the use of compound probability distributions. One area where 

compound distributions have a crucial role is in actuarial problems, particularly in the modelling of the total amount 

of claims or losses. Unfortunately, there are very few compound distributions of the claim amount for which a closed-

form approximation is available. Additionally, the distribution of the collective risk model does not have a closed 

form, posing a challenge for researchers and practitioners. 

The compounding of probability distributions has been an area of interest for many authors. Several new distributions 

have been obtained by compounding a discrete distribution such as the Poisson distribution with a univariate 

distribution such as the Gamma distribution. The Poisson−Gamma compound distribution is one such example that 

has been widely used in various contexts. The distribution has been used, among others, by Christensen et al. (2003) 

to obtain data on efforts; by Christopher et al. (2011) to obtain multiple lesions per patient, recruitment for multicentre 

studies, insurance, pump failure, etc.; and by Aitken and Elton (1986) to study the effect of gamete concentration on 

sperm−oocyte fusion and for two-stage cluster sampling.  
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Furthermore, the Poisson−Gamma model has been used to model a variety of other phenomena, such as human capital 

distribution, mortality data, mall visit frequency, distribution of microorganisms in a food matrix, mine equipment 

injury rates, and recruitment in multicentre trials. In summary, the modelling of complex phenomena using compound 

probability distributions, particularly the Poisson−Gamma model, has been a subject of significant interest and has 

found numerous applications across various fields. 

Numerous researchers have delved into the Poisson−Gamma model, with notable contributions from Buishand (1977), 

who focused on maximum likelihood estimates in exponential rainfall and Ozturk (1981), who explored related 

aspects. Revfeim (1982) introduced a moment estimate and a seasonality allowance within this model. Furthermore, 

the Poisson−Gamma model has been extended and generalized by various scholars such as Nahmias and Demmy 

(1982), Fukasawa and Basawa (2002), Christensen et al. (2003), Henderson and Shimakura (2003), Galue (2007), and 

Choo and Walker (2008). A recent study by Nascimento et al. (2023) investigated the compound truncated 

Poisson−Gamma distribution to understand multimodal SAR intensities. Abdelghani et al. (2021) proposed 

applications involving bivariate compound distributions based on Poisson maxima of Gamma variates. Ausaina et al. 

(2023) examined features of the Gamma zero-truncated Poisson distribution and studied the asymptotic properties of 

maximum likelihood estimators. 

Often, a bivariate compound distribution is required when joint modelling of two phenomena is necessary. For 

example, in risk theory, a bivariate compound distribution might be required when comparing the total claims for two 

different portfolios of independent auto insurance policies at a given time. This type of problem is typically solved by 

assuming that the arrival of claims follows a Poisson distribution, and the amount of individual claims follows a 

Gamma distribution, resulting in an overall bivariate compound Poisson−Gamma distribution for the total claim 

amount. In insurance premium prediction problems, the total claim amount for a covered risk typically has a 

continuous distribution of positive values, with the possible exception of being exactly zero when the claim does not 

occur. The resulting distribution in this case is referred to as a bivariate compound zero-truncated Poisson−Gamma 

(BCZTPG) distribution. 

This study focuses on modelling aggregate claim amounts commonly found in car insurance policies. The objective 

is to estimate the cumulative probability at a specific claim value. To achieve this, we have employed analytical 

approximation techniques, more specifically, the saddle-point approximation method. This method is renowned for 

its computational efficiency and ability to provide highly accurate tail probabilities. Saddle-point approximations are 

crucial in obtaining precise expressions for distribution functions that lack closed-form solutions. They are considered 

superior to other methods due to their robustness and efficiency. Furthermore, the simplicity of implementation and 

minimal computational requirements make this approach highly practical. One of the key advantages of saddle-point 

approximations is their ability to generate precise probabilities, particularly in the tails of distributions, even with 

limited data points or a single observation, distinguishing them from other asymptotic approximations. This method 

is particularly valuable for understanding complex and unknown distributional behaviours such as bivariate compound 

random variables. The versatility and effectiveness of saddle-point approximation methods have been demonstrated 

across a wide range of applications. Saddle-point approximations can also be a powerful tool for approximating the 

cumulative distribution function (CDF) of various statistical quantities. The key idea is to leverage the cumulant 

generating function (CGF) of the statistic of interest to obtain an accurate approximation of the CDF. 

This paper explores several applications of the saddle-point approximation method: In Section 2, the authors present 

a modified version of Wang’s saddle-point approximation that is tailored for zero-truncated Poisson sums. Section 3 

focuses on the BCZTPG distribution. The authors derive the saddle-point approximation for the CDF of this 

distribution. Section 4 includes a simulation study to assess the accuracy of the saddle-point approximations developed 

in the paper. This simulation can serve as a useful reference for practitioners when working with similar data. The 

paper concludes in Section 5 with a summary of the key findings and potential applications of the saddle-point 

approximation techniques presented. 

 



Pak.j.stat.oper.res.  Vol.20  No. 2 2024 pp 285-299  DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4461 

 

Approximation Methods for the Bivariate Compound Zero-Truncated Poisson-Gamma Distribution 287 

 

2. Bivariate Saddle-Point for the Sum of Zero-Truncated Poisson Distribution 

In this section, we have given a saddle-point approximation method for the sum of zero-truncated Poisson random 

variables. Let Zi be a sequence of independent and identically distributed (iid) bivariate random vectors, wherein 

 
/

i i iX Y=z  and Xi and Yi can either be dependent or independent. The bivariate compound distribution is defined 

as distribution of the sum as follows: 

 ( )
/

/

1 2 1 2 1 1
,

N N

N n i ii i
S S X Y

= =
 = + + + = =
   S z z z      (1) 

where, N is independent of the Zi’s. Let the CGF of SN be defined as: 

 ( ) ( )  ( )
1 1

, ln exp , ,
N

N N

S i i N Zi i
K t s E t X s Y K K t s

= =

 = + =     
      (2) 

where, ( ) ( ), ln ,Z ZK t s M t s=  is the CGF of z. 

Now, suppose that N in equation (1) has a truncated Poisson distribution, truncated at zero; then the distribution of 𝑆𝑵 

in equation (1) is not continuous due to a point probability at zero, which is 𝑃(𝑁 = 0) = 𝑒−𝜆.  In addition, when N 

has a zero-truncated Poisson distribution, then the CGF in (2) becomes  

  ( ) ( )  ( ),, ln exp , 1 e 1 e .
NS X YK t s M t s   − − = − − −

 
 

Now, assume as in Wang (1990) a saddle-point approximation for a bivariate CDF. The convergent domain 𝑈 of the 

CGF of 𝐾𝑁(𝑡0, 𝑠0) contains an open neighbourhood of the origin. Moreover, for a fixed (𝑥, 𝑦), suppose that there 

exists a unique (𝑡0, 𝑠0) ∈ 𝑈 such that 

 
( ) ( ) ( )

( ) ( ) ( )

/
0 0 0 0

/
0 0 0 0

ˆ ˆˆ ˆ, ,
,

ˆ ˆˆ ˆ, ,

t
N Z Z

s

N Z Z

K K t s K t s x

K K t s K t s y

  =  


  =  

        (3) 

where, 0̂t t=  and 0ˆs s=  are the solution of  

 ( ) ( ) ( )/
0 0
ˆ ˆ,0 ,0 ,

t
N Z ZK K t K t x  =   and ( ) ( ) ( )/

0 0ˆ ˆ0, 0, ,
s

N Z ZK K s K s y  =      (4) 

with 
( ) ( ) ( ),
t

ZZK t K t s=    and 
( ) ( ) ( ),
s

ZZK s K t s=   . 

Under the above general conditions, the joint distribution function ( ),nF x y  of ( ),X Y  can be approximated by the 

bivariate saddle-point formula as follows: 

 ( ) 11 12 21 22, ,nF x y I I I I= + + +         (5) 

where,  

 ( )11 1 1 1, , ,I v           (6) 

 ( ) ( ) ( ) 0

11
12 0 0 0 ,sI w v v s G

−− −        (7) 

 ( ) ( ) ( ) 
0

1 21 1
21 0 1 0 0 0, ,s ttI v w t K t s 

−− − =  −
  

      (8) 

 ( ) ( )  ( )
0

1 2 11 1 1
22 0 0 0 0 0 0 0 0 0exp , , 2 .s ttI K t s t x s y w t K t s v s G 

− −− − −    = − − − −      
  (9) 



Pak.j.stat.oper.res.  Vol.20  No. 2 2024 pp 285-299  DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4461 

 

Approximation Methods for the Bivariate Compound Zero-Truncated Poisson-Gamma Distribution 288 

 

In addition, in the above expressions, 𝜙 and Φ are, respectively, the standard normal density and distribution functions; 

moreover, ∼ indicates the error of approximation is of 𝑂(𝑛−1) relative to the main term as 𝑛 → ∞. The other quantities 

appearing in equations (6)–(9) are defined as follows:  

 

( ) ( ) ( ) 

( )
( )

( ) ( )

0

0 0

1 2
1

1 0 0 0
0

20 1
1 11 2 1 2,2 2

ˆ ˆsgn 2ln exp 1 e 1 e , ,

, , ,

1 1

s

X

ss ts tt
t s

w
t M t t x b

v

v bx b
v G K K K

b b

 


 



− −
−

  = − − − − − =   

−
= = − = −

+ +

 

 ( )( )  ( )( )  0

1 2

, 0 0 0 0sgn 2 ln exp , 1 e exp 1 es X Y Yw M t s M s t x  − −  = − − − − − −
   

, 

 ( ) ( )( )  ( )( )  ( ) 
1 2

0 0 , 0 0 0 0 0 0
ˆ ˆsgn 2 ln exp , 1 e exp 1 eX Y Xv s M t s M t t t x s y  − −  = − − − − − − − −

   
. 

If 𝑡0 = 0, then the factor ws0
−1 − t0

−1{Ktt(t0, s0)}−1/2 should be replaced by 𝐾𝑡𝑡(0, 𝑠0) [6{𝐾𝑡𝑡(0, 𝑠0}3/2]⁄ . Moreover, if 

s0 = 0, the same argument applies to the quantity 𝜐0
−1 − (𝑠0𝐺)−1. The limits can be well approximated by the 

corresponding values evaluated at 𝑡 = 𝑡0, which are very close to zero (see Wang, 1990). 

For 𝑑 >2, Kolassa (2003) has provided another approximation. In the case where 𝑋 and 𝑌 are independent, then 

𝐾(𝑡, 𝑠) = 𝐾(𝑡)𝐾(𝑠), and, in this case, the first-order saddle-point approximations by Lugannani and Rice (1980) are 

applicable for both continuous and discrete cases. 

 

3. Saddle-point Approximation for the CDF of BCZTPG Distribution 

The BCZTPG distribution, derived from the sum of random vectors with a Gamma distribution under a truncated 

Poisson sample size, is a versatile distribution with diverse applications. In climatology, it can model rainfall and snow 

patterns, for instance, in analysing rainy days, where 𝑁 represents the number of rainy days following a Poisson 

distribution and the rainfall amounts (𝑥, 𝑦) at different stations or seasons follow a Gamma distribution. Similarly, in 

snowfall data analysis, it can represent total snowfall over a period. In manufacturing, it can model total production 

from two renewal systems after a set number of renewals. Additionally, in risk theory, it can describe the total claim 

amount from car insurance by distinct groups. The utility of this distribution spans various fields, making it a valuable 

tool for statistical modelling and analysis. The distribution is introduced below: 

Let the random sum ( )
/

1 2NS S S=  be the aggregate claims generated in a fixed period of time by an independent 

group. Suppose that the number of claims, N, follows a zero-truncated Poisson distribution with parameter  (see 

Chattamvelli & Shanmugam, 2020) and is written as 𝑍𝑇𝑃(𝜆). The moment generating function (MGF) of N (see 

Appendix A) is as follows: 

( ) ( )  ( )exp e 1 e 1 e .t
NM t   − −= − − −  

In addition, if (xi’s, yi’s) are iid random variables having Gamma distributions – ( )1 1,G    and ( )2 2,G    − then the 

joint MGF of (xi’s, yi’s) is as follows: 

 ( ) ( ) ( )1 2
, 1 2, 1 1 .X YM t s t t

 
 

− −
= − −        (10) 

The sum SN, in this case, is said to have a BCZTPG distribution. It is easy to show that the CGF of SN is 

 ( ) ( )( )  ( ),, ln exp , 1 e 1 e .N Z X YK K t s M t s   − −  = − − −     
    (11) 

Using the joint MGF of X and Y from equation (10), the CGF of SN becomes 
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 ( ) ( ) ( ) ( ) ( )1 2
1 2, ln exp 1 1 1 e ln 1 e .N ZK K t s t s

     
− − − −   = − − − − − −       

 

The saddle-point equations, from equation (3) in this instance, are given as follows: 

 
( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

1 2

1 2 1 2

1 1 1 2

1 2 1 1 2

exp 1 1
0,

1 1 1 exp 1 1 e

t s
x

t s t t s

 

    

     

      

− −

− − −

− − −
− =

 − − − − − − −
  

  (12) 

and 
( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

1 2

1 2 1 2

2 2 1 2

1 2 2 1 2

exp 1 1
0.

1 1 1 exp 1 1 e

t s
y

t s s t s

 

    

     

      

− −

− − −

− − −
− =

 − − − − − − −
  

  (13) 

We solve these equations to obtain the values of t0 and s0 (Appendix B). The values of t0 and s0 are as follows: 

 

( ) ( )1 2 1 2
2 1

1 1

1 1 1 1
0 0

1 2 2 2 2 2

1 1
1 , 1 .

y y
t s

z x z x

    
    

     

+ +               
= − = −         

               

 

Now, to find 0̂t , we solve ( )1 0,K t
t


=


         (14) 

and 
( ) 

( ) ( ) ( ) 

1

1 1

1 1 1

1 1 1

exp 1
0.

1 1 exp 1 e

t
x

t t t



  

    

    

−

− −

− −
− =

 − − − − −
  

     (15) 

From Appendix C, we obtain 
11

0
1

1
ˆ 1 .t

z






  
=   

   

 

Moreover,  

 ( ) ( )  ( )12
0 1 0
ˆ ˆln exp 1 e ln 1 e ,XM t t

    
− − − = − − − − −

  
  

 ( ) ( ) ( ) ( ) ( )1 2
0 0 1 0 2 0

ˆ ˆ, ln exp 1 1 e ln 1 e ,K t s t s
      
− − − −   = − − − − − −

    
 

 ( ) ( ) ( ) ( )2
0 2 0ˆ0, ln exp 1 e ln 1 e .K s s

    
− − −   = − − − − −

    
 

The saddle-point approximation given in equation (5) becomes 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0

11 1 1 1 2
1 1 1 0 0 0 0 1 0 0 0

11 1 1 2 1
0 0 0 0 0 0 0 0 0

ˆ , , , ,

exp , , 2 ,

NS s s tt

s tt

F x y v w v v s G v w t K t s

K t s t x s y w t K t s v s G

    



−− − − −

−− − − −

   =  + − + −
  

   + − − − −     

  

where,  ), 1,x y  . 
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4. Simulation Study 

In this section, we present two illustrative examples demonstrating the saddle-point approximation technique for the 

CDF of the BCZTPG distribution. Let the number of claims, 𝑁, follow a zero-truncated Poisson distribution with 

parameter , written as 𝑍𝑇𝑃(𝜆), and let the amounts of claims 𝑋𝑖 ’𝑠 and 𝑌𝑖 ’𝑠 (𝑖 =  1, 2, 3, … , 𝑁) be iid Gamma variates, 

denoted as 𝐺(𝛼1, 𝛽1) ∨ 𝐺(𝛼2, 𝛽2). It is assumed that N is independent of Xi’s and Yi’s. The random variable SN, as 

defined in equation (1), has a BCZTPG distribution in this scenario. In insurance contexts, SN can be interpreted as 

the total amount of the claim, N as the number of reported claims, Xi’s and Yi’s as the insurance payment for the ith 

claim. When N = 0, then SN, has a probability mass at zero for non-users, where 𝑃(𝑆𝑁 = 0) = 𝑒−𝜆. For  𝑁 > 0,  SN is 

the sum of N iid bivariate Gamma random variables.  An illustrative example for saddle-point approximation of the 

CDF of the BCZTPG distribution is presented next. In the first example, Figure 1 illustrates the bivariate scatter plots 

of the simulated BCZTPG data, accompanied by marginal histogram distributions that depict the range and scatter of 

the BCZTPG distribution, as well as the skewness of the marginal distributions. Let 𝑥 = 7.5, 𝑦 = 13.5, 𝛽1 = 2, 𝛽2 =

4,  𝛼1 = 1, 𝛼2 = 1, and 4 = . Moreover, in this case, 1 2 2 + =  is even, and we will use the double-sign versions 

of the solution that are given below: 

 ( ) ( ) ( )
( )

( ) ( )2 1 21
2 1 2 1 2 1 22 1

1 1 2 2 e 0,zx y z x x
  

          
− +

+ + + + 
 − + = 
 

   (16) 

 ( )( ) 
( )1 2

2
1

1 1 2 2
1

1
1 ,t z y x

 


    


+ 
=  

 
      (17) 

 ( )( ) 
( )1 2

1
1

2 2 1 1
2

1
1 .s z x y

 


    


+ 
=  

 
      (18) 

Using the specified values of the parameters in (16), we have 

 

1 2
1 2 3 25

2 7.5 e 7.5 0
9

zz
  
 − + =  

   

 or ( )3 210 22.5 e 22.5 0.zz − + =  

It is to be noted that the case ( )3 210 22.5 e 22.5 0,zz− − + =  has the unique exact solution z = 0. As z appears in the 

denominator in equations (17) and (18), this solution will be discarded. 

In contrast, the case ( )3 210 22.5 e 22.5 0,zz − + =  has an exact solution of z = 0 and an approximate solution of 

3.63388z  . Moreover, as z appears in the denominator of equations (17) and (18), the exact solution z = 0 will be 

discarded. The possible values of t and s are as follows: 

 

1 2 1 2
1 4 9 1 18

1 1 ,
2 10 2 5

t
z z

       
 =  =      

         

 

 

1 2 1 2
1 4 10 1 40

1 1 .
4 9 4 9

s
z z
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Furthermore, as 2 2
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0,

9

x

y

 

 
=   it follows that s and v have the same sign. The pairs  
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  (19) 

and  
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( )

1 2 1 2

2 2
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1 18 1 40
, 1 , 1 ,
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1 18 1 40
1 , 1 0.99766,0.52647 ,
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t s
z z

       
 = + +                 
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  + + =                  

  (20) 

are the possible solutions for the system. Introducing these values of (𝑡1, 𝑠1) and (𝑡2, 𝑠2) in the original equations, we 

have found that (𝑡1, 𝑠1) is a solution but (𝑡2, 𝑠2) is not a solution. Hence, the solution of the system is as follows: 

 ( ) ( )0 0, 0.00234, 0.02648 .t s  −         (21)  

In addition, the value of 𝑡̂0 is 
11
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,
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M t K s v b
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


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Using these values, we have 𝐼11 = 0.25779, 𝐼12 = 0.03570, 𝐼21 = 0.03068, and 22 0.00532,I = hence, an 

approximate value of the CDF, by using the saddle-point approximation, is ( ) 11 12 21 22, 0.32950.F x y I I I I= + + + =  

It is seen that the bivariate saddle-point formulas are easily computed once the CGF is available. We will now present 

a simulation study to see the performance of the saddle-point approximation for the CDF of the BCZTPG distribution. 

The simulation study has been conducted by generating one million exact and approximate values of the CDF. The 

approximate value is computed as follows: 

 

610
1
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1

1

1
,
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N

ii
N N

ii

xx x
F S I

y yx

=

=

  
       =            

  





      (22) 

where, we have generated N from 𝑍𝑇𝑃(4), Xi’s are generated from 𝐺(1,2) and Yi’s are generated from 𝐺(1,4). Based 

on the generated value of N, the independent Gamma variates are generated. For example, if N = 4, then we have 

generated four independent values from the Gamma distributions, and so on. The simulation code has been written 

using the R language.  The results of the simulation study are given in Table 1 below. For each pair of values, (x, y), 

the first value in each cell of Table 1 is the exact value of the CDF, the second value is the saddle-point approximation, 
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and the third one is the normal approximation. From Table 1, we can see that the saddle-point approximation provides 

values which are close to the exact value of the CDF of the BCZTPG distribution. 

To have a better insight of the approximation, we have used a much wider range of the values of x and y and have 

computed the exact value of the CDF of the BCZTPG distribution alongside the approximate values of the CDF by 

using the saddle-point and the normal approximations. The values have been computed by compounding a zero-

truncated 𝑍𝑇𝑃(4) variate with 𝐺(1,2) and 𝐺(1,4) variates − 𝑍𝑇𝑃(4) ∨ {𝐺(1,2), 𝐺(1,4)}. The plot of the values is 

given in Figure 2, where panel (a) contains the plot for exact values method, panel (b) is the plot of CDF using saddle-

point approximation method, and panel (c) contains the plot of CDF by using the normal approximation method. The 

plots clearly show that the saddle-point approximation for the CDF of the BCZTPG distribution is an excellent 

approximation for the true CDF of the BCZTPG distribution. 

 

Figure 1: Bivariate Scatter Plots of BCZTPG Distribution: 𝒁𝑻𝑷(𝟒) ∨ {𝑮(𝟏, 𝟐), 𝑮(𝟏, 𝟒)} 

 

 

 

 

 

 



Pak.j.stat.oper.res.  Vol.20  No. 2 2024 pp 285-299  DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4461 

 

Approximation Methods for the Bivariate Compound Zero-Truncated Poisson-Gamma Distribution 293 

 

Figure 2: Plots of the CDF of the BCZTPG Distribution: 𝒁𝑻𝑷(𝟒) ∨ {𝑮(𝟏, 𝟐), 𝑮(𝟏, 𝟒)} 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Table 1: The Exact, Saddle-Point, and Normal Approximation CDFs for the  

BCZTPG Distribution: 𝒁𝑻𝑷(𝟒) ∨ {𝑮(𝟏, 𝟐), 𝑮(𝟏, 𝟒)} 

X/Y 0.5 5.5 9.5 17.5 21.5 45.5 

0.5 

0.0021 0.0137 0.0178 0.0198 0.0205 0.0205 

0.0056 0.0137 0.0167 0.0189 0.0191 0.0184 

0.0078 0.0163 0.0261 0.0360 0.0634 0.0920 

2.5 

0.0067 0.0645 0.0959 0.1262 0.1321 0.1388 

0.0104 0.0681 0.0931 0.1206 0.1299 0.1311 

0.0141 0.0292 0.0467 0.0914 0.1135 0.1647 

6.5 

0.0094 0.1264 0.2213 0.3534 0.3911 0.4451 

0.0057 0.1186 0.2182 0.3517 0.3884 0.4419 

0.0337 0.0698 0.1118 0.2185 0.2714 0.3936 

10.5 

0.0098 0.1479 0.2809 0.4981 0.5692 0.6958 

0.0033 0.1158 0.2562 0.4982 0.5751 0.7019 

0.0572 0.1185 0.1896 0.3707 0.4605 0.6676 

22.5 

0.0099 0.1565 0.3105 0.5996 0.7068 0.9451 

0.0014 0.0801 0.2163 0.5459 0.6849 0.9723 

0.0848 0.1757 0.2813 0.5498 0.6830 0.99027 

26.5 

0.0099 0.1572 0.3116 0.6011 0.7115 0.9879 

0.0091 0.1520 0.2907 0.5978 0.6720 0.9876 

0.0836 0.1765 0.2826 0.5524 0.6861 0.9949 

 

 

To verify the simulation results, we will now examine another example of a BCZTPG distribution with different 

parameters. Let 𝛽1 = 3,  𝛽2 = 4, 𝛼1 = 2,  𝛼2 = 1, and 𝜆 = 3. The bivariate scatter plots of the simulated BCZTPG 

data are shown in Figure 3, along with marginal histogram distributions that show the skewness of the marginal 

distributions and the range and scatter of the BCZTPG distribution. Table 2 below lists the outcomes of the simulation 

study. For every pair of values (x, y), the exact value of the CDF is the first value in each cell of Table 2, the saddle-

point approximation is the second value, and the normal approximation is the third value that approximates the value 

of the CDF. Table 2 shows that the values obtained from the saddle-point approximation are close to the exact value 

of the CDF of the BCZTPG distribution. The values are plotted in Figure 4, with panel (a) showing the plot for exact 

values method, panel (b) showing the CDF plot using the saddle-point approximation method, and panel (c) showing 

(a) Exact Method (b) Saddle-Point Approximation Method (c) Normal Approximation Method 
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the CDF plot using the normal approximation method. Plotting the data makes it evident that the saddle-point 

approximation of the CDF of the BCZTPG distribution is an excellent approximation of the true CDF of the 

distribution.  

 

We checked with the previous two examples by optimizing the simulation algorithm and increasing the sample size 

and found that it is achievable for the simulated values to closely match the theoretical distribution and the values of 

the distribution parameters, such as the mean and variance. This optimization guarantees that the generated random 

values accurately reflect the desired distribution, highlighting the superiority of the saddle-point approximation 

method over the normal approximation method. 

 

Figure 3: Bivariate Scatter Plots of BCZTPG Distribution: 𝒁𝑻𝑷(𝟑) ∨ {𝑮(𝟐, 𝟑), 𝑮(𝟏, 𝟒)} 

 
 

Figure 4: Plots of the CDF of the BCZTPG Distribution: 𝒁𝑻𝑷(𝟑) ∨ {𝑮(𝟐, 𝟑), 𝑮(𝟏, 𝟒)} 

 

 

 

 

 

 

 

 

 

 

  

(a) Exact Method (b) Saddle-Point Approximation Method (c) Normal Approximation Method 
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Table 2: The Exact, Saddle-Point, and Normal Approximation CDFs for the  

BCZTPG Distribution: 𝒁𝑻𝑷(𝟑) ∨ {𝑮(𝟐, 𝟑), 𝑮(𝟏, 𝟒)} 

X/Y 2.5 12.5 20.5 30.5 44.5 52.5 

2.5 

0.0129 0.0312 0.0321 0.0335 0.0327 0.0327 

0.0187 0.0320 0.0334 0.0331 0.0325 0.0321 

0.0138 0.0460 0.0596 0.0609 0.0930 0.0930 

8.5 

0.064 0.1789 0.1963 0.2038 0.2009 0.2016 

0.0726 0.1764 0.1973 0.2016 0.2003 0.1993 

0.0599 0.0992 0.1585 0.1938 0.2004 0.2005 

12.5 

0.0816 0.2798 0.3222 0.3344 0.3374 0.3370 

0.0813 0.2805 0.3262 0.3399 0.3405 0.3395 

0.0451 0.1496 0.2390 0.2922 0.3020 0.3022 

16.5 

0.0923 0.3612 0.4376 0.4616 0.4694 0.4706 

0.0773 0.3705 0.4489 0.4755 0.4796 0.4790 

0.0630 0.2090 0.3338 0.4081 0.4219 0.4222 

32.5 

0.1060 0.5242 0.7049 0.7933 0.8161 0.8181 

0.0969 0.5075 0.7410 0.8353 0.8564 0.8577 

0.1288 0.4268 0.6818 0.8336 0.8618 0.8622 

50.5 

0.1051 0.5492 0.7692 0.8850 0.9647 0.9892 

0.1389 0.4912 0.7779 0.9443 0.9817 0.9815 

0.1485 0.4923 0.7863 0.9614 0.9939 0.9944 

 

 

5. Conclusion 

The saddle-point approximation, as discussed in Daniels (1954), holds significant influence in the field of statistics. 

In this study, we have introduced a BCZTPG distribution and approximated its CDF using the saddle-point method. 

We have seen that the resulting distribution can be applied in insurance scenarios, particularly in modelling aggregate 

claim amounts or total losses in car insurance policies. The saddle-point approximation effectively estimates the CDF 

of the BCZTPG distribution, demonstrating its utility in providing an excellent approximation. The saddle-point 

approximation is a valuable tool for approximating functions of distributions lacking closed-form representations. 

Numerical examples show that saddle-point approximations work remarkably better than other approximation 

methods. This method is straightforward to implement and demands minimal computational effort. Numerous 

unexplored benefits of this technique exist within statistics, such as parameter estimation in time series models, 

approximating joint distributions of definite or bivariate quadratic forms, and extending the technique to include stable 

distributions without moments. Additionally, the potential applications of this technique beyond statistics remain 

untapped, with possibilities in domains such as wireless networks, visual communications, and image processing. It 

is challenging to comprehensively list all the uses of saddle-point techniques due to their diverse applications and 

potential. 
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Appendix A 

The zero-truncated Poisson (ZTP) is a truncated Poisson (TP) distribution when ( )0P X =  is discarded. The 

probability mass function of a ZTP distribution is as follows: 

 ( )
( )

( ) ( )
e

0 ; 1,2,3, , .
1 0 ! 1 e

xP X x
P X x X x

P X x
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The MGF of the ZTP distribution is as follows: 
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Appendix B 

The solution of the saddle-point equations is given in equations (12) and (13) as follows: 
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The above equations can be written as 
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Now, dividing (B.1) by (B.2) we have 
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Substituting ( )11 t w− =  and ( )21 s v− =  in (B.3), we have 1 1 2 2

2 2 1 1
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v wxx

v
w y y
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Using the values of w and v, equation (B.1) can be written as follows: 
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Making another substitution ( ) 21
2 2 1 1z w wx y
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with the caution that a double sign may appear if 1 2 +  is even. Using (B.6) in (B.5), we have 
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then 
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 
  



+

+ + + + −
  
 − − + =     

 

or ( ) ( )
( )

( ) ( ) ( )
2 1 2

1 1 2 1 2 1 2

2

12 2
1 1 1

exp 0.
x

z x z x
y

  

      



 
 



+

+ + + +
  
 − + =     

   (B.7) 

which is an equation that implicitly depends only on t and not on s. Again, the caution of a double sign before the 

coefficient of 
( ) ( )1 2 1 21

z
   + + +

 may appear if 1 2 +  is even. Once a value of z that satisfies equation (B.7) is 

obtained, the corresponding value of t is found by substitution as follows: 

Recall equation (B.6); 

( )1 2
2

1

1 1

2 2

.
y

w
z x

 


 

 

+
  
 =  
   

  

and using the substitution ( )11 t w− = , we obtain 

 

( ) ( )1 2 1 2
2 2

1 1

1 1 1 1
1 1

2 2 2 2

1 1 ,
y y

t t
z x z x

   
 

    
 

   

+ +
      
   − =  = −   
         

 

or 

 

( )1 2
2

1

1 1
0

1 2 2

1
1 .

y
t

z x

 
 

  

+     
= −    

     

       (B.8) 

with the caution of a double sign before the power if 1 2 +  is even. 

To obtain the value of s, observe that z can also be written in terms of only v as follows. We note that equation (B.4) 

can be manipulated to obtain the value of v as follows: 

 

( )1 2
1 1

2

1

1 1 1 1 1 1

2 2 2 2 2 2

.
vy vy x

w z v
x x z yv

 
 



      

     

+
−     

 =  =  =   
     

 

with the caution of a double sign if 1 2 +  is even. This implies that equation (B.7) can also be seen as an equation 

that implicitly depends only on s and not on t. Once a value of z is found, the corresponding value of s can be found 

by substitution as 

 

( ) ( )1 2 1 2
1 1

1 1

1 1 1 1
2 2

2 2 2 2

1 1 ,
x x

s s
z y z y

   
 

    
 

   

+ +
      
   − =  = −   
         

 

or 

( )1 2
1

1

1 1

2 2 2

1
1 .

x
s

z y

 


 

  

+
     = −   
     

       (B.9) 

with a caution of a double sign if 1 2 +  is even. 
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Appendix C 

To find the value of 0̂t , we solve ( )1 .K t x
t


=


        (C.1) 

or 
( )

( )( ) ( ) 

1

1 1

1 1 1

1

1 1

exp 1
0.

1 exp 1 e

t
x

t t



  

    

   

−

+ − −

 − −
 

− =
 − − − −
  

      (C.2) 

Making the substitution ( ) 1
11z t


 

−
= − , we have ( ) ( ) 11

11 t z


 − = , with the caution of a double sign before the 

power if 1  is even. The equation (C.2) is, then, transformed into 

 
( )

( ) ( )1

1 1

1

exp
.

exp e

z z
x

z z
 

  

  −

−
=

 − −
 

 

Hence, 

 
( ) ( ) ( )( )1 1 1 11 1 11 11 1 1

1 1 1 1e e 1 or e 0,z z zz x z x x
           
+ +

= − − + =  

which is similar to equation (B.7), therefore, the solution of the original equation is 

 
11

0
1

1
ˆ 1 ,t

z






  
= −  

   

 

where, z satisfies 
( )( )1 1 1 11 1 1

1 1 e 0.zz x x
      
+

− + =  

In addition, if 1  is even, then the double-sign versions 
( )( )1 1 1 11 1 1

1 1 e 0,zz x x
      
+

 − + =  

and  
11

0
1

1
ˆ 1 .t

z






  
=   

   

 should be considered.  
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