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Abstract

In this article, we introduce a robust generalization of the generalized Topp-Leone-G (GEN-TL-G) family of dis-
tributions via the heavy-tailed technique, namely, heavy-tailed generalized Topp-Leone-G (HT-GEN-TL-G) family
of distributions. Statistical properties of the HT-GEN-TL-G family of distributions including reliability functions,
quantile function, density expansion, moments, moment generating function, incomplete moments, Rényi entropy,
distribution of order statistics are derived. Different estimation methods including Maximum Likelihood, Anderson-
Darling, Ordinary Least Squares, Weighted Least Squares, Cramér-von Mises and Maximum Product of Spacing are
utilized to estimate the unknown parameters of the new distribution, and a simulation study is used to compare the
results of the estimation methods. Risk measures for this distribution were also developed and finally the effectiveness
of this new family of distributions was demonstrated using applications to two real data sets. Graphical and application
results in this manuscript were obtained using R programming language.
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1. Introduction

Recently, many classical or standard distributions fail when it comes to modeling real world events.This is due to
the fact that they are not flexible enough to capture the characteristics of newly encountered data. To deal with
this problem, researchers are still extending distributions by using different transformation techniques. Some of the
distributions developed include among others the new odd log-logistic generalised half-normal distribution by Afshar
et al. (2019), the Topp-Leone-Marshall-Olkin-G family of distributions by Chipepa et al. (2020), the Marshall-Olkin-
Topp-Leone flexible Weibull distribution by Mohammad (2020), generalised odd Frechét family of distributions by
Marganpoor et al. (2020), Topp–Leone modified Weibull distribution by Alyami et al. (2022), the odd Weibull
inverse Topp–Leone distribution by Almetwally (2022), the gamma-Topp-Leone-type II-exponentiated half logistic-
G family of distributions by Oluyede and Moakofi (2023), Gompertz Topp–Leone inverse Weibull distribution by
Khaleel and Hammed (2023), generalised exponential-Gaussian distribution by Marmolejo-Ramos et al. (2023), and
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the Harris-Topp-Leone-G family of distributions by Moakofi and Oluyede (2023).

Despite their numerous advantages, many new proposed distributions are not flexible enough to provide an adequate
fit to datasets that are positive, skewed, unimodal with heavy tails. Thus, reseachers are still on the lookout for heavy-
tailed distributions in order to model heavy-tailed data. Some of the recently developed heavy-tailed distributions
include LogPH distribution by Ahn et al. (2012), the exponent power-Weibull distribution by Ahmad et al. (2020), the
logit slash distribution by Korkmaz (2020), heavy-tailed beta-power transformed Weibull distribution by Zhao et al.
(2021), a new heavy-tailed Weibull distribution by Ahmad et al. (2022), the generalized geometric Rayleigh reciprocal
Weibull distribution by Yousof et al. (2023) and Kavya-Manoharan power Lomax distribution by Riad et al. (2023).

The cumulative distribution function (cdf) and probability density function (pdf) of the type I heavy-tailed (TI-HT)
family of distributions introduced by Zhao et al. (2020) are given by

FT I−HT−G(x;θ ,ϕ) = 1−
(

1−G(x;ϕ)

1− (1−θ)G(x;ϕ)

)θ

(1)

and

fT I−HT−G(x;θ ,ϕ) =
θ 2g(x;ϕ)(1−G(x;ϕ))θ−1

(1− (1−θ)G(x;ϕ))θ+1 , (2)

respectively, for θ > 0, x ∈ R and parameter vector ϕ, where G(x;ϕ) is the cdf of the baseline distribution.

The cdf and pdf of the new GEN-TL-G family of distributions are given as

FGEN−T L−G(x;b,β ,ϕ) = 1−
[

1−
(

1−G2
(x;ϕ)

)b
]β

(3)

and

fGEN−T L−G(x;b,β ,ϕ) = 2βbg(x;ϕ)
(

1−G2
(x;ϕ)

)b−1
G(x;ϕ)

×
([

1−
(

1−G2
(x;ϕ)

)b
])β−1

, (4)

respectively, for b,β > 0 and baseline vector of parameters ϕ, where G(x;ϕ) is the cdf of the baseline distribution.

Our basic motivations lies in the flexibility of the new family of distributions to model both monotonic and non-
monotonic hazard rate functions by capturing different shapes; the ability of the new model in providing better fits
than the baseline and several extended distributions available in the literature; the applicability of the special cases of
the new family of distributions in real life scenarios. Another interesting part is the role played by the extra shape
parameter(s) by introducing skewness and modulating the weight of the tails of any baseline distribution.

The main objective of this work is to introduce a new flexible family of distributions that can characterize several
available or emerging data sets. The distribution is named HT-GEN-TL-G family of distributions.

This work is structured as follows: In Section 2, we develop the new family of distributions, namely the HT-GEN-
TL-G distribution and some of its functions. We also present the series expansion of the density function. Statistical
properties of the new family are presented in Section 3. Some special cases are offered in Section 4. Estimation of
model parameters are presented in Section 5. In Section 6, Monte Carlo simulation study is conducted to examine the
bias and mean square error of the maximum likelihood estimators for each parameter. Actuarial measures and their
simulation study are given in Section 7. Applications of the proposed model to two real data are given in Section 8,
followed by concluding remarks in Section 9.
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2. The New Family of Distributions

In this section, we define the pdf, cdf, survival function (sf), hazard rate fuction (hrf) and density expansion of the new
heavy-tailed generalized-Topp-Leone-G (HT-GEN-TL-G) family of distributions. By substituting the cdf and pdf of
the new GEN-TL-G family of distributions defined in Eqns. (3) and (4) into Eqns. (1) and (2), we obtain the cdf and
pdf of the HT-GEN-TL-G family of distributions given by

FHT−GEN−T L−G(x;θ ,b,β ,ϕ) = 1−


[

1−
(

1−G2
(x;ϕ)

)b
]β

1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
]β
)


θ

(5)

and

fHT−GEN−T L−G(x;θ ,b,β ,ϕ) = 2βbθ
2g(x;ϕ)

(
1−G2

(x;ϕ)
)b−1

G(x;ϕ)

×
([

1−
(

1−G2
(x;ϕ)

)b
])βθ−1

(6)

×

[
1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
]β
)]−(θ+1)

,

respectively, for θ ,b,β > 0 and baseline vector of parameters ϕ .

The sf and hrf are given by

S(x;θ ,b,β ,ϕ) =


[

1−
(

1−G2
(x;ϕ)

)b
]β

1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
]β
)


θ

,

and

hF(x;θ ,b,β ,ϕ) = 2βbθ
2g(x;ϕ)

(
1−G2

(x;ϕ)
)b−1

G(x;ϕ)

×
([

1−
(

1−G2
(x;ϕ)

)b
])−1

×

[
1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
]β
)]−1

. (7)

2.1. Sub-families

Several sub-families of the HT-GEN-TL-G family of distributions are presented in this sub-section.

• When θ = 1, we obtain the new generalized-Topp-Leone-G (GEN-TL-G) family of distributions with the cdf

F(x;b,β ,ϕ) = 1−
[

1−
(

1−G2
(x;ϕ)

)b
]β

for b,β > 0 and parameter vector ϕ.
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• When b = 1, we obtain the new heavy-tailed family of distributions with the cdf

F(x;θ ,β ,ϕ) = 1−


[
1−
(

1−G2
(x;ϕ)

)]β

1− (1−θ)

(
1−
[
1−
(

1−G2
(x;ϕ)

)]β
)


θ

(8)

for θ ,β > 0 and baseline vector of parameters ϕ .

• When β = 1, we obtain the heavy-tailed Topp-Leone-G (HT-TL-G) family of distributions with the cdf

F(x;θ ,b,ϕ) = 1−


[

1−
(

1−G2
(x;ϕ)

)b
]

1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
])


θ

(9)

for θ ,b > 0 and baseline vector of parameters ϕ . This is a new family of distributions.

• When θ = b = 1, we obtain the new family of distributions with the cdf

F(x;β ,ϕ) = 1−G2β
(x;ϕ)

for β > 0 and parameter vector ϕ.

• When θ = β = 1, we obtain the Topp-Leone-G (TL-G) family of distributions with the cdf

F(x;b,ϕ) =
(

1−G2
(x;ϕ)

)b

for b > 0 and parameter vector ϕ. (See Al-Shomrani et al. (2016)).

• When b = β = 1, we obtain the new heavy-tailed family of distributions with the cdf

F(x;θ ,ϕ) = 1−


[
1−
(

1−G2
(x;ϕ)

)]
1− (1−θ)

(
1−
[
1−
(

1−G2
(x;ϕ)

)])
θ

(10)

for θ > 0 and baseline vector of parameters ϕ .

• When θ = b = β = 1, we obtain the new family of distributions with the cdf

F(x;ϕ) = 1−G2
(x;ϕ)

for parameter vector ϕ.

2.2. Quantile Function

The quantile function of the HT-GEN-TL-G family of distributions is given in this sub-section. Assuming a ran-
dom variable X follows the HT-GEN-TL-G family of distributions, and the random variable U follows the uniform
distribution, the quantile function of X can be obtained as follows:

1−


[

1−
(

1−G2
(x;ϕ)

)b
]β

1− (1−θ)

(
1−
[

1−
(

1−G2
(x;ϕ)

)b
]β
)


θ

= u, (11)
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0 ≤ u ≤ 1, that is,

Q(u) = G−1

1−

1−

[
1−
(

θ

[
(1−u)

−1
θ − (1−θ)

]−1
) 1

β

] 1
b


1
2
 . (12)

Therefore, random numbers from the HT-GEN-TL-G family of distributions can be obtained using Eqn. (12), when
the baseline G is specified.

2.3. Density Expansion

In this sub-section, we express the pdf of the HT-GEN-TL-G family of distributions as an infinite linear combination
of exponentiated-G (Exp-G) densities. Utilizing the generalized binomial series expansions, we can express the pdf of
the HT-GEN-TL-G family of distributions as

fHT−GEN−T L−G(x;θ ,b,β ,ϕ) =
∞

∑
k=0

d∗
k+1g∗k+1(x;ϕ), (13)

where

d∗
k+1 = 2βbθ

2
∞

∑
q,s, j,t=0

(1−θ)q(−1)q+s+ j+t+k

(k+1)

(
−(θ +1)

q

)(
q
s

)(
β s+βθ −1

j

)
×

(
α( j+1)−1

t

)(
2t +1

k

)
, (14)

and g∗k+1(x;ϕ) = (k+1)g(x;ϕ)Gk(x;ϕ) is the pdf of Exp-G distribution with power parameter (k+1). See appendix
for details.

Consequently, we can use the tractability property to obtain the statistical properties of the HT-GEN-TL-G family of
distributions from those of the Exp-G family of distributions.

3. Statistical Properties

In the following sub-sections, we study some statistical properties of the HT-GEN-TL-G family of distributions in-
cluding moments, moments generating function, incomplete moments, distribution of order statistics, Rényi entropy
and parameter estimation.

3.1. Moments, Generating Function and Incomplete Moments

Let Yk+1 denote the Exp-G random variable with power parameter (k+1). Then, the ith raw moment of X , say µ ′
i , can

be obtained directly from Eqn. (13) as

µ
′
i = E(X i) =

∞

∑
k=0

d∗
k+1E(Y i

k+1), (15)

where E(Y i
k+1) is the ith raw moment of Exp-G distribution. The moment generating function (mgf) MX (t) = E(etX )

of the HT-GEN-TL-G family of distributions can be derived from Eqn. (13) as

MX (t) =
∞

∑
k=0

d∗
k+1Mk+1(t),

where d∗
k+1 is as given in Eqn. (14) and Mk+1(t) is the mgf of Yk+1.
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The ith incomplete moment of the HT-GEN-TL-G family of distributions is given by

mi(t) =
∫ t

−∞

xi f (x;θ ,α,β ,ϕ)dx =
∞

∑
k=0

d∗
k+1

∫ t

−∞

xig∗k+1(x;ϕ)dx, (16)

where d∗
k+1 is as given in Eqn. (14) and g∗k+1(x;ϕ) = (k + 1)g(x;ϕ)Gk(x;ϕ) is the pdf of Exp-G distribution with

power parameter (k+1). A general equation for m1(t) can be obtained from Eqn. (16) as

m1(t) =
∞

∑
k=0

d∗
k+1Dk+1(t),

where Dk+1(t) =
∫ t
−∞

xg∗k+1(x;ϕ)dx is the first incomplete moment of the Exp-G distribution.

3.2. Distribution of Order Statistics

Order statistics play an important role in probability and statistics. They find applications in reliability theory and
quality control testing in engineering. By considering independent and identically distributed random variables
X1,X2, ....,Xn from the HT-GEN-TL-G family of distributions, the pdf of the ith order statistic from the HT-GEN-
TL-G family of distributions can be written as

fi:n(x;θ ,α,β ,ϕ) =
∞

∑
k=0

p∗k+1g∗k+1(x;ϕ), (17)

where

p∗k+1 = 2βbθ
2

n−i

∑
l=0

∞

∑
e,q,s, j,t=0

n!(1−θ)q(−1)q+s+ j+t+k+l+e

(n− i)!(i−1)!(k+1)

(
n− i

l

)(
i+ l −1

e

)
×

(
−(θ(e+1)+1)

q

)(
q
s

)(
β s+βθ(e+1)−1

j

)(
α( j+1)−1

t

)(
2t +1

k

)
,

(18)

and g∗k+1(x;ϕ) = (k+1)g(x;ϕ)Gk(x;ϕ) is the pdf of Exp-G distribution with power parameter (k+1). See appendix
for details.

3.3. Rényi Entropy

Rényi entropy is a measure of randomness or uncertainty in the system. It is mostly used in information theory. Rényi
entropy is defined to be

IR(v) = (1− v)−1log
[∫

∞

−∞

f v(x)dx
]
,

where v > 0 and v ̸=1. Rényi entropy for the HT-GEN-TL-G family of distributions can be obtained as follows:

IR(v) = (1− v)−1 log

[
(2bβθ

2)v
∞

∑
q,s, j,t,k=0

(1−θ)q(−1)q+s+ j+t+k

(k+1)

(
−v(θ +1)

q

)(
q
s

)
×

(
β s+ v(βθ −1)

j

)(
α( j+ v)− v

t

)(
2t + v

k

)
1[

1+ k
v

]v
×

∫
∞

−∞

([
1+

k
v

]
(G(x;ϕ))

k
v g(x;ϕ)

)v]

=
1

1− v
log

[
∞

∑
k=0

r∗k e(1−v)IREG

]
,

(19)
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for v > 0, v ̸= 1, where IREG = 1
1−v log

[∫
∞

0

([
1+ k

v

]
(G(x;ϕ))

k
v (g(x;ϕ))

)v
dx
]

is the Rényi entropy of Exp-G distri-

bution with power parameter ( k
v +1), and

r∗k = (2αβθ
2)v

∞

∑
q,s, j,t=0

(1−θ)q(−1)q+s+ j+t+k

k+1

(
−v(θ +1)

q

)(
q
s

)(
β s+ v(βθ −1)

j

)
×

(
−(α( j+ v)+ v)

t

)(
2t + v

k

)
1[

1+ k
v

]v . (20)

See appendix for details.

4. Some Special Cases

In this section, we introduce three special cases of the HT-GEN-TL-G family of distributions by generalizing the
classical distributions, namely, log-logistic, Weibull, and standard half-logistic distributions.

4.1. Heavy-Tailed Generalized Topp-Leone-Log Logistic (HT-GEN-TL-LLoG) Distribution

By considering the log-logistic distribution with the cdf and pdf given by G(x;c) = 1 − (1 + xc)−1 and g(x;c) =
cxc−1(1+ xc)−2 for c > 0 and x > 0, then the new HT-GEN-TL-LLoG distribution has cdf and pdf given by

F(x;θ ,b,β ,c) = 1−


[
1−
(
1− (1+ xc)−2

)b
]β

1− (1−θ)

(
1−
[
1− (1− (1+ xc)−2)b

]β
)


θ

and

f (x;θ ,b,β ,c) = 2bβθ
2cxc−1(1+ xc)−2 (1− (1+ xc)−2)b−1

(1+ xc)−1

×
([

1−
(
1− (1+ xc)−2)b

])βθ−1

×
[

1− (1−θ)

(
1−
[
1−
(
1− (1+ xc)−2)b

]β
)]−(θ+1)

,

respectively, for θ ,b,β ,c > 0. The hrf is given by

h(x;θ ,b,β ,c) = 2bβθ
2cxc−1(1+ xc)−2 (1− (1+ xc)−2)b−1

(1+ xc)−1

×
([

1−
(
1− (1+ xc)−2)b

])−1

×
[

1− (1−θ)

(
1−
[
1−
(
1− (1+ xc)−2)b

]β
)]−1

,

for θ ,b,β ,c > 0.
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Figure 1: 3D-Plots of the skewness and kurtosis for HT-GEN-TL-LLoG distribution

Figure 1 shows plots of skewness and kurtosis for the HT-GEN-TL-LLoG distribution. We can see that for fixed values
of b and β , skewness and kurtosis increase when θ and c increases. On another note, when we fix θ and c, there is an
increase in skewness and kurtosis when b and β increases.
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Figure 2: Plots of the pdf and hrf of the HT-GEN-TL-LLoG distribution

Figure 2 shows several plots of the pdf and the hrf of the HT-GEN-TL-LLoG distribution. The pdf can take several
shapes including right-skewed, left-skewed, unimodal, and reverse-J shapes. It can be noted that the hrf of the
HT-GEN-TL-LLoG distribution can be increasing, decreasing, bathtub, upside-down bathtub and bathtub followed by
upside-down bathtub shapes.

4.2. Heavy-Tailed Generalized Topp-Leone-Weibull (HT-GEN-TL-W) Distribution

If we consider the Weibull distribution with cdf and pdf given by G(x;λ )= 1−exp(−xλ ) and g(x;λ )= λxλ−1 exp(−xλ ),
respectively, for λ > 0 and x > 0, as the baseline distribution, then we obtain the HT-GEN-TL-W distribution with cdf
and pdf given by

F(x;θ ,b,β ,λ ) = 1−


[
1−
(
1− exp(−2xλ )

)b
]β

1− (1−θ)

(
1−
[
1−
(
1− exp(−2xλ )

)b
]β
)


θ

and

f (x;θ ,b,β ,λ ) = 2bβθ
2
λxλ−1 exp(−xλ )

(
1− exp(−2xλ )

)b−1
exp(−xλ )

×
([

1−
(

1− exp(−2xλ )
)b
])βθ−1

×

[
1− (1−θ)

(
1−
[

1−
(

1− exp(−2xλ )
)b
]β
)]−(θ+1)

,

respectively, for θ ,b,β ,λ > 0. The hrf is given by

h(x;θ ,b,β ,λ ) = 2bβθ
2
λxλ−1 exp(−xλ )

(
1− exp(−2xλ )

)b−1
exp(−xλ )

×
([

1−
(

1− exp(−2xλ )
)b
])−1

×

[
1− (1−θ)

(
1−
[

1−
(

1− exp(−2xλ )
)b
]β
)]−1

,
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for θ ,b,β ,λ > 0.
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Figure 3: 3D-Plots of the skewness and kurtosis for HT-GEN-TL-W distribution

Figure 3 shows plots of skewness and kurtosis for the HT-GEN-TL-W distribution. We can see that for fixed values of
θ and λ , skewness and kurtosis increase when b and β increases. On another note, when we fix b and β , there is an
increase in skewness and kurtosis when θ and λ increases.
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Figure 4: Plots of the pdf and hrf of the HT-GEN-TL-W distribution

Figure 4 shows the plots of the pdf and the hrf of the HT-GEN-TL-W distribution. The pdf of the HT-GEN-TL-W
distribution can take several shapes including right-skewed, left-skewed, almost symmetric, J and reverse-J shapes.
The hrf of the HT-GEN-TL-W distribution display increasing, decreasing, bathtub, upside-down bathtub, and bathtub
followed by upside-down bathtub shapes.

4.3. Heavy-Tailed Generalized Topp-Leone-Standard Half Logistic (HT-GEN-TL-SHL) Distribution

Let the baseline distribution be standard half logistic distribution with pdf and cdf given by g(x) = 2exp(−x)
(1+exp(−x))2 and

G(x) = 1−exp(−x)
1+exp(−x) , for x > 0, respectively. Then, the cdf and pdf of HT-GEN-TL-SHL distribution are given by

F(x;θ ,b,β ) = 1−



[
1−
(

1−
(

1− 1−exp(−x)
1+exp(−x)

)2
)b
]β

1− (1−θ)

1−

[
1−
(

1−
(

1− 1−exp(−x)
1+exp(−x)

)2
)b
]β




θ

and

f (x;θ ,b,β ) = 2bβθ
2 2exp(−x)
(1+ exp(−x))2

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b−1

×
(

1− 1− exp(−x)
1+ exp(−x)

)1−

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b
βθ−1

×

1− (1−θ)

1−

1−

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b
β


−(θ+1)

,

respectively, for θ ,b,β > 0. The hrf is given by

Heavy-Tailed Generalized Topp-Leone-G Family of Distributions 243



Pak.j.stat.oper.res. Vol.20 No.2 2024 233-260 DOI: http://dx.doi.org/10.18187/pjsor.v20i2.4458

h(x;θ ,b,β ) = 2bβθ
2 2exp(−x)
(1+ exp(−x))2

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b−1

×
(

1− 1− exp(−x)
1+ exp(−x)

)1−

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b
−1

×

1− (1−θ)

1−

1−

(
1−
(

1− 1− exp(−x)
1+ exp(−x)

)2
)b
β


−1

,

for θ ,b,β > 0.
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Figure 5: 3D-Plots of the skewness and kurtosis for HT-GEN-TL-SHL distribution

Figure 5 shows plots of skewness and kurtosis for the HT-GEN-TL-SHL distribution. We can see that for fixed value
of β , skewness is positive (right skewed) and kurtosis is leptokurtic when θ and b increases. On another note, when
we fix b, there is an increase in skewness and kurtosis when θ and β increases.
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Figure 6: Plots of the pdf and hrf of the HT-GEN-TL-SHL distribution

Figure 6 shows the plots of the pdf and the hrf of the HT-GEN-TL-SHL distribution for different parameter values.
The pdf can take several shapes including almost symmetric, right-skewed, left-skewed, unimodal, and reverse-J
shapes. The hrf of the HT-GEN-TL-SHL distribution displays increasing, decreasing, bathtub, upside-down bathtub,
and upside-down bathtub followed by bathtub shapes.

5. Different Methods of Estimation

In this section, different estimation methods including Maximum Likelihood, Anderson-Darling, Ordinary Least
Squares, Weighted Least Squares, Cramér-von Mises and Maximum Product of Spacing are utilized to estimate the
unknown parameters of the new family of distributions.

5.1. Maximum Likelihood Estimation

In this sub-section, we employ the maximum likelihood estimation technique to estimate the unknown parameters of
the HT-GEN-TL-G family of distributions. By assuming x1,x2, .......,xn to be the sample of size n, obtained from the
HT-GEN-TL-G family of distributions, the log-likelihood function ℓn = ℓn(∆) for ∆ = (θ ,b,β ,ϕ) has the form:

ℓn(∆) = (n) ln(2bβθ
2)+

n

∑
i=1

ln(g(xi;ϕ))+(b−1)
n

∑
i=1

ln
(

1−G2
(xi;ϕ)

)
+ (βθ −1)

n

∑
i=1

ln
[

1−
(

1−G2
(xi;ϕ)

)b
]

− (θ +1)
n

∑
i=1

ln

[
1− (1−θ)

(
1−
[

1−
(

1−G2
(xi;ϕ)

)b
]β
)]

.

In order to obtain the maximum likelihood (ML) estimates of the parameters θ ,b,β ,ϕ , denoted by θ̂ , b̂, β̂ , ϕ̂ , we set
the nonlinear system of equations
( ∂ℓn

∂θ
, ∂ℓn

∂b ,
∂ℓn
∂β

, ∂ℓn
∂ϕk

)T = 0, and solve them simultaneously. It is clear that these equations are not in closed form and
hence cannot be solved analytically. Hence, the ML estimates can be found by maximizing ℓn(∆) numerically with
respect to the parameters, using a numerical method such as Newton-Raphson procedure. The partial derivatives of
the log-likelihood function with respect to each component of the parameter vector are given in the appendix.
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5.2. Anderson-Darling Estimation (ADE)

Suppose x(1),x(2), ...,x(n) are the order statistics of a random sample of size n from the HT-GEN-TL-G family of
distributions. Then, the Anderson-Darling estimates (ADEs) of the HT-GEN-TL-G family of distributions are obtained
by minimizing the following function

A(θ ,b,β ,ϕ) =−n− 1
n

n

∑
i=1

(2i−1)
[
log
(
F(x(i);θ ,b,β ,ϕ)

)
+ log

(
S(x(i);θ ,b,β ,ϕ)

)]
,

where F(x(i);θ ,b,β ,ϕ) and S(x(i);θ ,b,β ,ϕ) be the cdf and sf of the ith order statistic from the HT-GEN-TL-G family
of distributions.
The ADEs can also be derived by solving the non-linear equations:

n

∑
i=1

(2i−1)

[
ϑz
(
x(i);θ ,b,β ,ϕ

)
F(x(i);θ ,b,β ,ϕ)

−
ϑz
(
x(n+1−i);θ ,b,β ,ϕ

)
S
(
x(n+1−i);θ ,b,β ,ϕ

) ]= 0,z = 1,2,3,4, (21)

where

ϑ1
(
x(i);θ ,b,β ,ϕ

)
=

∂F
(
x(i);θ ,b,β ,ϕ

)
∂θ

,

ϑ2
(
x(i);θ ,b,β ,ϕ

)
=

∂F
(
x(i);θ ,b,β ,ϕ

)
∂b

,

ϑ3
(
x(i);θ ,b,β ,ϕ

)
=

∂F
(
x(i);θ ,b,β ,ϕ

)
∂β

,

and

ϑ4
(
x(i);θ ,b,β ,ϕ

)
=

∂F
(
x(i);θ ,b,β ,ϕ

)
∂ϕk

, (22)

for k = 1,2, ...., t and t is number of components of the baseline parameter vector ϕ.

5.3. Ordinary Least Squares (OLS)

The OLS estimates (OLSEs) of the parameters of the HT-GEN-TL-G family of distributions are obtained by minimiz-
ing the function:

V (θ ,b,β ,ϕ) =
n

∑
i=1

[
F
(
x(i);θ ,b,β ,ϕ

)
− i

n+1

]2

.

The OLSEs can be obtained by solving the non-linear equations

n

∑
i=1

[
F
(
x(i);θ ,b,β ,ϕ

)
− i

n+1

]
ϑz
(
x(i);θ ,b,β ,ϕ

)
= 0,z = 1,2,3,4,

where ϑz
(
x(i);θ ,b,β ,ϕ

)
are defined in Eqn. (22).

These non-linear equations can be solved using a numerical method such as Newton-Raphson procedure.

5.4. Weighted Least Squares (WLS)

The WLS estimates (WLSEs) of the parameters of the HT-GEN-TL-G family of distributions are obtained by mini-
mizing the function

W (θ ,b,β ,ϕ) =
n

∑
i=1

(n+1)2(n+2)
i(n−1+1)

[
F
(
x(i);θ ,b,β ,ϕ

)
− i

n+1

]2

,
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with respect to θ ,b,β , and parameter vector ϕ. The WLSEs can be obtained by solving the non-linear equations:

n

∑
i=1

(n+1)2(n+2)
i(n−1+1)

[
F
(
x(i);θ ,b,β ,ϕ

)
− i

n+1

]
ϑz
(
x(i);θ ,b,β ,ϕ

)
= 0,z = 1,2,3,4,

where ϑz
(
x(i);θ ,b,β ,ϕ

)
are defined in equation (22).

5.5. Cramér-von Mises (CVM)

The CVM estimates (CVMEs) of the parameters of the HT-GEN-TL-G family of distributions are obtained through
the minimization of the function:

C (θ ,b,β ,ϕ) =− 1
12n

n

∑
i=1

[
F
(
x(i);θ ,b,β ,ϕ

)
− 2i−1

2n

]2

,

with respect to θ ,b,β , and parameter vector ϕ. The CVMEs can also be obtained by solving the non-linear equations

n

∑
i=1

[
F
(
x(i);θ ,b,β ,ϕ

)
− 2i−1

2n

]
ϑz
(
x(i);θ ,b,β ,ϕ

)
= 0,z = 1,2,3,4,

where ϑz
(
x(i);θ ,b,β ,ϕ

)
are defined in Eqn. (22) and x(i) is the ith order statistic from the HT-GEN-TL-G family of

distributions.

5.6. Maximum Product of Spacing (MPS)

The MPS method is used to estimate the parameters of a distribution as an alternative to the maximum likelihood
method. Let Di

(
x(i);θ ,b,β ,ϕ

)
=F

(
x(i);θ ,b,β ,ϕ

)
−F

(
x(i−1);θ ,b,β ,ϕ

)
, for i= 1,2, ..,n+1, be the uniform spacing

of a random sample from the HT-GEN-TL-G family of distributions, where F
(
x(0);θ ,b,β ,ϕ

)
= 0, F

(
x(n+1);θ ,b,β ,ϕ

)
=

1 and ∑
n+1
i=1 Di

(
x(i);θ ,b,β ,ϕ

)
= 1. The MPS estimates (MPSEs) for θ ,b,β , and parameter vector ϕ can be obtained

by maximizing

H (θ ,b,β ,ϕ) =
1

n+1

n+1

∑
i=1

log
(
Di
(
x(i);θ ,b,β ,ϕ

))
.

The MPSEs of the HT-GEN-TL-G family of distributions can be obtained by solving the non-linear equations defined
by

1
n+1

n+1

∑
i=1

1
Di
(
x(i);θ ,b,β ,ϕ

) [ϑz
(
x(i);θ ,b,β ,ϕ

)
−ϑz

(
x(i−1);θ ,b,β ,ϕ

)]
= 0,z = 1,2,3,4,

where ϑz
(
x(i);θ ,b,β ,ϕ

)
are defined in Eqn. (22).

6. Simulation

In this section, we carry out a Monte Carlo simulation study to assess the performance of parameter estimates of the
HT-GEN-TL-LLoG distribution as a special case of the HT-GEN-TL-G family of distributions by utilizing the six es-
timation methods discussed in Section 5. A simulation study was carried out by generating N = 3000 random samples
from the HT-GEN-TL-LLoG distribution for various sample sizes of n = 25,50,100,200,400, and 800.

To assess performance of the different estimation methods, we used the statistics: mean estimate (Mean), average bias
(ABias) and root mean square error (RMSE). The ABias and RMSE for the estimated parameter, say, λ̂ , are given by:

ABias(λ̂ ) =
1
N

N

∑
i=1

(λ̂i −λ ), and RMSE(λ̂ ) =

√
∑

N
i=1(λ̂i −λ )2

N
,
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respectively.

Table 1: Simulation Results for Different Estimation Methods for θ = 1.3,b = 0.6,β = 0.2,c = 2.5.
MLE LS WLS RADE CVM ADE

n Parameter ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE
25 θ 1.8929{1} 3.4209{1} 5.8129{4} 6.1402{3} 4.7059{2} 5.5121{2} 5.6060{3} 6.3409{5} 5.8754{5} 6.3236{4} 6.0243{6} 6.3741{6}

b −0.0606{1} 0.2404{1} −0.2822{3} 0.8868{4} 0.5666{6} 1.4199{6} −0.5070{5} 0.8607{3} −0.3127{4} 0.9382{5} −0.2359{2} 0.5698{2}

β 0.7444{1} 2.0754{1} 6.1285{4} 7.006{2} 5.7572{2} 14.6241{5} 10.1985{6} 26.1081{6} 6.1167{3} 9.2257{4} 8.3304{5} 9.0433{3}

c −0.5132{1} 1.3313{1} −1.5440{5} 2.0466{4} −0.7884{2} 1.7141{2} −1.0162{3} 2.1429{5} −1.4314{4} 1.9827{3} −2.1333{6} 2.3338{6}

∑ ranks 8 29 27 36 32 36

50 θ 1.2754{1} 2.4925{1} 5.7460{5} 6.5845{6} 3.6290{2} 4.3465{2} 5.5492{4} 6.1934{4} 5.3671{3} 5.8272{3} 5.8292{6} 6.2139{5}

b −0.0450{1} 0.1984{1} −0.2264{3} 0.9144{4} 1.4081{6} 1.8417{6} −0.4995{5} 0.8580{3} −0.124{2} 0.9184{5} −0.2551{4} 0.5996{2}

β 0.1871{1} 1.5415{1} 5.5371{4} 6.9009{4} 3.9573{2} 6.4258{3} 7.4304{6} 20.3083{6} 5.3542{3} 6.1818{2} 6.154{5} 7.9833{5}

c −0.4507{3} 1.0463{1} −1.3279{5} 1.9070{4} −0.0447{1} 1.4001{2} −0.1274{2} 2.4341{6} −1.1964{4} 1.8264{3} −1.988{6} 2.2524{5}

∑ ranks 10 35 24 36 25 38

100 θ 0.1535{1} 0.6467{1} 5.0360{4} 5.4824{4} 2.8733{2} 3.3958{2} 5.7322{6} 6.7767{6} 4.9763{3} 5.4662{3} 5.2826{5} 5.9648{5}

b −0.0375{2} 0.1598{1} 0.0129{1} 0.9737{5} 1.9352{6} 2.1994{6} −0.5431{5} 0.8965{3} 0.0696{3} 0.9661{4} −0.2369{4} 0.5457{2}

β 0.0495{1} 0.1793{1} 5.4199{5} 7.9564{5} 3.1016{2} 3.3733{2} 5.8465{6} 20.6408{6} 5.13163{4} 6.1979{4} 4.8514{3} 5.7329{3}

c −0.3723{1} 0.8168{1} −0.9038{5} 1.6286{4} 0.5344{2} 1.1230{2} 0.8934{4} 2.9671{6} −0.8579{3} 1.5920{3} −1.7752{6} 2.1206{5}

∑ ranks 9 33 24 42 27 33

200 θ 0.1282{1} 0.5483{1} 4.2532{3} 4.8435{3} 2.3675{2} 2.5788{2} 5.7459{6} 7.0956{6} 4.3123{4} 4.8635{4} 4.3176{5} 5.3865{5}

b −0.0324{1} 0.1351{1} 0.2082{3} 0.9967{3} 2.2779{6} 2.4007{6} −0.6794{5} 1.0031{4} 0.1573{2} 1.0262{5} −0.2233{4} 0.5175{2}

β 0.0229{1} 0.0955{1} 4.6951{5} 6.7472{4} 2.9332{2} 3.2191{2} 4.5372{4} 14.8686{6} 5.0409{6} 7.2590{5} 3.9008{3} 5.1276{3}

c −0.2602{1} 0.5907{1} −0.5596{2} 1.3001{3} 0.8176{4} 0.9819{2} 1.4661{6} 3.2940{6} −0.5627{3} 1.3085{4} −1.4369{5} 1.9011{5}

∑ ranks 8 26 26 43 33 32

400 θ 0.0964{1} 0.3873{1} 4.0889{5} 4.7368{5} 2.2305{2} 2.3290{2} 6.2889{6} 8.2140{6} 3.9656{4} 4.5828{3} 3.0360{3} 4.6208{4}

b −0.0314{1} 0.1090{1} 0.0427{3} 0.8905{4} 2.3963{6} 2.4463{6} −0.6281{5} 0.9812{5} 0.0315{2} 0.12053{2} −0.2042{4} 0.4647{3}

β 0.0106{1} 0.0617{1} 4.7787{6} 5.5122{5} 2.8312{2} 2.8953{2} 3.7496{4} 6.6658{6} 4.6406{5} 5.2288{4} 3.4285{3} 4.510{3}

c −0.1735{1} 0.4213{1} −0.7597{3} 1.3502{4} 0.89915{5} 0.9386{2} 0.4399{2} 3.0748{6} −0.7731{4} 1.3424{3} −0.9750{6} 1.5494{5}

∑ ranks 8 35 27 40 27 31

800 θ 0.0609{1} 0.306{1} 4.0305{4} 4.6910{5} 2.1874{3} 2.2268{2} 6.3672{6} 7.4557{6} 4.0504{5} 4.6115{4} 1.3464{2} 3.0889{3}

b −0.0267{3} 0.0849{1} −0.0002{1} 0.805{4} 2.4303{6} 2.4577{6} −0.6119{5} 0.9876{5} 0.0049{2} 0.7810{3} −0.1391{4} 0.3218{2}

β 0.0081{1} 0.0455{1} 4.6279{5} 4.9633{4} 2.7934{3} 2.8268{3} 3.5355{4} 6.2253{6} 4.6293{6} 5.0128{5} 1.0030{2} 2.6572{2}

c −0.0998{1} 0.2756{1} −0.8610{4} 1.3844{5} 0.9167{5} 0.9329{2} −1.21667{6} 2.2528{6} −0.8579{3} 1.3601{4} −0.4409{2} 1.0190{3}

∑ ranks 10 32 30 44 32 20
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Table 2: Simulation Results for Different Estimation Methods for θ = 0.6,b = 1.3,β = 1.3,c = 1.3.
MLE LS WLS RADE CVM ADE

n Parameter ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE ABIAS RMSE
25 θ 1.4167{1} 2.9765{1} 5.9377{3} 5.987{3} 5.3157{2} 5.9089{2} 7.9081{6} 7.027{6} 5.9850{4} 6.0359{4} 6.4660{5} 6.7847{5}

b 0.2671{1} 1.0407{5} 0.3497{3} 0.4896{2} 0.6574{6} 1.0529{6} −0.2754{2} 0.9128{4} 0.4602{5} 0.4781{1} 0.3836{4} 0.5126{3}

β −0.3112{1} 0.5790{1} 5.8895{6} 6.0181{4} 4.7895{3} 7.7990{6} 4.7220{2} 5.0831{2} 5.7593{5} 5.8920{3} 5.3219{4} 6.5540{5}

c −0.1169{1} 0.5160{1} −1.1811{4} 1.2975{3} −0.5997{3} 1.1351{2} −0.3568{2} 1.3733{4} −1.9272{6} 2.3028{6} −1.4917{5} 1.9030{5}

∑ ranks 12 28 30 28 34 36

50 θ 0.6528{1} 1.590{1} 4.3157{3} 4.3552{2} 3.5922{2} 4.3948{3} 7.1390{6} 6.2256{5} 4.3654{4} 6.0293{4} 6.3989{5} 6.5249{6}

b 0.2539{2} 0.7707{4} 0.3393{3} 0.4504{2} 1.2447{6} 1.5916{6} −0.2195{1} 0.8394{5} 0.3910{5} 0.4331{1} 0.3432{4} 0.4910{3}

β −0.2091{1} 0.4422{1} 5.1845{6} 5.2915{5} 4.0652{2} 4.7618{3} 4.2951{3} 4.5401{2} 5.1325{5} 5.2517{4} 4.9799{4} 5.9989{6}

c −0.0780{2} 0.4166{1} −1.2632{5} 1.2961{3} 0.03464{1} 0.9633{2} −0.3028{3} 1.3563{4} −1.6286{6} 2.2916{6} −1.1335{4} 1.4949{5}

∑ ranks 13 29 25 29 35 37

100 θ 0.2194{1} 0.6549{1} 3.5364{4} 3.5790{3} 2.4116{2} 3.0530{2} 3.8870{5} 5.9852{5} 3.5226{3} 5.5620{4} 6.1788{6} 6.2767{6}

b 0.2071{2} 0.5967{4} 0.3067{3} 0.4467{2} 1.1747{6} 1.0544{6} −0.1613{1} 0.8353{5} 0.3643{5} 0.4250{1} 0.3383{4} 0.4749{3}

β −0.1195{1} 0.2886{1} 4.8754{5} 5.0599{5} 3.3264{2} 3.8826{3} 3.5238{3} 3.6984{2} 4.9847{6} 5.2014{6} 4.5193{4} 4.6872{4}

c 0.0537{1} 0.2829{1} −1.1257{5} 1.2959{5} 0.5399{3} 0.9543{2} 0.2297{2} 1.3873{6} −1.2237{6} 1.2952{4} −1.1099{4} 1.2878{3}

∑ ranks 12 32 26 29 35 34

200 θ 0.1028{1} 0.2438{1} 3.3721{5} 3.3712{4} 1.8596{2} 2.3309{2} 2.8141{4} 2.9449{3} 2.6376{3} 4.6768{5} 4.1169{6} 5.9337{6}

b 0.1872{2} 0.5199{4} 0.3041{3} 0.4452{2} 1.1631{6} 1.0414{6} −0.1446{1} 0.6026{5} 0.3607{5} 0.4238{1} 0.3240{4} 0.4656{3}

β −0.0831{1} 0.1959{1} 4.6955{5} 4.8363{6} 2.9015{2} 3.1542{3} 3.3958{3} 3.1290{2} 4.6997{6} 4.8060{5} 3.7971{4} 3.8572{4}

c −0.0549{1} 0.2290{1} −1.043{4} 1.2918{4} 0.4124{3} 0.9438{2} −0.1026{2} 1.3660{6} −1.2129{6} 1.2925{5} −1.0911{5} 1.2378{3}

∑ ranks 12 33 26 26 36 35

400 θ 0.0582{1} 0.1369{1} 1.6972{4} 1.7420{3} 1.6250{3} 1.8736{4} 1.5937{2} 1.7057{2} 1.7126{5} 2.752{5} 2.7981{6} 3.0728{6}

b 0.1103{2} 0.3495{1} 0.3014{3} 0.4413{5} 1.0776{6} 1.0312{6} −0.0116{1} 0.4169{3} 0.3603{5} 0.41443{2} 0.3062{4} 0.4334{4}

β −0.0563{1} 0.1365{1} 4.4101{5} 4.5286{5} 2.7780{2} 2.9747{2} 3.0230{3} 3.0911{3} 4.5877{6} 4.7856{6} 3.1315{4} 3.1722{4}

c −0.0420{1} 0.1750{1} −1.0085{5} 1.2907{4} 0.3619{3} 0.9346{2} −0.0713{2} 1.3184{6} −1.2051{6} 1.2919{5} −0.9752{4} 1.1589{3}

∑ ranks 9 34 28 22 40 35

800 θ 0.0361{1} 0.0829{1} 0.6845{3} 0.7478{4} 1.5391{5} 1.5872{5} 0.1738{2} 0.2676{2} 0.6959{4} 0.7394{3} 1.7727{6} 2.1862{6}

b 0.0553{1} 0.2097{2} 0.2334{3} 0.4151{4} 1.0294{6} 1.0173{6} −0.0680{2} 0.1588{1} 0.2601{5} 0.4014{3} 0.2429{4} 0.4190{5}

β −0.0418{1} 0.0928{1} 4.0893{6} 3.9859{6} 2.7236{4} 2.7506{3} 0.3821{2} 0.5874{2} 3.8550{5} 3.9600{5} 2.5860{3} 2.9307{4}

c −0.0254{1} 0.1130{1} −0.807{5} 0.9752{4} 0.2997{4} 0.9178{3} 0.0711{2} 1.3169{6} −1.0932{6} 1.0978{5} −0.1388{3} 0.2336{2}

∑ ranks 9 35 36 19 36 33

Table 3: Partial and Overall Ranks of all Estimation Methods of HT-GEN-TL-LLoG Distribution by Various
Model Parameter Values.

Parameters n MLE LS WLS RADE CVM ADE

θ = 1.3,b = 0.6,β = 0.2,c = 2.5.

25 1 3 2 5.5 4 5.5
50 1 4 2 5 3 6

100 1 4.5 2 6 3 4.5
200 1 2.5 2.5 6 5 4
400 1 5 2.5 6 2.5 4
800 1 4.5 3 6 4.5 2

θ = 0.6,b = 1.3,β = 1.5,c = 1.3.

25 1 2.5 4 2.5 5 6
50 1 3.5 2 3.5 5 6

100 1 4 2 3 6 5
200 1 4 2.5 2.5 6 5
400 1 4 3 2 6 5
800 1 4 5.5 2 5.5 3

∑ ranks 12.0 45.5 33 50 55.5 56
Overall rank 1 3 2 4 5 6

In Tables 1 and 2, the row indicating ∑ Ranks represents the partial sum of the ranks. Among all the estimators for a
given metric, the superscript indicates their rank. Table 1 presents, for example, the ABIAS of θ̂ obtained via MLE
method as 1.8929{1} for n = 25. This indicates that the ABIAS of θ̂ obtained using the MLE method ranks first among
all other estimators. Accordingly, n = 25, MLE offers the best ABIAS of θ̂ when compared with all other estimators.
Table 3 shows the partial and overall ranks of all the estimation methods of HT-GEN-TL-LLoG distribution by various
model parameter values. Based on the results in Tables 1 and 2, the HT-GEN-TL-LLoG distribution is stable, as
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the ABIAS and RMSE values for its four parameters are modest. With increasing sample size, the bias occasionally
decreases while the RMSE decreases for all estimations as the sample size increases. In general, all estimation methods
provide accurate bias and mean squared error estimates for large sample sizes. Table 3 shows that MLE method allows
us to obtain better estimates of HT-GEN-TL-LLoG parameters, followed by WLS and then LS methods. According
to the rankings, the ADE method performs the least well.

7. Risk Measures

In this section, we discuss risk measures including: value at risk (VaR), tail value at risk (TVaR), tail variance (TV),
and tail variance premium (TVP) which are routinely employed by financial and actuarial professionals to assess the
exposure to market risk in a portfolio of instruments.

7.1. Value at Risk

VaR is an actuarial measure that is often used to assess risk in the financial markets. It is referred to as the quantile
risk measure or the quantile premium principle, and it is always provided with a stated degree of confidence, such as
(90%, 95%, or 99%). The VaR of the HT-GEN-TL-G family of distributions is given by

VaRq = G−1

1−

1−

[
1−
(

θ

[
(q̄)

−1
θ − (1−θ)

]−1
) 1

β

] −1
b


1
2
 , (23)

where q ∈ (0,1) is a specified level of significance and q̄ = (1−q) .

7.2. Tail Value at Risk

Another significant and extensively used risk measure is the TVaR, which is used to express the expected value of loss
in the case that an event beyond the predetermined probability threshold has actually occurred. The conditional tail
expectation (CTE) or tail conditional expectation (TCE) are some of its other names. The TVaR of the HT-GEN-EHL-
G family of distributions is given as

TVaRq = E(X | X > xq) =
1

1−q

∫
∞

VaRq

x f (x)dx

=
1

1−q

∞

∑
k=0

∫
∞

VaRq

xd∗
k+1g∗k+1(x;ϕ)dx, (24)

where d∗
k+1 is given by Eqn. (14) and g∗k+1(x;ϕ) = (k+1)[G(x;ϕ)]kg(x;ϕ) is the pdf of Exp-G distribution with the

power parameter (k+1).

7.3. Tail Variance

One of the most significant actuarial measures that examines variation outside of the VaR is the tail variance. The TV
of the HT-GEN-TL-G family of distributions is given by

TV q = E(X2 | X > xq)− (TVaRq)
2

=
1

1−q

∫
∞

VaRq

x2 f (x)dx− (TVaRq)
2

=
1

1−q

∞

∑
k=0

d∗
k+1

∫
∞

VaRq

x2g∗k+1(x;ϕ)dx− (TVaRq)
2, (25)

where g∗k+1(x;ϕ) = (k + 1)[G(x;ϕ)]kg(x;ϕ) is the pdf of Exp-G distribution with the power parameter (k + 1) and
parameter vector ϕ, and d∗

k+1 is given by Eqn. (14). Thus, TV of HT-GEN-TL-G family of distributions can be
obtained from those of Exp-G distribution.
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7.4. Tail Variance Premium

The TVP is a significant risk measure that is crucial to the study of insurance. The TVP of the HT-GEN-TL-G family
distributions is given by

TV Pq = TVaRq +δ (TV q), (26)

where 0 < δ < 1. The TVP of the HT-GEN-TL-G family of distributions can be obtained by substituting Eqns. (24)
and (25) into Eqn. (26).

7.5. Numerical Study for the Risk Measures

In this sub-section, we perform numerical simulation of the risk measures: VaR, TVaR, TV and TVP of the heavy-tailed
generalized Topp-Leone-log logistic (HT-GEN-TL-LLoG) distribution, and compare to those of the sub-models HT-
GEN-LLoG, HT-TL-LLoG, HT-LLoG, GEN-TL-LLoG, and the non-nested alpha power Weibull (APW) distribution
by Nassar et al. (2017), alpha power Topp-Leone Weibull (APTLW) distribution by Benkhelifa (2022) and alpha
power exponentiated log-logistic (APExLLD) distribution by Teamah et al. (2021).
Simulation results are obtained as follows:
1. Random samples of size n = 100 are generated from each one of the used distributions and parameters have been
estimated via maximum likelihood method.
2. 1000 repetitions are made to calculate the VaR, TVaR, TV and TVP for these distributions.
Tables 4 shows the numerical findings of VaR, TVaR, TV and TVP for the six compared heavy-tailed distributions.
A model with higher values of VaR, TVaR, TV and TVP is said to have a heavier tail. From the figures in Table 4,
we conclude that the HT-GEN-TL-LLoG distribution have a heavier tail than the HT-GEN-LLoG, HT-TL-LLoG, HT-
LLoG, GEN-TL-LLoG, APW, APTLW and APExLLD distributions, hence it is suitable for modelling heavy-tailed
data.

Table 4: Simulation Results of VaR, TVaR, TV and TVP
Significance level 0.7 0.75 0.8 0.85 0.9 0.95

HT-GEN-TL-LLoG(θ = 1.3,b = 0.8,β = 1.5,c = 0.7) VaR 0.9376 1.1814 1.5297 2.0738 3.0645 5.5948
TVaR 4.0729 4.6769 5.5101 6.7538 8.8749 13.6675

TV 48.6618 56.0125 66.2249 81.5165 107.4176 164.0391
TVP 38.1362 46.6863 58.4901 76.0429 105.5508 169.5047

HT-GEN-LLoG(θ = 1.3,β = 1.5,c = 0.7) VaR 0.6670 0.8568 1.1307 1.5624 2.3547 4.3897
TVaR 3.2591 3.7596 4.4534 5.4951 7.2866 11.4005

TV 37.8878 43.8301 52.1598 64.7870 86.5718 135.5825
TVP 29.7807 36.6323 46.1813 60.5641 85.2013 140.2039

HT-TL-LLoG(θ = 1.3,b = 0.8,c = 0.7) VaR 0.0229 0.0493 0.1044 0.2255 0.5300 1.6321
TVaR 1.6317 1.9511 2.4206 3.1752 4.5867 8.2312

TV 34.8068 41.1439 50.3063 64.7515 91.0271 154.8907
TVP 25.9965 32.8091 42.6656 58.2140 86.5111 155.3774

HT-LLoG(θ = 1.3,c = 1.7) VaR 0.4280 0.5142 0.6289 0.7927 1.0579 1.6204
TVaR 1.1735 1.3144 1.5009 1.7660 2.1926 3.0907

TV 1.9466 2.2156 2.5935 3.1729 4.2041 6.7485
TVP 2.5362 2.9761 3.5757 4.4631 5.9764 9.5018

GEN-TL-LLoG(b = 0.8,β = 1.5,c = 0.7) VaR 0.5460 0.6818 0.8709 1.1560 1.6496 2.8074
TVaR 2.0749 2.3678 2.7671 3.3553 4.3447 6.5640

TV 12.9308 14.954 17.8163 22.2204 30.0370 48.8054
TVP 11.1265 13.5838 17.0202 22.2426 31.3780 52.9292

APW(α = 0.5,β = 0.9,λ = 1.3) VaR 0.7329 0.8659 1.0342 1.2592 1.5900 2.1866
TVaR 1.5454 1.6951 1.8822 2.1294 2.4881 3.1250

TV 0.81422 0.8385 0.8672 0.9024 0.9491 1.0232
TVP 2.1153 2.3240 2.5760 2.8965 3.3423 4.0971

APTLW(θ = 1.9,α = 1.1,β = 0.7,λ = 0.99) VaR 0.5061 0.5527 0.6061 0.6703 0.7536 0.8815
TVaR 1.3355 1.4019 1.4801 1.5679 1.6369 1.7046

TV 0.0861 0.1774 0.3357 0.6580 1.4934 4.8542
TVP 1.3958 1.5350 1.7487 2.1272 2.9810 6.0161

APExLLD(α = 0.1,a = 0.8,b = 1.5,c = 0.2) VaR 0.0103 0.0219 0.0476 0.1100 0.2876 1.0724
TVaR 1.2303 1.4733 1.8333 2.4198 3.5387 6.5115

TV 31.9238 37.8542 46.4831 60.1944 85.3673 147.1997
TVP 23.5770 29.8639 39.0198 53.5850 80.3693 146.3512

8. Applications

In this section, we assess the goodness-of-fit of the heavy-tailed generalized Topp-Leone-log logistic (HT-GEN-TL-
LLoG) distribution. The fit of the HT-GEN-TL-LLoG distribution is compared to that of the alpha power exponentiated
log-logistic distribution (APExLLD) by Teamah et al. (2021), alpha power Topp-Leone Weibull (APTLW) distribution
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by Benkhelifa (2022), the Marshall-Olkin odd Burr III log-logistic (MOO-BIII-LLoG) distribution by Afify et al.
(2020), Topp-Leone odd Burr III log-logistic (TL-OBIII-LLoG) by Moakofi et al. (2022) and odd exponentiated half
logistic-Burr XII (OEHL-BXII) distribution by Aldahlan et al. (2018). The pdf of these competing models are given
in the appendix.

The goodness-of-fit is assessed using the following statistics: -2log-likelihood (−2ln(L)), Akaike Information Crite-
rion (AIC = 2p− 2ln(L)), Consistent Akaike Information Criterion (CAIC = AIC+ 2 p(p+1)

n−p−1 ), Bayesian Information
Criterion (BIC = p ln(n)− 2ln(L)), (n is the number of observations, and p is the number of estimated parame-
ters), Cramér-von Mises statistic (W ∗), Anderson-Darling statistic (A∗), Kolmogorov-Smirnov (K-S) statistic, and its
p−value. The model with the smallest values of the goodness-of-fit statistics and a bigger p-value for the K-S statistic
is regarded as the best model.

Plots of the fitted densities, the histogram of the data, probability plots, fitted Kaplan-Meier (K-M) survival curve,
empirical cumulative distribution function (ECDF), the total time on test (TTT) scaled plot, and the fitted hazard rate
function (hrf) are also presented under each example.

For the probability plot, we plotted F(x( j)) = F(x( j); θ̂ , b̂, β̂ , ĉ) against
j−0.375
n+0.25

, j = 1, 2, · · · , n, where x( j) are the

ordered values of the observed data. The measures of closeness are given by the sum of squares (SS) as

SS =
n

∑
j=1

[
F(x( j))−

(
j−0.375
n+0.25

)]2

.

All graphics and numerical results in this section were obtained using the R programming language.

8.1. Climate Data

The data were obtained from the National Climate Data Center (NCDC) in Asheville, USA and contain measurements
of wind speeds in knots over a 30-day period. There were a total of 24 observations. The data was recently analyzed
by Hasaballah et al. (2023). The data are given in the appendix.

The estimated variance-covariance matrix for HT-GEN-TL-LLoG model on climate data is given by
0.0611 −1.373 9.9239×10−04 −6.0529×10−03

−1.3733 30.8647 −2.2303×10−02 1.3603×10−01

0.0009 −0.0223 1.6116×10−05 −9.8301×10−05

−0.0060 0.1360 −9.8301×10−05 6.2172×10−04



and the 95% confidence intervals for the model parameters are given by
θ ∈ [1.4685×1002±0.4845], b ∈ [9.2405×1001±10.8889], β ∈ [4.5634×1003±0.0078] and c ∈ [1.6946×10−01±
0.0488], respectively.
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Figure 7: Profile log-likelihood function plots for parameters of HT-GEN-TL-LLoG distribution on the climate data

Figure 7 shows the profile log-likelihood plots for parameters of the HT-GEN-TL-LLoG distribution on the climate
data. It can be seen that the MLEs obtained for the HT-GEN-TL-LLoG distribution are unique. This shows that the
parameters of the HT-GEN-TL-LLoG distribution are identifiable.

Table 5: MLEs and Goodness-of-Fit Statistics for Climate Data
Estimates (SE) Statistics

Model θ b β c −2log L AIC AICC BIC W ∗ A∗ K-S p-value
HT-GEN-TL-LLoG 1.4685×1002 9.2405×1001 4.5634×1003 1.6946×10−01 88.96236 96.96236 99.06763 101.6746 0.0323 0.2342 0.1088 0.9388

(2.4720×10−01) (5.5556) (4.0145×10−03) (2.4934×10−02)
α a b c

APExLLD 4.6888×1001 9.6818×1001 7.8865 6.7968×10−03 90.20456 98.20456 100.3098 102.9168 0.074 0.4377 0.1516 0.6389
(6.6085×10−06) (1.6290×10−04) (1.4318×10−01) (1.6723×10−03)
θ α β λ

APTLW 1.0010×1003 1.0000×1006 3.3191×10−01 2.8809 96.99553 104.9955 107.1008 109.7077 0.1198 0.8184 0.14705 0.677
(1.0528×10−04) (1.0442×10−08) (4.9297×10−02) (2.2317×10−01)
δ α β λ

MOO-BIII-LLoG 0.9987 14.6625 60.0925 0.1893 100.8747 108.8747 110.98 113.5869 0.1749 1.1308 0.1755 0.4500
(1.6317) (0.0715) (47.3114) (0.0825)
α β b λ

TL-OBIII-LLoG 8.6415×10−02 9.7640×1001 4.4507×10−01 2.7125×1001 97.14276 105.1428 107.248 109.855 0.1241 0.8445 0.1589 0.5795
(7.6491×10−03) (6.1855×10−04) (1.6923×10−01) (2.4374×10−05)
α λ a b

OEHL-BXII 4.8208×10−01 7.7751×10−05 2.4970 2.0081 98.35474 106.3549 108.4602 111.0671 0.0400 0.2326 0.1194 0.8836
(1.1898×10−01) (6.0565×10−05) (7.6868×10−02) (9.9251×10−02)

Table 5 shows the the maximum likelihood estimates, their respective standard errors (in parenthesis) and goodness-
of-fit measures: −2log(L),AIC,AICC,BIC,W *,A*,K −S and K −S p-value for the climate data. In comparison with
other fitted distributions, the HT-GEN-TL-LLoG distribution provides a better fit for the climate data since it has the
smallest values for all goodness-of-fit measures. It also has the highest p-value of the K−S statistic. These results are
further visually confirmed by the density plots and probability plots with the sum of square (SS) in Figure 9.
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Figure 8: Fitted Kaplan-Meier survival curve, empirical cumulative distribution function, the total time on test scaled
plot, and the fitted hazard rate function for the climate data

Figure 8 shows the observed and the fitted Kaplan-Meier (K-M) survival curves, theoretical and empirical cumulative
distribution (ECDF), total test on time (TTT) scaled plot, and hazard rate function (hrf) plot. We can see that the
HT-GEN-TL-LLoG distribution follows the empirical cdf, and Kaplan-Meier survival curves very closely. The TTT
scaled plot indicates an increasing hrf because the plot exhibits a nearly concave shape and remains mostly above
the 45-degree line. Furthermore, the estimated hrf in is agreement with the TTT scaled plot as it also displays an
increasing shape for climate data.
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Figure 9: Histogram superposed by fitted density (left) and observed vs expected probability plots (right) for the
climate data

The plots in Figure 9 depict that the HT-GEN-TL-LLoG distribution follows the fitted histogram closely and has the
smallest sum of squares (SS) value from the probability plots. This supports the conclusion made from Table 5.

8.2. COVID-19 Data

The second data is concerned with the COVID-19 pandemic. These data are recorded between March 4, 2022, and
July 20, 2020. The considered data set was analyzed by Almazah et al. (2022), has one hundred and eight observations
and is given in the appendix.

The estimated variance-covariance matrix for HT-GEN-TL-LLoG model on COVID-19 data is given by
0.4997 3.3576 −0.2221 −0.0238
3.3576 25.5058 −1.6863 −0.1297
−0.2221 −1.6863 0.1114 0.0085
−0.0238 −0.1297 0.0085 0.0015



and the 95% confidence intervals for the model parameters are given by
θ ∈ [1.1751±1.3855], b ∈ [31.8877±9.8986], β ∈ [54.7369±0.6544] and c ∈ [0.3274±0.0768], respectively.
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Figure 10: Profile log-likelihood function plots for parameters of HT-GEN-TL-LLoG distribution on the COVID-19
data

Figure 10 shows the profile log-likelihood plots for parameters of the HT-GEN-TL-LLoG distribution on the COVID-
19 data. From the plots we can see that the estimates for the parameters of the HT-GEN-TL-LLoG distribution are
achieved at single and different points.

Table 6: MLEs and Goodness-of-Fit Statistics for COVID-19 Data
Estimates (SE) Statistics

Model θ b β c −2log L AIC AICC BIC W ∗ A∗ K-S p-value
HT-GEN-TL-LLoG 1.1751 31.8877 54.7369 0.3274 523.3610 531.361 531.757 542.0148 0.0529 0.2952 0.0681 0.7085

(0.7069) (5.0502) (0.3339) (0.0392)
α a b c

APExLLD 5.9519×1001 2.0779 5.4001×10−02 2.0001×1003 536.3646 544.3646 544.7606 555.0183 0.1868 1.1491 0.0839 0.4435
(4.1629×10−06) (1.4757×10−01) (1.6288×10−02) (2.3632×10−07)
θ α β λ

APTLW 1.0011×1003 1.0000×1006 1.9823×10−01 3.6248 533.7399 541.7400 542.1360 552.3937 0.1573 0.9735 0.0864 0.4066
(3.9544×10−05) (3.5162×10−09) (1.4290×10−02) (8.0466×10−02)
δ α β λ

MOO-BIII-LLoG 32.9837 5.1065 3.2202 0.5666 528.4689 536.4689 536.8649 547.1226 0.1029 0.5898 0.0688 0.6971
(38.2888) (0.0053) (2.8670) (0.0512)
α β b λ

TL-OBIII-LLoG 4.2909 28.5053 0.3680 0.3543 532.2005 540.2005 540.5965 550.8542 0.1349 0.8391 0.0840 0.4417
(72.0651) (28.0193) (0.3576) (5.9507)
α λ a b

OEHL-BXII 0.3348 7.7814×10−04 58.0010 0.0557 568.9019 576.9019 577.2979 587.5557 0.2900 1.8394 0.1254 0.0712
(0.0631) (9.3956×10−04) (1.3570×10−05) (0.0077)

The data analysis results given in Table 6 indicates that the HT-GEN-TL-LLoG distribution outperforms the other fitted
distributions since it has the lowest values of the goodness-of-fit statistics: −2ln(L),AIC,CAIC,BIC,W ∗,A∗,K−S and
largest p-value of the K −S statistic.
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Figure 11: Fitted Kaplan-Meier survival curve, empirical cumulative distribution function, the total time on test scaled
plot, and the fitted hazard rate function for the COVID-19 data

Figure 11 shows the observed and the fitted Kaplan-Meier survival curves, ECDF plots, TTT scaled plot and hrf plot.
We can see that the HT-GEN-TL-LLoG distribution follows the empirical cdf, and Kaplan-Meier survival curves very
closely. The TTT scaled plot and hrf plot shows that the hrf for the COVID-19 data is increasing. This is seen from
the nearly concave shape of the plot above the 45-degree line. These characteristics suggest a rising hazard rate over
time, indicating an escalating risk or likelihood of the event (in this case, COVID-19 cases or related events) occurring
as time progresses.
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Figure 12: Histogram superposed by fitted density (left) and observed vs expected probability plots (right) for the
COVID-19 data

To support the results in Table 6, a visual illustration is provided in Figure 12. These plots show that the HT-GEN-TL-
LLoG capture the COVID-19 data better than other fitted distributions.

9. Conclusions

We have proposed a new family of distributions called heavy-tailed generalized Topp-Leone-G (HT-GEN-TL-G) fam-
ily of distributions. Several statistical properties of the new distribution are derived and studied. The unknown parame-
ters of the new distribution are estimated using different estimation methods, namely, maximum likelihood estimation,
least-squares estimation, weighted least-squares estimation, maximum product spacing estimation, Cramér-von Mises,
and Anderson-Darling estimation. Monte Carlo simulations were used to evaluate the consistency properties of the six
estimation methods for the HT-GEN-TL-LLoG distribution. Risk measures for this distribution were also presented,
and the results revealed that the HT-GEN-TL-LLoG distribution is heavy-tailed. Finally, the superiority and impor-
tance of a member of the HT-GEN-TL-G family of distributions was illustrated by using two real data sets.

In the future, the HT-GEN-TL-G family of distributions can be applied to different kinds of data including censored
data, record values and extreme values. In this work, we only used classical methods to estimate the parameters of
the new HT-GEN-TL-LLoG distribution. In the future, parameters of the HT-GEN-TL-G family of distributions can
be estimated using Bayesian methods. Also, machine learning alogrithms, namely, support vector regression, random
forest and neural network autoregression can be used to forecast the data set analyzed using the HT-GEN-TL-G family
of distributions.

Appendix

Click on the link below for results in the appendix.
https://drive.google.com/file/d/1knP4A9QD5rE5obkH8jEXRI8peOXDpU2_/view?usp=sharing
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