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Abstract 

 

This paper introduces a new cubic transmutation of the inverse Weibull distribution, known as a cubic transmuted 

inverse Weibull distribution. The model is thought to be useful for the analysis of complex life data, modeling 

failure times, accessing product reliability, and many other fields like economics, hydrology, biology, and 

engineering. Some statistical features of the proposed distribution are explored. These include moments, generating 

functions, quantile functions, reliability functions, and hazard rate functions. The distribution of order statistics for 

the proposed cubic transmuted inverse Weibull distribution is also studied. The maximum likelihood estimation 

approach is used to estimate the model parameters. The effectiveness of the estimation is investigated through 

extensive simulation study. The suitability of the proposed distribution has been studied by using five real-life 

datasets. It is found that the proposed distribution is the most suitable fit for the used data sets. 

 
 

Key Words: Inverse Weibull Distribution, Cubic Transmutation, Maximum Likelihood Estimation, Order 

Statistics, Reliability Analysis. 
 

Mathematical Subject Classification: 60E05, 62E15.   

 

1. Introduction 

The probability distributions have been in use for modeling several real-world phenomena. However, it frequently 

occurs that some real-world issues cannot be adequately modeled by the standard probability models and hence some 

extension or generalization is required. The generalization of the probability distribution is usually done to gain more 

flexibility in modeling of the data and to use them in more challenging real-world issues. In this paper, we have 

expanded the inverse Weibull (IW) distribution so that the resulting distribution will enable us to handle more 

complicated real-world problems. The inverse Weibull distribution has been considered as a useful probability 

distribution for modeling dependability data and in characterizing degradation phenomena of mechanical components. 

The distribution was initially discussed by Keller et al. (1982). The cumulative distribution function (cdf) of the IW 

distribution is 

    ; , exp ;G x x x
        ℝ ,       (1) 

where 0   is the shape parameter and 0  is the rate parameter. 

The IW distribution has both increasing and decreasing hazard rates depending on the shape parameter. The inverse 

exponential distribution appears as a special case of the IW distribution for 1  . Calabria and Pulcini (1990) have 

estimated the parameters of the IW distribution using maximum likelihood and least square estimation techniques. 

Mahmoud et al. (2003) have obtained order statistics from the inverse Weibull distribution. Sultan (2008) has derived 
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Bayes estimates of the parameters by using different loss functions. Kundu and Howaldar (2010) have conducted the 

Bayesian inference and prediction for the IW based on Type-II censored data.   De Gusmao (2011) has introduced a 

generalized inverse Weibull distribution. Aryal and Tsokos (2011) have introduced transmuted Weibull distribution 

and have also discussed its distributional properties. Khan and King (2012) have introduced a five-parameter 

generalized IW distribution. Khan and King (2013) have proposed a transmuted modified Weibull distribution. Khan 

and King (2014) have also proposed a three-parameter transmuted IW distribution. Recently some researchers have 

also conducted some other research using the IW distribution. These include Alslman and Helu (2022), Haj Ahmed et 

al. (2023), and Tashkandy et al. (2023), among others. 

Shahbaz et al. (2012) have introduced and studied a Kumaraswamy inverse Weibull distribution. Basheer (2019) has 

introduced a new generalized alpha power IW distribution. Kumar and Nair (2021) have introduced a generalization 

of the log-transformed version of the IW distribution and have also applied the proposed distribution in cancer 

research. Hassan and Nassr (2018) have introduced a new family of univariate distribution called the IW generated 

family. A lot of new models can be generated from this new family.  

The transmuted family of distributions has been introduced by Shaw and Buckley (2007) and has since been used by 

several authors to propose new probability distribution. The cdf of this family of distributions is given as 

        21 ;F x G x G x x    ℝ ,       (2) 

where  1,1   is the transmutation parameter and  G x is the distribution function of any standard probability 

model. 

Rahman et al. (2019) have proposed a cubic-transmuted family of distributions and have used the proposed family to 

introduce a cubic-transmuted uniform (CTU) distribution. The CTU distribution can be used as an alternative to the 

Beta and Kumaraswamy distributions. Many distributional models have already been generated from this family of 

distribution and have shown better performance than other competing distributions in handling complex datasets. The 

cdf of the cubic transmuted family of distributions, proposed by Rahman et al. (2019), is  

          2 31 3 2 ;F x G x G x G x x      ℝ ,      (3) 

where  1,1   is the transmutation parameter. 

This study aims to use the family of distributions given in (3) and to generate a new cubic transmuted inverse Weibull 

(CTIW) distribution. The paper also aims to see the effect of the model parameters on the shape and hazard rate 

function of the distribution. The structure of the paper follows. A new CTIW distribution is proposed in Section 2. 

Statistical properties including the moments, generating functions, quantile functions, random number generation, and 

reliability function for the proposed CTIW distribution are given in Section 3. The distribution of order statistics from 

the proposed CTIW distribution are given in Section 4. Section 5 contains parameter estimation for the CTIW 

distribution. Section 6 is based upon the consistency of the estimation method on the basis of extensive simulation 

study. Section 7 is based upon some real data application of the proposed CTIW distribution. Some concluding remarks 

are given in Section 8. 

2. A New Cubic Transmuted Inverse Weibull Distribution 

A random variable X is said to have an inverse Weibull (IW) distribution if it has cdf as given in (1). The density 

function corresponding to (1) is given as 

      1
; , e ;

x
g x x x

        ℝ ,       (4) 

where 0   is the shape parameter and 0  is the rate parameter. Khan and King (2014) have introduced a 

transmuted inverse Weibull (TIW) distribution by using (1) in (2). The cdf of TIW distribution is 
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      e 1 e ;
x x

F x x
           

ℝ  , 

where  1,1   is the transmutation parameter. A new cubic transmuted inverse Weibull (CTIW) is obtained by using 

(1) in (3). The cdf of the proposed CTIW distribution is 

         ; , , e 1 e 3 2e ;
x x x

F x x
                  

ℝ ,    (5) 

where 0   is the shape parameter, 0  is the rate parameter, and  1,1    is the transmutation parameter. The 

probability density function (pdf) of CTIW distribution is readily written, from (5), as 

           1
; , , e 1 6 e 1 e ;

x x x
f x x x

                      
ℝ .   (6) 

It is easy to see that the CTIW distribution reduces to the inverse Weibull distribution for 0  . A cubic transmuted 

inverse exponential distribution appears as a special case of CTIW distribution for 1  , Also, for 2  , a cubic 

transmuted inverse Rayleigh distribution appears as a special case of CTIW distribution. Some plots of the pdf and cdf 

of CTIW distribution for different values of the parameters are given in Figure-1 below. 

Figure 1: The Density and Distribution Functions of Cubic Transmuted Inverse Weibull Distribution 

 
(a) The Density Function 

 
(b) The Distribution Function 

 

The plot of the density function shows that the distribution is unimodal. We will, now, discuss some useful 

distributional properties of the proposed CTIW distribution. 

3. Distributional Properties 

In this section, we have discussed some useful properties of CTIW distribution. These properties are discussed in the 

following sub-sections. 

3.1 The Moments 

The moments are very important in studying certain properties of a distribution. The rth moment of a random variable 

X is obtained as 

      / r r r

r E X x dF x x f x dx
 

 
    . 
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The rth moment for CTIW distribution is given in the following Theorem. 

Theorem 1: The rth moment of a random variable X having a CTIW distribution is given as 

   /
1 1 1 23 2 3 ;

rr

r

rr
r

    


              
.     (7) 

Proof: The rth moment of CTIW distribution is given as 

            1/

0
e 1 6 e 1 e

x x xr r

r E X x x dx
        

             . 

Solving the integral we have (7) and this completes the proof. 

The mean of the distribution is easily obtained by using r = 1 in (7) and is 

  1

1

1
1 2

1
1 1 3 2 3 , 1

    


              
. 

The variance of the CTIW distribution can be easily obtained by using   / /2

2 1V X    ,  where /

2  is obtained by 

using r = 2 in (7). The coefficients of skewness and kurtosis can also be obtained by computing higher order moments 

from (7). 

3.2 The Moment Generating Function 

The moment generating function of a random variable is very useful in computing its moments. The moment 

generating function is defined as 

         e e etX tx tx

XM t E dF x f x dx
 

 
    . 

The moment generating function of the proposed CTIW distribution is given in the following theorem. 

Theorem 2: The moment generating function of CTIW distribution is 

    
0

1 1 1 3 2 3
!

2 ;
r

r r

X

r

rt r
M t r

r

   






            





 .    (8) 

Proof: The proof is simple. 

A more useful function is the characteristic function and is defined as 

        i i i e e etX tx tx

X t E dF x f x dx
 

 
    . 

The characteristic function of CTIW distribution is readily written from (8) as 

      
0

i
1 1 1 3 2 3 ;

!
2

r

r

r

X

r

r
t r

t r
r

    






            





 , 

where i 1  .  
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3.3 Quantile Function and Median 

In this section, we will derive the quantile function of CTIW distribution. The quantile function of a random variable 

X, having cdf  F x , is obtained as a solution of  F x p  for x. Now, for CTIW distribution the quantile function is 

obtained as a solution of 

  
      e 1 e 3 2e

x x x
p

             
,       (9) 

for x. Writing  
e

x
w

  , the above equation can be written as 

  1 3 2w w w p        or   2 31 3 2w w w p       or  3 22 3 1 0w w w p        

or 3 2

1 2 3 1 2 30 where 2 ; 3 and 1c w c w c w p c c c           . 

The real solution of the above cubic equation is 

 
1 3 1 31 2 1 2

3 32 1 1

1 3 1 3 1 3 1 3

1 1 3 1 3

2 21
1

3 23 3 2 3 3 2

c
w

c c c

  
  

 
       

  
.     (10) 

Using  
e

x
w

   in (10), and solving for x, the quantile function of CTIW distribution is 

 
 

1 31 2

31

1 3 1 3

3

21
e 1

2 3 3 2

x
 

 
  

   
 

 or  
1

1 31 2

31

1 3 1 3

3

21 1
ln 1

2 3 3 2
XQ p




  


    

      
     

,  (11) 

where    2 3 2 2

1 2 1 3 2 2 1 2 3 13 3 2 ; 2 9 27 54 1 2c c c c c c c c p p                , 

and       2 33 2 2 3

3 2 1 24 54 1 2 108 27 1 2 2p p                . 

The quantiles of CTIW can be obtained by using 0 1p   in (11). Specifically, the median can be obtained by using 

p = 0.5 in (11) and then solving for x. It is to be noted that for p = 0.5, the quantity 2 0   and 3  reduces to 

 33

3 6 3 2     . 

3.4 Random Number Generation 

The random data can be generated from CTIW distribution on the lines of the quantiles. Specifically, a random 

observation can be generated from any distribution, with cdf  F x , by solving  F x u for x with u be a random 

observation from  0,1U . Now, the random observation from CTIW distribution can be generated by solving 

 
      e 1 e 3 2e

x x x
u

             
 

for x where u is a random observation from  0,1U . Specifically, a random observation can be generated by using 

(11) where p is replaced by u, a random observation from  0,1U .  
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3.5 Reliability Analysis 

The reliability function is a function of time that gives the probability of an item operating for a certain period without 

failure. It is the complement of a distribution function. The reliability function for the proposed CTIW distribution is 

given as  

           1 1 e 1 e 1 2e ;
t t t

R t F t t
                     

ℝ .    (12) 

The hazard rate function  h t , also known as the force of mortality rate or failure rate. The hazard rate is the ratio of 

the density function to the reliability function. The hazard rate function for the CTIW distribution is obtained as the 

ratio of (6) to (12) and is  

  
        

      

1
e 1 6 e 1 e

;

1 e 1 e 1 2e

x x x

t t t

x

h t t

  

  

   

  

  



    



  

      
          

ℝ .    (13) 

The plots of reliability and hazard rate functions, for different values of the parameters, are given in Figure 2 below 

Figure 2: The Reliability and Hazard Rate Functions of Cubic Transmuted Inverse Weibull Distribution 

 
(a) The Reliability Function 

 
(b) The Hazard Rate Function 

The hazard rate plots show that the distribution has increasing as well as decreasing hazard rates. 

4. Order Statistics 

Order statistics is a useful branch of statistics and helps study the behavior of extremes in random sampling from some 

probability distribution. In this section we will discuss the distribution of order statistics when a random sample is 

available from CTIW distribution. Suppose that 1 2, , , nX X X…  is a random sample of size n from some distribution, 

then 1: 2: :n n n nX X X  ⋯  are the order statistics. The distribution of rth order statistics is 

  
   

     1

:

!
1 ;

1 ! !

r n r

r n

n
f x f x F x F x x

r n r

 
         

ℝ . 

Now, using the density and distribution functions of CTIW distribution, the distribution of rth order statistics is 

 

 
   

        
                

1

:

1

!
e 1 6 e 1 e

1 ! !

e 1 e 3 2e 1 e 1 e 1 2e ,

x x x

r n

r n r
x x x t t t

n
f x x

r n r

  

     

   

     

  

  

    

 
     

       

               

  (14) 
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for x > 0 and 1,2, ,r n … . The distribution of the smallest and largest observations can be easily obtained by using r 

= 1 and r = n, respectively in (14). It is to be noted that for 0  , in (14), we can obtain the distribution of the rth 

order statistics from the inverse Weibull distribution. 

The moments of order statistics from CTIW distribution can be numerically computed from (14) for specific values of 

the parameters. Specifically, the mean and variance of order statistics for 2  , 4   and different values are given 

in Table 1 and Table 2 below. 

Table 1: Mean of Order Statistics from Cubic Transmuted Inverse Weibull Distribution 

λ n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 

–0.75 

1 2.569          

2 1.978 3.161         

3 1.786 2.361 3.561        

4 1.690 2.077 2.644 3.867       

5 1.631 1.925 2.304 2.872 4.116      

6 1.591 1.831 2.114 2.494 3.061 4.327     

7 1.561 1.767 1.992 2.276 2.657 3.222 4.511    

8 1.539 1.721 1.907 2.133 2.420 2.798 3.364 4.674   

9 1.520 1.685 1.845 2.031 2.260 2.548 2.924 3.490 4.823  

10 1.505 1.657 1.797 1.955 2.144 2.376 2.662 3.036 3.603 4.958 

–0.25 

1 2.490          

2 1.982 2.999         

3 1.817 2.313 3.341        

4 1.729 2.078 2.548 3.606       

5 1.674 1.952 2.268 2.735 3.824      

6 1.634 1.871 2.114 2.422 2.891 4.010     

7 1.604 1.813 2.014 2.247 2.553 3.027 4.174    

8 1.581 1.770 1.943 2.133 2.362 2.667 3.147 4.321   

9 1.561 1.736 1.889 2.051 2.236 2.463 2.769 3.255 4.454  

10 1.545 1.708 1.847 1.988 2.144 2.327 2.554 2.861 3.353 4.576 

0.25 

1 2.411          

2 1.994 2.829         

3 1.854 2.274 3.106        

4 1.777 2.086 2.463 3.320       

5 1.725 1.982 2.242 2.610 3.497      

6 1.688 1.913 2.120 2.364 2.733 3.650     

7 1.659 1.862 2.038 2.228 2.467 2.840 3.785    

8 1.635 1.823 1.979 2.137 2.318 2.556 2.935 3.906   

9 1.616 1.792 1.933 2.071 2.220 2.397 2.635 3.020 4.017  

10 1.599 1.766 1.896 2.020 2.148 2.292 2.468 2.707 3.099 4.119 

0.75 

1 2.332          

2 2.014 2.651         

3 1.898 2.245 2.853        

4 1.832 2.097 2.394 3.007       

5 1.787 2.011 2.225 2.506 3.132      

6 1.754 1.954 2.127 2.322 2.598 3.239     

7 1.728 1.911 2.061 2.215 2.402 2.677 3.332    

8 1.706 1.877 2.011 2.143 2.288 2.471 2.746 3.416   

9 1.688 1.850 1.973 2.089 2.210 2.351 2.531 2.807 3.492  

10 1.673 1.827 1.941 2.046 2.152 2.268 2.405 2.584 2.863 3.562 

Table 1 above contains the mean of order statistics for different values of n, r, and λ. From this table we can see that 

for fixed n and λ, the mean of order statistics increases with an increase in r. Further, for fixed r and λ, the mean of 

order statistics decreases with an increase in n. We can also see, from Table 1, that for fixed n and r, the mean increases 
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with an increase in λ when 2r n and decreases with an increase in λ for 2r n . The variance also shows a trend 

similar to the mean except for r = 1 when n and λ are fixed. 

Table 2: Variance of Order Statistics from Cubic Transmuted Inverse Weibull Distribution 

λ n r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 

–0.75 

1 1.665          

2 0.329 2.302         

3 0.149 0.469 2.738        

4 0.087 0.224 0.553 3.092       

5 0.058 0.132 0.277 0.608 3.404      

6 0.043 0.086 0.170 0.311 0.649 3.688     

7 0.034 0.060 0.114 0.198 0.334 0.683 3.952    

8 0.028 0.045 0.081 0.137 0.218 0.350 0.715 4.199   

9 0.024 0.035 0.060 0.100 0.155 0.231 0.362 0.744 4.434  

10 0.022 0.029 0.046 0.075 0.116 0.168 0.240 0.372 0.773 4.657 

–0.25 

1 1.280          

2 0.242 1.802         

3 0.118 0.325 2.188        

4 0.076 0.154 0.386 2.509       

5 0.056 0.095 0.182 0.436 2.790      

6 0.044 0.067 0.112 0.205 0.478 3.044     

7 0.037 0.051 0.078 0.126 0.224 0.515 3.277    

8 0.032 0.041 0.059 0.088 0.138 0.240 0.549 3.495   

9 0.028 0.034 0.047 0.066 0.096 0.148 0.255 0.581 3.699  

10 0.025 0.029 0.038 0.052 0.072 0.104 0.157 0.269 0.611 3.893 

0.25 

1 0.883          

2 0.170 1.247         

3 0.093 0.209 1.536        

4 0.065 0.103 0.243 1.784       

5 0.051 0.068 0.114 0.275 2.004      

6 0.043 0.051 0.073 0.125 0.304 2.204     

7 0.037 0.041 0.053 0.078 0.136 0.332 2.388    

8 0.033 0.035 0.042 0.056 0.084 0.147 0.358 2.561   

9 0.030 0.031 0.035 0.044 0.059 0.089 0.157 0.382 2.722  

10 0.028 0.027 0.030 0.036 0.046 0.063 0.094 0.166 0.405 2.876 

0.75 

1 0.473          

2 0.113 0.630         

3 0.068 0.123 0.760        

4 0.051 0.068 0.135 0.874       

5 0.042 0.047 0.071 0.146 0.978      

6 0.036 0.037 0.048 0.074 0.156 1.074     

7 0.032 0.031 0.037 0.049 0.078 0.166 1.164    

8 0.029 0.027 0.030 0.037 0.051 0.081 0.176 1.249   

9 0.027 0.024 0.025 0.030 0.038 0.053 0.084 0.185 1.330  

10 0.025 0.021 0.022 0.025 0.030 0.039 0.054 0.088 0.193 1.407 

 

5. Estimation of the Model Parameters 

In this section, we have discussed the maximum likelihood estimation of the parameters of CTIW distribution. Suppose 

that a random sample of n observations is available from the CTIW distribution. The likelihood function is then 
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The maximum likelihood estimates of the parameters are obtained by differentiating (15) with respect to the unknown 

parameters, equating the derivatives to zero, and simultaneously solving the resulting equations. Now, the derivatives 

of the log-likelihood function with respect to the unknown parameters are 
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The maximum likelihood estimators of ,   and   can be obtained by equating the derivatives in (16)–(18) to zero 

and numerically solving the resulting equations. The asymptotic distribution of maximum likelihood estimators is 

given as; see for example Rehman et al. (2018a,2018b) and Sarhan and Zaindin (2009); 
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where entries of the variance–covariance matrix can be obtained by inverting the Fisher information matrix; whose 

entries are given as  2
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6. Simulation Study 

In this section, we have presented a simulation study to see the performance of the estimates. The simulation study is 

conducted by drawing random samples of sizes 50, 100, 200, 500, and 1000 from CTIW distribution with 1  , 

3   and 1   . For each generated sample of a specific size, the maximum likelihood estimates of the unknown 

parameters are computed; by using the “bbmle” package of R, see Bolker and Bolker (2017); and then the average 

estimate is computed by using 
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The mean square errors of the estimates are computed as 
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The results of the simulation study are given in Table 3 below 

Table 3: Average and Mean Square Error of Estimates for Different Sample Sizes 

Sample 

Size 

Estimate Mean Square Error 

α ϴ λ α ϴ λ 

50 0.990 3.030 –0.818 0.017 0.252 0.262 

100 0.996 3.014 –0.895 0.007 0.115 0.102 

200 0.994 3.008 –0.927 0.003 0.055 0.046 

500 0.996 3.000 –0.952 0.001 0.021 0.017 

1000 0.996 3.002 –0.967 0.001 0.010 0.008 

 

The results of Table 3 show that the estimates converges to the population parameters as the sample size increases. 

We can also see, from the above table, that the mean square error of the estimates decreases with an increase in the 

sample size. 

7. Real Data Applications 

In this section, we have used some real data sets to see the suitability of the proposed CTIW distribution. We have 

used the following five data sets for the analysis 

1. Carbon Fiber Data used by Badar and Priest (1982), Abu El Azm, et al. (2021) 

2. Breast Cancer Data used by Mansour et al. (2015) and Pobočíková et al. (2018) 

3. Repairable Items Data used by Murthy et al. (2004) 

4. Glass Fiber Data used by Afify et al. (2017) 

5. Turbocharger Data used by Xu et al. (2003) and by Afify et al. (2017) 

Some useful summary measures of these data sets are given in Table 4 below 

Table 4: Summary Measures of Various Data Sets 

Data Min Q1 Median Q3 Max Mean Skewness Kurtosis 

Carbon Fiber 1.312 2.098 2.478 2.773 3.585 2.451 –0.027 –0.144 

Breast Cancer 12.000 36.000 42.000 50.000 90.000 43.650 0.678 2.096 

Repairable Items 0.110 0.717 1.235 1.942 4.730 1.542 1.231 1.036 

Glass Fiber 0.550 1.375 1.590 1.958 2.240 1.507 –0.878 0.800 

Turbocharger 1.600 5.075 6.500 7.825 9.000 6.253 –0.638 –0.489 

 

We have fitted the CTIW distribution alongside the transmuted inverse Weibull (TIW) and inverse Weibull (IW) 

distributions on these data sets. The goodness of fit of the distributions has been determined by computing Akike 

information criteria (AIC), corrected AIC (AICc), and Bayesian information criteria (BIC); see Brewer et al. (2016) 

for these criteria. The maximum likelihood estimates of the model parameters of CTIW, TIW, and IW distributions for 

different data sets are given in Table 5 below. From this table, we can see that the CTIW distribution seems a reasonable 

fit for all the data sets as it has the smallest value of the log–likelihood function in comparison with the other two 

distributions. The values of various fitted criteria for different distributions and for different data sets are given in 
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Table 6. The results of this table also indicate that the CTIW is the best fit for all five data sets. We have, also, 

constructed the plots of empirical distribution functions for the five data sets alongside the fitted distribution functions 

for different distributions. These plots are given in Figure 3 below. The figures also indicate that the CTIW distribution 

is the best fit for all of the data sets. 

Table 5: Maximum Likelihood Estimates of Model Parameters of Different Distributions 

Data Sets Distribution Parameter Estimate SE Log-likelihood 

Carbon Fiber 

CTIW 

α 3.500 0.357 

–57.852 ϴ 2.144 0.061 

λ 0.803 0.158 

TIW 

α 4.588 0.374 

–60.609 ϴ 1.939 0.067 

λ –0.751 0.160 

IW 
α 4.127 0.338 

–63.624 
ϴ 2.144 0.066 

Breast Cancer 

CTIW α 2.369 0.137 

–624.96 ϴ 35.638 0.949 

λ 0.876 0.023 

TIW α 2.990 0.149 

–636.91 ϴ 29.989 0.961 

λ –0.854 0.078 

IW α 2.678 0.135 
–646.52 

ϴ 35.855 1.144 

Repairable Items 

CTIW α 0.921 0.129 

–43.483 ϴ 0.765 0.120 

λ 0.824 0.198 

TIW α 1.197 0.145 

–44.893 ϴ 0.507 0.095 

λ –0.799 0.212 

IW α 1.073 0.131 
–46.376 

ϴ 0.766 0.139 

Glass Fiber 

CTIW α 2.537 0.236 

–38.487 ϴ 1.268 0.052 

λ 0.840 0.136 

TIW α 3.221 0.256 

–43.151 ϴ 1.094 0.056 

λ –0.774 0.156 

IW α 2.887 0.234 
–46.853 

ϴ 1.264 0.058 

Turbocharger 

CTIW α 1.708 0.203 

–97.012 ϴ 4.738 0.361 

λ 0.797 0.176 

TIW α 2.176 0.223 

–99.393 ϴ 3.815 0.347 

λ –0.743 0.194 

IW α 1.944 0.203 
–101.591 

ϴ 4.672 0.405 
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Table 6: Selection Criteria for Different Distributions 

Data Set Distribution –2LL AIC AICc BIC 

Carbon Fiber 

CTIW 115.705 121.705 122.074 128.407 

TIW 121.219 127.219 127.588 133.921 

IW 127.247 131.247 131.429 135.715 

Breast Cancer 

CTIW 1249.927 1255.927 1256.086 1265.057 

TIW 1273.820 1279.820 1279.979 1288.950 

IW 1293.037 1297.037 1297.116 1303.124 

Repairable Items 

CTIW 86.965 92.965 93.888 97.169 

TIW 89.786 95.786 96.709 99.989 

IW 92.751 96.751 97.196 99.554 

Glass Fiber 

CTIW 76.975 82.975 83.382 97.169 

TIW 86.303 92.303 92.710 99.989 

IW 93.707 97.707 97.907 99.554 

Turbocharger 

CTIW 194.025 200.025 200.691 205.091 

TIW 198.786 204.786 205.453 209.853 

IW 203.184 207.184 207.508 210.561 

 

Figure 3: Empirical and Fitted Distribution Functions 

Carbon Fiber Data 

 

Breast Cancer Data 

 

Repairable Items Data 

 
Glass Fiber Data 

 

Turbocharger Data 

 

 

8. Conclusions 

In this paper, we have proposed a new cubic transmuted inverse Weibull (CTIW) distribution by adding an extra 

parameter to the well-known inverse Weibull (IW) distribution. Some useful properties of the proposed CTIW 

distribution are discussed. They include explicit expansions of moments, the quantile and the generating functions, 

reliability analysis, etc. The distribution of order statistics for CTIW distribution is also obtained alongside numerical 

computation of mean and variance of different order statistics for different sample sizes and for different values of the 

parameters. The model parameters have been estimated by using the maximum likelihood estimation method. A 

simulation study has been conducted to see the consistency of the estimation process. It has been shown, by using five 
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real data sets that the proposed model is a better fit than other competitive models. We hope that the proposed CTIW 

distribution may be highly competitive in real-life data sets and will be extensively used in different areas of statistics. 
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