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Abstract

In this paper, the authors introduce a new threamater lifetime probability distribution known. @phthoroughly
examine and describe this distribution, providingights into its characteristics and its suitapifior various
applications. This newly constructed distributiotésisity function exhibits characteristics of beyimmetry and
right-skewness, providing modelling flexibility ass a range of datasets. Because of its skewneéficiamt,
which can take both positive and negative valuewjde range of data asymmetries can be represemtes.
Marshall-Olkin generated log-logistic distributisrtorresponding hazard rate displays a variethafacteristics,
including monotonic increase, increasing-constaatistant, upside-down, and monotonic drop. Becafists
adaptability, the distribution can successfully toap various risk or failure rate patterns acrasget Using a
number of techniques, the researchers expand istisbdtion to the bivariate domain. Its utility imodelling
multivariate lifetime data and inter-variable r@aships is improved by these extensions. The rekees use the
maximum likelihood method to estimate the paransetérthe distribution, which ensures reliable affdative
parameter estimation from observed data. They aartyan extensive simulation research to analyaselsiand
mean squared errors in a range of scenarios angleaizes in order to evaluate the finite behaviolithe
maximum likelihood estimators. In real-life andiabllity applications, this meticulous methodologids in
evaluating the estimators' precision and depeniiabBecause it may offer a comprehensive and negnc
knowledge of high financial risks, the Peaks OvBaadom Threshold Value-at-Risk (PORT-VaR) studyrigial
for evaluating Norwegian fire insurance claims.sTfimancial analysis is given extra consation

Key Words: Risk Analysis; Log-logistic model; Peaks Over anBam Threshold; Marshall-Olkin model,
Simulations; EstimatiorReliability Applications;Modeling

1. Introduction

The log-logistic (LL) probability model is well kmm for being a flexible statistical tool that mag bsed in many
different fields, such as actuarial science, bussindiology, economics, engineering, insurance, letaisefulness
extends to a wide range of applications, includingluating Internet traffic patterns, analyzingibass size statistics,
and modelling income and wealth disparity. Firdeneesearch by Harris (1968) and Atkinson and darri(1978)
shown that the LL distribution is a useful tool foodelling wealth and income distributions. Its tsenodel business
size data was further upon by Corbellini et al.020

The LL model has been adopted in research such, aemonstrating its value in reliability and lifssting tests. The

LL distribution is especially useful for modellifyocesses where the risk declines with time becafige notable
hazard rate function (HZRF), which monotonicallgidases over time. Additionally, it is thought efaamodel that,
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as Chahkandi and Ganjali (2009) explore, descriégiglual lifespan at advanced ages. Bryson (19@#drthat the
LL distribution provides a heavy-tailed modellirechnique, in contrast to typical probability distriions like the
exponential (exp), Weibull (W), and Gamma (Gamjriistions. Researchers like Durbey (1970) haveahghly
examined its interaction with other distributiofike the Burr XIl and Compound Gamma models, offgrgreater
insights into its adaptability and use in a varietycontexts. The continuous random variglflés characterized as
following the LL (Lomax) model with a single scglarameter cc if its cumulative-distribution-functi6CDF) for
4 > 0 is given by:

1 1)
Wely) =1-—15
(Ey +1
where ¢ > 0 is the parameter of scale, respectively. The ity density function (PDF) corresponding to ¢Bn
be obtained through the following formula

1 1 (2)
w.(y) =2 ;W

When modelling survival data, financial lossesdarations where the rate of occurrence declines time, this
approach is especially helpful in situations wheagiables have big tails. The distribution's scatel form are
influenced by the parameter cc, which gives modgliarious datasets and phenomena flexibility. @udtdh the LL
and Lomax (Lox) distributions are parameterizededéntly, they are related by their cumulative rilisttion
functions (also known as CDFs) and have compasiidpes, especially as the Lomax model's shape pteatands
to infinity. There is an important theoretical tédaship between both distributions that is highted by this
convergence. Conversely, the LL and Burr Type Astributions have comparable forms and are usesinmilar
contexts, particularly when modelling severe evantsheavy-tailed data. Their link is not as cleatras it is in some
other pairings of distributions, despite these kirties. Yousof et al. (2018) state that the Malkblkin-generated-
G family (MOG-G) class's cumulative distributiomfition (PDF) is as follows:

t-[r-w,@] ©)

1-b [1 - Wg(y)]a S

Fb,a,g(/y’) =

where W, (y) is the CDF related to the base-line model ane (1 —b). Then, the new PDF based on (3) is

derived as

a—1

wo(®) [1- Wy (v)] e (4)
f-pfi-wwl}

The Marshall-Olkin-generated LL (MOGZLL) CDF is gin by
1 —2a
1- (Ey, + 1)

-1 —2a
1-b (E/y) + 1)
where ¥ = (b,a,c). This work is primarily focused on improving thelagtability of the LL distribution by
combining it with a more versatile family of didtutions. The identification problem related to tM®©GZLL
distribution is precisely calculating the modelgraeters from the data that is observed. This agdlestems from
the fact that the parameters may affect the didioh's structure in comparable ways, which mayltes trade-offs
or correlations between them. As a result, figudng each parameter exactly from the distributiboliserved data
becomes difficult. Parameter identification is ughced by a number of factors, including the charastics of the
data under analysis. For instance, precise paramgtienate may be hampered by small sample sizesrmtrained
data ranges. Depending on the details of the dadadehe methodology selected, various estimagiaigniques, such
as maximum likelihood, method of moments, or Bagesipproaches, may produce variable estimates,weiétth
varying levels of identifiability and accuracy. Reschers often confine parameters' values or éstapermanent

fbap(#) = ba

Fy(y) = x>0, (5)

relationships between them based on existing krdydeor pragmatic considerations in order to inaeas
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identifiability. By using statistical tests to euate the MOGZLL distribution's goodness of fit, oren improve
parameter estimates and validate model assumpfitvesbehavior of parameter estimators in varioesaros and
data settings can be investigated through simulatixperiments, which provide useful insights inbe bverall
identifiability of the Probabilistic MOGZLL modeAdditionally, the accuracy of parameter estimatiomeal-life

and reliability applications can be improved byngsiobust estimating approaches that are lessstilslecto outliers
or skewed data distributions.

The Probabilistic MOGZLL model is driven by multipprimary goals in real-life and reliability implemtations:

l. By adding new parameters or changing the onesithatlready there, the Probabilistic MOGZLL model
gets better at describing the different levels efkedness or flatness that are seen in probability
distributions. This increased adaptability makepdssible to match datasets with varying kurtotic
properties more precisely, increasing the modsksulness in a variety of contexts.

I. The model's capacity to add skewness to both syricaketind asymmetrical distributions is a key
driving force. The MOGZLL framework offers toolsrfefficiently controlling skewness, making it
possible to model datasets with intended or intiasymmetry. In domains like finance, economics,
and social sciences, where skewed distributionstygrieal and essential for realistic portrayal,sthi
characteristic is very helpful.

Il. The Probabilistic MOGZLL model excels in constragti heavy-tailed densities that maintain
computational tractability without excessively lomgils. This balance between tail behavior and
practicality is crucial for accurately modeling Irite and reliability datasets characterized byahe
tailed distributions, such as income distributiomsireme event occurrences, and environmental data.
By realistically depicting tail behavior, the prdiilsstic MOGZLL model enhances the reliability and
robustness of statistical analyses.

V. Being better at goodness-of-fit metrics than presidL extensions is one of the main goals of the
probabilistic MOGZLL model. The probabilistic MOGZXLmodel shows its superior capacity to capture
the underlying structure of varied datasets throcgimparative studies and empirical validation. This
capacity not only confirms its effectiveness bugoaknables practitioners and academics to obtain
significant insights and make defensible decisimased on trustworthy statistical studies.

Although the probabilistic MOGZLL model provides adaptable structure for evaluating survival angedelability

information, it is critical to acknowledge its ctrasnts and investigate opportunities for expansiod improvement.
Improvements that strengthen the probabilistic MQGZodel's adaptability, resilience, and suitapifior various

data scenarios lead to a better comprehension et application of the model in real-life and addility statistical

analysis. Its relevance in tackling modern anafytdifficulties is ensured by ongoing study intopiraving its

parameters and enhancing its capabilities. Depgmutin(5), the PDF of the new model is expressed as

1 —2a-1
(1+29)
- 1 —2a
[1 -b (1 + Ey) ]
Finding the moments of the distribution definedtlhg provided PDF (mean, variance, skewness, artddisyy is the

first step in performing moment analysis. This wbirclude utilizing integration techniques to derifiormulas for
these moments for the PIJE,(@) and investigating their dependence on paraméter,s. Gaining knowledge of

1
fo(9) = 2ab- : ©®)

these times helps one understand the distributsbnisture, central tendency, and spread. Exarhimélistribution's
asymptotic behavior as y approaches 0 and y appesac. Understanding the distribution's tail behaviod an
convergence characteristics under various paramsetdigurations may be possible with the use of #pproach.

Our new probability model's HZRF can be obtainediivjding f,, (4)/Fw (4).

We carefully created Figures 1 (right) and 1 (Iefthrder to examine the adaptability and capaediof the MOGZLL
PDF and the associated hazard rate function (HZRR¢se graphic depictions offer important insigint® the
features and behavior of the probabilistic MOGZLbdsl at different parameter values. Several plotsving the
MOGZLL PDF for carefully selected parameter valass shown in Figure 1 (right). We clarify how vdieas in the
form, position, and size characteristics affectghabability distribution by methodically varyingdse parameters.
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These visualizations allow a thorough analysishefadaptability of the MOGZLL PDF, demonstratingvhwell it
fits a variety of data patterns and modelling regmients, from skewed to symmetrical distributions.

This viewpoint is enhanced by Figure 2, which digglrelevant MOGZLL HZRF graphs. This function poms
insights into the dynamic risk associated with thedelled phenomena by showing the rate at whicimteveccur
over time. Figure 2 provides a thorough grasp &f tiee model captures temporal patterns in dataxaynaing how
changes in MOGZLL parameters affect the shape majdctory of the HZRF. The capacity of the prohabd
MOGZLL model to account for a broad variety of halzaate behaviors, including both monotonic and-namotonic
trends, is demonstrated by these figures. Its atddjpy makes it more useful for survival modelliagd reliability
analysis.

When combined, Figures 1 (right) and 1 (left) offigpotent means of examining the adaptability asefuiness of
the probabilistic MOGZLL model in statistical resefa These visual aids offer intuitive insightsoinhe MOGZLL
PDF and related HZRF across different parametefigumations, which facilitates decision-making antbdel
selection. Furthermore, fresh research (Algaseah ,e2024) indicates that the probabilistic MOGZiodel may be
able to produce novel compound distributions indite G family. Its usefulness in survival analysisfurther
supported by studies conducted by Loubna et aR4R0reghri et al. (204), and Shehata et al. (2024 )well as by
applications in actuarial risk analysis, valueisk-modelling, and medicine (see Bhatti et al. 2(8em et al., 2023;
Alizadeh et al., 2023; Alkhayyat et al., 2023; Yoliet al., 2022, 2023a,b; Elbatal et al., 2024;Kkdas et al., 2024)
further underscore its relevance across diversesfie

Numerous univariate probabilistic MOGZLL model exdmns are presented in the literature, demonsgdtie
adaptability and versatility of the framework. Imagions on the Weibull LL distribution by Tahir @t (2015), the
one-parameter LL system of densities by Cordeiralet(2018), the odd LL and Zografos-Balakrishnan L
distributions by Altun et al. (2018a), and the Ragth and exponential derived LL distributions bpiEly and Yousof
(2018) are some of the notable advances. New \tararthe Weibull LL distribution have been studladNasir et
al. (2018) and LL inverse Rayleigh distributionsyddeen studied by Goual and Yousof (2020). Whkantas a
whole, this research provides a wide range ofibligions to the MOGZLL framework, increasing itefigness in
other fields. Furthermore, recent research by ibradnd Yousof (2020), Yadav et al. (2020), and @gdl. (2019)
has advanced the theoretical framework and apmigglications if the LL distribution family. Thesdudies
demonstrate the capacity of probabilistic MOGZLLdats to meet challenging modelling problems in sahviéelds
and emphasize the models' dynamic evolution andioggignificance in modern statistical research.

In light of the above descriptions and the trditsven in Figures 1 (left) and 1 (right):
Regarding the PDF for MOGZLL (Figure 1 (right)):

l. According to this description, the probability deéypgunction shows one noticeable peak, and its tai
skew more towards the right side of the distributio the extent that they do. This pattern suggests
distribution that is skewed and has a distinct mode

Il. The probability density function in this instana@ed not have a clear peak, but it does have asymomet
tails that are more prominent on the right sideiswoints to a distribution with a rightward skenda
an undefinable apex.

Il. The new density can also be “symmetric densityls #hows a skewness-free distribution with a
balanced shape.

Regarding the HZRF MOGZLL (Figure 1 (left)):

l. "J-HZRF": This is probably a reference to a hazamde rate function with a "J"-like form. This patte
indicates a decreasing hazard rate at first, falbwy a period of relative stability, and then &eot
significant fall.

Il. "Decreasing-constant HZRF": This description potota hazard zone rate function in which the réte o
hazard lowers initially, then steadily rises oviere.

Il. "Upside down HZRF": This expression describes afthzone rate function that seems to be an upside-
down "U" since it increases and then drops.

V. "Decreasing HZRF": This indicates a hazard zone fahction in which there are no appreciable
variations, and the hazard rate continuously dvagstime.
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These thorough explanations provide light on théous patterns and traits that the MOGZLL PDF argRA
display. They highlight these functions' relevaricemany statistical analyses and modelling situegidy

providing a deeper understanding of how these fonstoperate under various parameter settings and

circumstances.
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Figure 1: Some PDplotsand HZRF plots under sonparameter’s value

The Mean of Order P (MOOP) and PORT-VaR approaalesxtensively used in the literature in a varadtyectors,
such as risk analysis, insurance, reinsurancepeatticine. In actual applications, these techniduse® evolved into
essential tools for comprehending and controlliegese occurrences and dangers. Foundational viewgoon loss
modelling and extremal occurrences are presentédugman et al. (2012) and Embrechts et al. (20d3pectively.
The foundation for useful applications of MOOP irsurance situations is laid by Klugman et al. (301zho

investigate several models for managing and fotegamsurance losses. For the purpose of applPi@iRT-VaR,

Embrechts et al. (2013) explore the theory of emtrleevents and provide critical insights into tledavior of extreme
values. The occurrence and distribution of extrexang financial events are examined by Jansen ardrigs (1991)
and Poon and Rockinger (2003). Their study is dafig@ertinent to financial contexts for both POR&R and

MOOP studies. Poon and Rockinger (2003) examinestdéstical characteristics of extreme value distions in

financial markets, while Jansen and de Vries (198adk into the distribution of extreme financiatues. These
studies emphasize how crucial it is to comprehertteme value behavior in order to quantify and ngenask

accurately. The works of Beirlant et al. (2004) avfidNeil et al. (2015) provide sophisticated appie and
applications in extreme value theory and risk managnt. VaR and associated measurements are jagt af fthe

guantitative risk management strategies that anmtighly covered by McNeil et al. (2015).

The methods for evaluating extreme values andisii provided by Beirlant et al. (2004) are crufoa successfully
implementing MOOP and PORT-VaR in real-life andafeility scenarios. Their contributions, which imporate

cutting-edge statistical techniques, improve ttsfliemce of risk management strategies. Hosking\&iatlis (1987)

advance our knowledge of quantile estimation teples and heavy-tail phenomena. Their work is ingydrfor

reliability engineering and other domains wheree@xe values are important for evaluating tail riSksey facilitate
the real-life and reliability implementation of POR/aR in diverse risk assessment contexts by affetéchniques
for precisely estimating quantiles in heavy-taitkstributions.

For more recent advancements in statistical mogelid risk analysis see Rasekhi et al. (2022),adeen al. (2022),
Shrabhili et al. (2021), Mohamed et al. (2024), Hashour et al. (2023), Elbatal et al. (2024), Hanmédaal. (2023).
Finally, by introducing an extended Gompertz motted, study of Alizadeh et al. (2024) significandighvances the
fields of reliability engineering and risk analysithe authors offer a thorough methodology for coghpnding and
handling data on high stresses by combining stalgthreshold risk analysis with MOOP assessmieott.scholars
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and practitioners working with extreme value scersathe paper's creative approach and usefulegijains provide
insightful information. On the basis of these resfuture studies could increase the validity eardye of applications
of the model.

The increasing corpus of research on MOOP and P@&H -together with new developments in statisticatielling,
highlights how risk analysis techniques are chaggirhrough the integration of novel models and némphes with
traditional approaches, scholars and practitiomars improve their prediction power and make bettfarmed
strategic choices. All of these contributions engiehow important it is to have strong risk mamaget plans and
to keep developing new techniques to deal with dimaied and extreme risk situations in a varietynofustries.

2. Properties
2.1 Asymptotic and Quantile function (QF)

As y — oo the term(l + ly) = ly. Thus, the density function can be approximated by
c c

(1 )—Za—l
Y
_ 1 —2a
[1 -5(z+) ]
—2a — —2a
For largey, (l y) becomes very small, 90— b Gy) =~ 1. Thus, we have:

fo(4) = 2ab (%y)_za_l-

1
fg(y) = 2ab; 5.

This indicates that the density decays polynomsa} a> o, with a rate proportional tg~2*"*. As4 — 0, the term

1+ %y ~ 1. Hencef,,(¢) = %a The QF of Y can be derived by inverting (5), then
- 1

1 “a

y=!)[ _(1—u)] -1, (7)
u 1—bu

Equation (7) has many applications, and it candesldor simulating the new model.

2.2 Combinations

Let
2a

) =1-|(ur1) |

o= |

Then, by expanding the quantity, () we get
+o0

and

v

=1+ Y () o[- (Guer) |,

v=0
which can be repressed as

v

@ac(y) = i ¢y [1 - (%y + 1>_2] ®)

¢, = (~1)"*! (Zva) lv> 1.

Analogously, the quantitbe,a,C(y) can be expanded, then we have

where ¢, = 2 and
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+o0

Bous) = 1-5- > (D) o[- (1424) ],

v=0

Byac(y) = i d, [1 - (%y + 1)_2]V, ©)
-

2
4, = (1-5) (%) -0
Then employing equation (8) and equation (9), e €DF of the probabilistic MOGZLL model can be piified
as

then

where b = d, and

Fo(o) = ) €, H(9), 0
v=0

Where functionH,,.(¢) = W(y) is the CDF of the well-known exponentiated-LL fgebd ) model with power

positive parameter and
v
1 1 Co
Cc,=— cv——Edi C,_,||C, =— andv > 1.
a dy dy

i=1

By differentiating (10), we get

+o0
Fo@) = ) Cohn ) a
v=0
where h,,; .(¢) is the exp-LL.

2.3 Moments
The P™ ordinary moment ofy is given by

Up = E(Y”?) = j ¥ f,(W)dy.

Then, we obtain

+o0 P
Uy = Z cg'v“) B(L+v,1+9—=P)| p, (12)
v=0 9=0
where
(Pv+1) P
G = e+ -0 ()
and
1
B(1+C;,1+C,) = f 3 (1 —y)2dy.
0
Then,
400 1
E) = Z Z cC Y B(1 +v,9),
v=09=0
+oc0 2
E(Y?) = Z Z B +v,9-1),
v=09=0
400 3
E(Y?) = Z z Gy B +v,9 - 2),
v=09=0
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and
+00 4
E(Y*) = Z Z Ci‘f;,”“) B(1+v,9 —23),
v=09=0

where E(Y) = U, is the mean ofy . The P incomplete moment, sayp_y(T) , of Y can be expressed, from
(11), as

T +o T
Ipy(T) = f fly) yPdy = Z c, f ¥ Wi (9)dy
® v=0 e

then
+o00 P
(P1+v)
Ipy(T) = Z Z Cy  Br(1+v,1+0- Pl 155y
v=0 9=0
where

B(1+Cy1+C,) = .]-ycl (1 - )% dy.
0
For # = 1, we have

+o0 1
Liy(T) = 2 c%“’l) B,(v+1,9),
v=0 9=0

which is the first order of the incomplete moment.

2.4 Moment generating functions (GF) and other funtons
The moment generating function (MGF) can be derivgdg (8) as
+o0

M‘y(T) = Z Cv M(1+v),c(T)'
v=0

where M(,,,) () is the MGF of the expLL model, then

+o00 P
(Pv+1)
My (T) = Z Z Crop B(1+v,1+09— Pl 155y

v,P=0 9=0
where
CEE:‘_;,H) =77 CEE'HV) /P!

The first P derivatives ofMy(T) , With respect ta" at T = 0, yield the first? moments about the origin, i.e.,

P

Up = E(y%) = ;?My(rr)rr =0andP =1.23,...
The cumulant generating functions (CUGF) day , can be obtained from
& [
Kp = —log Z cvﬁj;“) Bv+1,1+9—-P)||T7=0andP =12,...

v,P=0 9=0
The F'CU is the meany; = ‘111 ), the 2¢CU is the variance, and tlRé" CU is the same as the third central moment
K; = U . But fourth and higher order CUs are not equaleiatral moments, that being said

Ky = u;'Kz = uz - ‘u,lz =U,,
and

K; = Uy — 3U,U; + 2UT = Us.
Then,
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P-1

’ ! ?_1
Kp|P=21=Up— ) Up_, (m_l)vm.

m=0

2.5 Reversed residual (RVR) life function
The n™ moment of the RVR life, say

T,y = I3 0 (% n) ——

F (T)
where
T
I§(yln) = f dF (y) (T — y)".
0
Then,
+oc0 P
_ 1 eer \ (v+1n)
Ty = ﬁ T, YPB,(v+11+9 —P)| (1>p)
v=0 9=0
where

n

d=0

3. Graphical assessment

Graphically and through rigorous statistical analysvolving biases and mean squared errors (MS#s)y;onducted
extensive simulation experiments to assess thevimhaf maximum likelihood estimators (MAX-LEs) fdahe
MOGZLL distribution under varying sample size§ =5 100,150..,750)- 1NiS empirical investigation aimed to provide
insights into the reliability and precision of parater estimation in practical scenarios.

The simulation procedure followed a structured apph:

Algorithm I:
We generatedV =1000 samples of size from the MOGZLL distribution, leveraging the fortation detailed in
Equation (7).

Algorithm II:

We calculated the Maximum Likelihood Estimators (MAES) for the parametetE=b,a, and c for each of thefe
=1000 samples. These estimators are importanubedaey try to find the best values®¥f= b, a, ¢ so that the
probabilistic MOGZLL model maximizes the probalyiliaf detecting the sampled data.

Algorithm Il

We computed the Standard Errors (SEs) corresponditite MAX-LES obtained in Algorithm Il in ordeo assess
the accuracy of our calculations. Across the=1000 samples, these SEs gave us a gauge ofatiability or
uncertainty in our parameter estimates.

Algorithm IV:
To guantify the accuracy of the MAX-LEs, we compligases and mean squared errors (MSEs) undesshenation

= b, a, c across the range of sample siz§§,-50,100,150..,750)- Biases, represented as "Bias" indicate the system

dewatlon of our estimates from the true paramedtuwes, while MSEs reflect the overall variabilégd precision of
these estimates.
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Figure 2 visually presents the outcomes of our Eitian study:

i The left panels of Figure 2 (first row fér second row fom, and third row forc) depict how biases
evolve with increasing sample size Generally, biases tend towards zeranamcreases, indicating
improved accuracy in parameter estimation withdadatasets.

ii. First row forb, second row for, and third row forc in the right panels of Figure 2 show the trend of
MSEs over various sample sizes n. MSEs drop witheising n, indicating improved consistency and
precision in estimating the three parameters.

These empirical results highlight how well the mbllistic MOGZLL model captures the underlying stiure of the
data at different sample sizes. The accuracy oMagimum Likelihood estimation in characterizingetMOGZLL
distribution is validated by the convergence ofsb&towards zero and the lowering of MSEs towastsedising
values. These understandings are essential foeatasland practitioners who want to use the prdisibiMOGZLL
model in practical statistical studies to ensunsttworthy inference and empirical data-based datisiaking.
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Figure 2: (first row) biases and MSEs for the pastanb,
(second row) biases and MSEs for the parameter
(third row) biases and MSEs for the paramec.
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4. Data Analysis

In this section, we want to demonstrate the prdistibiMOGZLL model's adaptability and practicalpdigation by
analyzing two real datasets. These datasets shawfiéxible the probabilistic MOGZLL model is in mamnalytical
contexts, in addition to providing real-life andiability instances. We performed a comparativelgsia against other
existing models, as shown in Table 1, in ordewutty fassess its efficacy. The first dataset analyzalled dataset I,
is from a 2004 study by Murthy et al. and is altbetfailure times of 84 aircraft windscreens.

Our goal in analyzing this dataset is to find oultaivfactors affect the durability and dependabibtifyaircraft
windscreens. To ensure operating efficiency, thepiiry is essential for improving aviation safetprglards and
optimizing maintenance methods. We now focus orofferational dynamics of aircraft maintenance bgneixing
dataset Il, which includes the service times ofa@8raft windscreens from the same study by Murhwl. By
examining service durations, we may spot pattems taends that help us plan maintenance operatiooie
effectively, reducing downtime and enhancing afitggarformance. Maintaining aircraft reliability dsafety requires
an understanding of the variables affecting serpegods, such as environmental considerationspooent wear,
and maintenance practices.

The analysis of potential outliers in both dataseds facilitated by box plots (BP), as shown inufég3. Notably,
Figure 3 showed a consistent distribution of valuigls no outliers, lending confidence to the datageustworthiness
and coherence. To examine the form of the dataowttimposing parametric assumptions, we used keleesity

estimation (N-KDE), as shown in Figure 4. This nargmetric technique visualized the distributioreatfires of the
data, providing insights into its underlying shapel dispersion. To delve deeper into the behavidne datasets
over time, we evaluated the Hazard Zone Rate Fam¢tZRF) with total time in test (TTIT) plots, abown in

Figure 5. The analysis of Figure 5 revealed a "nmmoally increasing" trend in the HZRF for bothtakets,
indicating a consistent pattern of hazard ratessactime. To test the dataset’'s normality, Quai@ilmntile plots
(QQP) were created and analyzed, as shown in Fyure

The data points' proximity to the diagonal liné-igure 6 revealed a near approximation to normalityich supported
the validity of following statistical studies. Figes 7 and 8 provide a detailed study of the twaskts.
l. The Estimated Probability Density Function (EPDRualizes the probability distribution of each
dataset, revealing the possibility of certain valbappening.
I. The Estimated Cumulative Distribution Function (BgBshows the cumulative distribution of data
values, offering a full perspective of observatitistribution across the dataset.

These analytical tools and visualizations not arigble a complete examination of the dataset'sttat features,
but also serve as a solid platform for deeper hisigand informed decision-making in aircraft mariatece
management and reliability assessment.

Table 1: Competitive models.

Model Abbreviation
Lox Lox
Exponentiated Lox exp-Lox
Kumaraswamy Lox KumLox
Macdonald Lox McLox
Beta Lox BLox
Gamma Lox GamLox
Topp-Leone Transmuted Lox TLTLox
Quasi TLTLox RTLTLox
Odd LL Lox OLLLox
Quasi OLLLox Q-ROLLLox
Quasi Burr-Hatke Lox Q-BHLox
Special generated mixture Lox SGMLox
Quasi MOGZLL Q-MOGZLL
Proportional reversed hazard rate Lox PRHRLox
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Table 1 is an invaluable resource in the fieldtafistical modelling, giving critical informatiorof model selection
and comparison, allowing for more informed decismaking during data analysis and interpretation. Wed the
"L-BFGS-B" optimization approach to estimate th&mmwn parameters of each model using maximum hikeld
estimation. We used several statistical criteriataluate the goodness of fit of these modelsudiny the Akaike
Information Criterion (AICR), Bayesian Informatid@riterion (BICR), Consistent AICR (CAICR), Hannan#@n

Criterion (HQIC), Anderson-Darling statisties{), and Cramér-von Mises statistp”). In general, smaller values
of these statistics suggest that the model fitsdidwa better. For computational tasks, we used'nfexLik" and
"goftest" subroutines in the R software environm&hese tools allowed us to execute the rigorongpedations and
statistical testing required for model evaluatidables 2 and 3 summarize our findings from anatyzire failure
time data. Table 2 shows the parameters' Maximukelihood Estimates (MAX-LES) and their related Stard
Errors. This table gives information about the mien and reliability of parameter estimates praztiérom the
probabilistic MOGZLL model for the failure time deset.

Table 3 shows the estimated log-likelihoods anfbédiht goodness-of-fit values for the failure tideda. These data,

including AICR, BICR, CAICR, HQICw", ande”, were critical in comparing the probabilistic MOG@Zmodel to
other fitted models. The probabilistic MOGZLL moaeinsistently produced the lowest values acrossethdteria,
demonstrating a better fit to the failure timesadat than alternative models. Similarly, for theviee times data, we
provided our study findings in Tables 4 and 5. €ablsummarizes the MAX-LEs and SEs derived frotin{jtthe
probabilistic MOGZLL model to the service times aaproviding a clear picture of parameter estimated
uncertainties.

Table 5 shows the estimated log-likelihoods anddgess-of-fit statistics for the service times detashe
probabilistic MOGZLL model was shown to have thethmatch for the service times dataset based oy oréaria,

including AICR, BICR, CAICR, HQICw", and¢". A detailed inspection of Tables 4 and 6 reveht the
probabilistic MOGZLL model routinely beats other dats in terms of goodness-of-fit statistics fortbtdilure and
service time data. Based on these detailed evahsatind statistical comparisons, the probabill@GZLL model
emerges as the best option and can be firmly cermithe best-fitting model for both datasets. Tihing validates
the probabilistic MOGZLL model's versatility andotgstness in capturing the underlying distributiohsomplicated
real-life and reliability data, bolstering its uskfess in statistical modelling and analysis.

Box Plot Box Plot
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Figure 3: The Box plots for data ¢ (the right panel) anll (the left panel
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Figure 5: The TTIT plots for data <l (the right panel) anll (the left panel
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Figure 6: The QQPs for data ! (the right panel) anll (the left panel

Table 2: MAX-LEs and SEs for data det

Model Estimate
MOGZLL (b, a,c) 34.598064 2.06943x80 2.0311x16
(0.008343) (0.997033) (0.879842)
LMOLox(b, a, ¢, a) 39.655392 27.354543 2.9294416 52.996433
2.155132 (2.006155 (1.981246 (1.376435
McLox(b, a, c, y, B) 2.1827451 119.175164 12.413715 19.924343 75.660625
(0.522113 (140.29762 (20.84555 (38.96045 (147.2455
TLTLox(b, a,c,,y) —0.807534  2.47663235 (15608.25) (38628.34)
(0.139642 (0.541276E (1602.3474 (123.9353
KumLox(b, a, c,,v) 2.6153021 100.275624 5.2771034 78.677356
(0.382233 (120.48652 (9.811665 (186.0037
BLox(b,a,c,,v) 3.6036504 33.6387054 4.8307063 118.83725
(0.618746 (63.714577 (9.2382027 (428.9257
PRHRLoxXb, a, ¢) 3.7326x16  4.70715x10 4.4954x16
1.0156x16 (0.0000157) 37.1468434
RTLTLox(b, a,c) -0.8473253 5.5205762 1.15678547
(0.100142 (1.1847921 (0.095846
SGMLox(b, a, ¢) -1.0445x10*  9.8352x16 1.1834x10
(0.124235 (4843.3444 (501.3047
Q-MOGZLL(b, a,c) 3.0011673 0.6675324 0.7753213
(0.275213¢ (0.008766 (0.116515¢E
OLLLox(b, a, c) 2.3263667 (7.1734x106) 2.3455x16)
(2.1383x1r1)  (1.1945x1*) (2.616x10Y)
GamLox(b, a, ¢) 3.58760444 52004.496 37029.6626
(0.513365¢E (7955.0053 (81.16442¢
exp-LL(b, a, ¢) 3.6261055 20074.5145 26257.684
(0.623665 (2041.835E (99.74179E
Q-ROLLLox(a, ¢) 3.8905647 0.57316564
(0.3652464 (0.0194642
Q-BHLox(a, ¢) 10801754.43 51367189
(983309.45  (232312.431
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Lox(a, C) 51425.35604 131789.859
(5933.4952 (296.1195¢
LL (C) 2.28437536
(0.364829¢
Table 3: GOF statistics for data $et
Model —t’(ﬂ) AIFC CAIFC BIFC HQIFC o 0
MOGZLL 128.09091 261.21353 262.10544 269.70831 28601 0.50111 0.065993
LMOLox 128.3403 264.6801 265.1865 274.4031 268.5894 0.5091' 0.06434.
McLox 129.8022 269.6043 270.3644 281.8174 274.5174 0.6671. 0.08572:
Q-MOGZLL 132.1994. 270.3984 270.6983 277.6916. 273.3307 0.7598¢ 0.07741!
OLLLox 134.4234 274.8473 275.1477. 282.1392. 277.7789 0.9408¢ 0.10091!
TLTLox 135.5705. 279.1404 279.6469 288.8636. 283.0485 1.1258¢ 0.12779:
GamLo» 138.4044. 282.8082 283.1046. 290.1369 285.7553 1.3661¢ 0.16186!
BLox 138.7176. 285.4354. 285.9353 295.2052 289.3653 1.4088: 0.16849!
exg-LL 141.3993 288.7996 289.0954 296.1275 291.7406 1.7435¢ 0.21986!
Q-ROLLLox 142.8454. 289.6908 289.8385. 2945523 291.6444 1.9567: 0.25578!
SGMLox 143.0875. 292.1749 292.4744. 299.4679 295.1065 1.3465 0.15765:
RTLTLox 153.9849. 313.9617. 314.2614 321.2545 316.8933 3.7526: 0.5595!
PRHRLoO» 162.8775 331.7545 332.0544. 339.0462 334.6858 1.3674° 0.16085:
Lox 164.9886. 333.9765 334.1234 338.8612 335.9414 1.3947¢ 0.16654:
Q-BHLox 168.6045 341.2091 341.3568 346.0691 343.1626 1.6471: 0.20678!
LL 190.9138 383.8275 383.8763 386.2583 384.8034 2.9458¢ 0.41758;
Table 4: MAX-LEs and SEs for data $kt
Model Estimate
MOGZLL (b, a,c) 9. 0980213 9.15329x16 7.8183x16
(1.901904 (4.8911092) (28.544322)
LMOLox (b, a,c, y) 10.613244 2.6823536 12.645425 26.289265
(6.139:36) (4.48429) (21.1453) (53.72:64)
Kum Lox(b, a,c, y) 1.6691425 60.567933 2.556494 65.064325
(0.257(44) (86.013:9) (4.7584E) (177.5¢34)
BLox(b, a,c y) 1.9218246 31.259449 4.9684365 169.57186
(0.3184'55) (316.8416) (50.52829¢€) (339.2(68)
TLTLox (b, a,c, y) (—0.60756) 1.78578464 2123.39164 4822.7875
(0.213754) (0.4152'5) (163.96153) (200.(8747)
PRHRLoxXb, a, ¢) 1.59343x%16 3.9377x10* 1.3014%16
2.01553%x103 0.0042x1C? 0.9543x1(°®
RTLTLox(b, a, C) —0.671457 2.74496554 1.0123779
(0.18746:5) (0.669646) (0.114(464)
SGMLox(b, a, C) —1.0445%x10* 6.4536x18 6.3335x16
(4.155%1C19) (3.2145x1C°%) (3.8573155)
Q-MOGZLL(b, a, c) 1.92707143 1.34982495 0.4366035
(0.210965) (12.64731) (4.09(55%)
OLLLox(b, a, C) 1.6641984 6.34315x16 2.0167x16
(1.795%1C™Y) (1.68:210%) 7.2245x1C°
Gam Lo>(b, a, C) 1.90731243 35842.4236 39197.535
(0.32133k5) (6945.034 (151.654)
exp-LL(b, a, C) 1.9145448 22971.1566 32880.935
(0.34814) (3209.534) (162.2336)
Q-ROLLLox(a, c) 2.3723339 0.6910946
(0.268241) (0.04488.94)
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Q-BHLox(a, c) 140555219 53203423.46
(422.0057) (28.523235)
Lox(a, c) 99269.7847 207019.3653
(11863.55) (301.23663)
Lox(c) 1.6750435
(0.31995)
Table 5: GOF statistics for data $et
Model —{’(@ AIFC CAIFC BIFC HQIFC o Q'
MOGZLL 08.218432 203.33322 203.56092 209.72544 38557 0.271794 0.042487
LMOLox 08.91886 205.83(22 206.52¢45 214.4066 209.2062 0.2964F 0.046¢3E
KumLox 100.86771 209.73%25 210.4263 218.3043 213.1023 0.73%64: 0.12144
Q-MOGZLL 101.83:77 209.66%64 210.07¢/4 216.0934 212.12984 0.88921 0.145¢3C
TLTLox 102.4494 212.8980 213.5824 221.4524 216.2219 0.94:43z 0.1554k
GamLo» 102.83114 211.66445 212.0755 218.0637 214.1251 1.11:64: 0.183¢0€
SGMLox 102.8944 211.7863 212.19:78 218.21'93 214.31¢45 1.11354¢ 0.18344
BLox 102.96145 213.9250 214.6:338 222.4924 217.2933 1.13779C 0.18719¢
exg-LL 103.549i6 213.0943 213.5(32z 219.5231 215.6262 1.2353z 0.207777
OLLLox 104.9039 215.8064 216.2183C 222.2394 218.3322 0.9472965 0.154f45
PRHRLo> 109.2945 224.5941 225.0043 231.02(16 227.12092 1.12¢321 0.186:38
Lox 109.2933 2225982 222.7939 226.80293 224.2826 1.12¢03z 0.186:6¢
Q-ROLLLox 110.7234 225.4588 225.6525 229.72S6 227.1446 2.347434 0.39081
RTLTLox 112.18'46 230.3791 230.77437 236.8(32€ 232.8096€ 2.68798¢ 0.45:172
Q-BHLox 112.6004 229.2010 229.40173 233.4835 230.88449 1.398:76 0.2316&
LL 127.3244 256.6485 256.7142 258.7919 257.4956 2.516!01 0.4243'6
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Figure 10: the EPDF and EC for data sel.

A Novel Model for Finance and Reliability Applicatis: Theory, Practices and Financial Peaks Overral®n Threshold Value-at-Risk Analysis 505



Pak.j.stat.oper.res. Vol.20 No. 3 2024 pp 489-515 DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4439

ECDF

10

04

"
‘ s The MOGZLL model )

d / The MOGZLL model
- =g
1

N
)
/|
N
Ny
N\

Density

0.2
1

04

0.0

Figure 11: the EPDF and ECDF for datall .
5. PORT-VaR analysis under the Norwegian fire finanial claims

The initial dataset used in this study consist®181 fire insurance claims with monetary valueshiousands of
Norwegian kroner (TNOK). These claims, obtainedrfra Norwegian insurance firm, provide insight irite
financial implications of fire-related damages. igrsficant aspect of this dataset is the use oé@dudtible threshold
of 500 TNOK. This means that only claims over tratue were included in the dataset, thereby scngemiit lesser
claims and focusing the research on larger lo§3es.strategy not only helps to focus on the magtartant claims,
but it also aligns the dataset with specific insgrpolicy features and financial criteria relevemthe study. The
dataset is available through the R package Relithni a specialized tool for working with insurandata. The Reln
package is a great resource for researchers arlgs@nandertaking detailed investigations on ineuealoss
modelling. It improves access to precise data aadltical capabilities, increasing the breadth pretision of study
in this area.

According to Alizadeh et al. (2024), the PORT-Va&RHhnique is intended to focus on the tail of trssIdistribution,
focussing on extreme values that surpass a predietd threshold. For fire insurance claims, thiansthat PORT-
VaR aids in comprehending the financial impacterfzbig claims, which are frequently the most calith insurers.
Given the dataset's deductible barrier of 500 TNP®RT-VaR is best suited to analyzing claims thasggnificantly

higher than this threshold, capturing the most seaad possibly financially devastating losses. PORR allows

insurers to estimate the potential risk associatidld extreme losses above a given threshold. Taisutation is

critical for successful risk management and esthbiig sufficient financial reserves to handle fatsignificant

claims.

Accurate evaluation of extreme risk aids insurdiroes' strategic financial planning, ensuring ttiety have enough
capital to address rare but significant disas@®RT-VaR is a revised method for modelling the dskociated with
the higher tail of the loss distribution. This elestmore precise forecasts of the frequency angriggwf catastrophic
losses, which is critical when pricing insurancdigies and anticipating future financial exposurBg. analysing
peaks that exceed a random threshold, insurershetigr estimate the likelihood and extent of méija claims,
resulting in more robust and accurate loss forecddany regulatory systems require insurers tosasaad report
their exposure to severe risks.
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The PORT-VaR contributes to achieving these reguojatriteria by establishing a comprehensive metfard
assessing the possible impact of extreme fire caifhis research promotes transparent reportindnadet by
providing a clear and quantitative measure of sevesk that can be shared with stakeholders, régslaand
policyholders. Table 6 presents an in-depth PORR-\daalysis of Norwegian fire financial claims, onged by
confidence level (CL). Each row in the table copsls to a given confidence level and describesitimber of
extreme loss events (PORTSs) found. It also contstimisstical indicators like the minimum (Min.L)tdt quartile (3
Qu.), median (Median), anticipated value of extréimancial losses (EVL), third quartile '€3Qu.), and maximum
(Max.L) values for these events. The table dematesdrthat as confidence levels grow, so does ttmbauof extreme
loss events (PORT), indicating a reduced thresfooldetecting substantial deviations or outliergitemnity losses.
The statistical measurements provide informatiorthendistribution and severity of these high logsedes across
distinct CLs. For example, maximum values (Maxhdicate the most severe losses identified at eanfidence
level. This study is critical for a full risk assesent, as it allows insurance firms to analyzeinfygact of high loss
events at different levels of confidence. This infation is critical for optimizing risk managemesttategies and
implementing effective risk mitigation actions. @&k, Table 6 is an invaluable resource for rislalgsts and
insurance professionals, assisting them in makihg&ed decisions and managing risks associatédNeitwegian
fire financial claims. The extensive statisticafommation improves comprehension of risk exposwaesarious
confidence levels, hence facilitating comprehensisie assessment and mitigation actions in therarsze sector.

Figure 9 also depicts the number of extreme losatsvPORT) for each confidence level (CLs randiom 20% to

99%), while Figure 10 shows visual graphs of thenber of PORT-VaR against the respective confiddecels.
Figure 12 shows all of the histograms for the PORIR results. Figure 13 depicts the density of peaks

Table 6: PORT-VaR analysis for the Norwegian firmhcial claims.

CLs VaR N. of POR1 Min.L 15t Qu. Mediar EVL 39Qu. Max.L
%50 229¢ 14 232( 355¢ 396¢ 404 434( 628:
%55 2267.¢ 15 227¢ 348: 393: 392¢ 432¢ 628:
%60 2007.¢ 17 202: 321t 3747 3717 429t 628:
%65 1817.: 18 194¢ 254¢ 372¢ 361¢ 425¢ 628:
%70 1541 19 1712 229¢ 370z 351¢ 422: 628:
%75 1299.t 21 132( 226¢ 3511 331¢ 415( 628:
%80 1203.: 22 123¢ 208¢ 348: 322¢ 411z 628:
%85 1065.0! 23 118( 198¢ 345t 313t 407¢ 628:
%90 857.¢ 25 95¢€ 171z 321t 296t 4001 628:
%95 601.7 26 62¢ 157( 276¢ 287t 398¢ 628:
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Density Plot of Peaks Across Different Thresholds
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Based on the PORT-VaR analysis provided in Tablevé,can draw several conclusions and make financial
recommendations regarding Norwegian fire financlaims. The table presents VaR at various CLs aleiily
statistics on the peaks above each VaR threshal'$1a detailed breakdown:
l. As the CL increases, the VaR decreases. This iteditchat higher confidence levels are associatéd wi
lower thresholds for identifying extreme loss egent
I. The number of peaks above the VaR threshold inesaagth higher confidence levels, which suggests
that more extreme loss events are identified athtleshold for "extreme" losses is lowered.
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Il. The minimum peak value increases as the confidlves increases, showing that extreme losses are
getting larger.

V. The 1st quartile value of peaks shows an upwardltreith higher confidence levels, indicating that a
higher proportion of extreme losses are larger.

V. The median value of peaks increases with highefidamce levels, reflecting that the typical size of
extreme losses is higher when considering moregdrconfidence levels

VI. The EVL also increases with higher confidence lgveliggesting that the expected size of extreme

losses grows as the threshold becomes more cotiserva
On the other hand, it is worth mentioning the faflog financial recommendations can be spotted:

l. Insurers should tailor their risk management sgiatebased on their risk appetite. For exampltheif
focus is on more conservative risk managementsiioids corresponding to higher confidence levels
(e.g., 90% or 95%) should be considered. Conslaeiricreasing size of extreme losses as confidence
levels rise. This indicates that as the thresheld giore cautious, both the frequency and magnitfide
extreme losses rise. Financial models should takeconsideration these bigger potential losses.

. II. Increased confidence levels lead to higher etgubvalues of extreme losses (EVL) and more peaks
above VaR. Insurers should set aside more cashvier @any losses linked with increased confidence
levels. Implement stress tests that take into aticemtreme loss scenarios discovered with greater
confidence levels to guarantee that the insureisoatain significant financial shocks.

Il. [ll. Premium pricing should consider the possiilitf extreme loss events. Insurers may need te rais
premiums to cover greater-risk losses recognizdilgaer confidence levels.

V. IV. Ensure reserves are sufficient to cover exeeskisses. The data implies that if the threshfids
extreme losses become more conservative, the esbpéserves would rise.
V. Ensure risk management techniques meet regulatiteria for capital reserves and risk exposure.

Regulators may mandate insurers to cover lossgseatfic confidence levels, which should be faalore
into the VaR analysis.

VI. Diversifying the portfolio can help lessen the iropaf excessive losses. Extreme loss events détecte
with higher confidence levels may suggest potentisk concentrations that can be handled by
diversification techniques.

6. Conclusions

The Marshall-Olkin generated log-logistic (MOGZLdistribution is a novel three-parameter probabidlistribution
for lifetime data that is introduced and thoroughiyestigated in this study. This newly establislagstribution is
thoroughly characterized, demonstrating its veligasind application to a wide range of datasete @ensity function
of the MOGZLL distribution is intended to demonsgraoth right-skewness and symmetry, making it ajpate for
modelling datasets with varied asymmetries. Itswsless coefficient supports a wide range of asymmetr
representations, including negative and positiesiess values. This flexibility is critical for arately representing
the form and spread of real-life and reliabilitytalalistributions. Furthermore, the hazard rate tioncfor the
MOGZLL distribution exhibits a variety of charadsgics, including monotonic increase, increasingstant,
constant, upside-down, and monotonic drop. Thizrentictability allows the MOGZLL distribution to fectively
reflect varied patterns of risk or failure ratesoas time, increasing its usefulness in reliab#ibalysis and survival
modelling. The MOGZLL distribution's parameters asgimated using the maximum likelihood approachictv
ensures robust and efficient estimation from olegirdata. A comprehensive simulation analysis isiezhout to
evaluate the finite-sample behavior of maximumlii@od estimators, including biases and mean sguareors
across different sample sizes and circumstanceésriglerous evaluation reveals insights into théestors' accuracy
and dependability under various settings, dematirstyéheir practical utility in statistical inveggtions.

Overall, the study highlights the MOGZLL distribomi as a powerful statistical modelling tool, promgl the
flexibility, resilience, and accuracy required famalyzing lifetime data in a variety of sectorsliging finance,
engineering, epidemiology, and more. Through extensharacterization, methodological extensions, @gorous
validation, the MOGZLL distribution emerges as duahle addition to the repertory of probabilistiodels for
complex data analysis and inference. The reseaaphrfs findings on the MOGZLL distribution shedhligon its
practical utility and robustness in statistical ratsd

Here's a debate that builds on these findings:
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l. The MOGZLL distribution's ability to combine righkewness and symmetry in its density function makes
it very adaptable to diverse datasets. This addjpyais critical in real applications where datarchave
varied degrees of asymmetry. Because the skewpesficent can take both positive and negative gsju
the MOGZLL distribution can accurately describe thany distributional forms observed in real-lifedan
reliability situations. This feature makes it metgtable for modelling data in a variety of domainsluding
finance and healthcare.

Il. The MOGZLL distribution's hazard rate function (HZRhas various profiles, allowing it to capture
complicated temporal trends in data. Whether tleafthrate increases monotonically, remains constant
has an upside-down U-shape, the MOGZLL distributan handle these behaviors. This adaptability is
especially useful in survival analysis and religpiengineering, where recognizing the changingireabf
risk over time is crucial for decision-making ams$ource allocation.

Il. The use of maximum likelihood estimation (MLE) foarameter estimation ensures reliable and efficient
inference from observed data. The extensive sinamaesearch used to assess MLE performance under
numerous circumstances gives empirical evidentlesodlistribution's reliability. Assessing biased amean
squared errors across different sample sizes allmate assess the accuracy of parameter estimatiahs
gain confidence in the MOGZLL distribution's praeti applicability.

V. The practical ramifications of using the MOGZLL tdilsution are enormous. The probabilistic MOGZLL
model allows for more accurate modelling of comptlatasets seen in real-life and reliability cordext
because it combines flexibility, robustness, artérpretability. This not only improves the precisiof
statistical analysis, but it also allows for monéormed decision-making in a variety of sectorgjuding
industrial engineering and public health.

V. According to Hashem et al. (2024), the novel prdisiic MOGZLL model enables the presentation @fsin
Bayesian results in inference using acceleratedetsod

To summarize, the MOGZLL distribution provides @stantial improvement in probabilistic modellingyhsng
important issues in data analysis through its deqroperties and methodological characteristibs. fEsults show
that it is effective at capturing the intricacidsreal-life data distributions and has the potdritigpromote research
and application in a variety of scientific and isttial fields. Continued research and implementatitthe MOGZLL
distribution are expected to improve its capaletitand broaden its utility in future statisticathteiques. For more
useful distributions for the financial applicatioasd risk analysis see Nofal et al. (2016), Alizadeal. (2018a,b),
El-Morshedy et al. (2021), Korkmaz et al. (201722)) Yousof et al. (2018), Elgohari et al. (2028gansour et al.
(2020a-€), Rasekhi et al. (2020), Hashem et ak4PElsayed and Yousof (2021, 2020, and 2019& Ibjely and
Yousof (2018) and Elbiely and Yousof (2019a,b), iKnaz et al. (2019), Teghri et al. (2024), Elgolzaril Yousof
(2020a,b,c), Loubna et al. (2024), and Yousof et28124 and 2016).
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