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Abstract  
In this paper, the authors introduce a new three-parameter lifetime probability distribution known. They thoroughly 
examine and describe this distribution, providing insights into its characteristics and its suitability for various 
applications. This newly constructed distribution's density function exhibits characteristics of both symmetry and 
right-skewness, providing modelling flexibility across a range of datasets. Because of its skewness coefficient, 
which can take both positive and negative values, a wide range of data asymmetries can be represented. The 
Marshall-Olkin generated log-logistic distribution's corresponding hazard rate displays a variety of characteristics, 
including monotonic increase, increasing-constant, constant, upside-down, and monotonic drop. Because of its 
adaptability, the distribution can successfully capture various risk or failure rate patterns across time. Using a 
number of techniques, the researchers expand this distribution to the bivariate domain. Its utility in modelling 
multivariate lifetime data and inter-variable relationships is improved by these extensions. The researchers use the 
maximum likelihood method to estimate the parameters of the distribution, which ensures reliable and effective 
parameter estimation from observed data. They carry out an extensive simulation research to analyse biases and 
mean squared errors in a range of scenarios and sample sizes in order to evaluate the finite behaviour of the 
maximum likelihood estimators. In real-life and reliability applications, this meticulous methodology aids in 
evaluating the estimators' precision and dependability. Because it may offer a comprehensive and nuanced 
knowledge of high financial risks, the Peaks Over a Random Threshold Value-at-Risk (PORT-VaR) study is crucial 
for evaluating Norwegian fire insurance claims. This financial analysis is given extra consideration. 
 
Key Words: Risk Analysis; Log-logistic model; Peaks Over a Random Threshold; Marshall-Olkin model; 
Simulations; Estimation; Reliability Applications; Modeling. 

 

1. Introduction 
The log-logistic (LL) probability model is well known for being a flexible statistical tool that may be used in many 
different fields, such as actuarial science, business, biology, economics, engineering, insurance, etc. Its usefulness 
extends to a wide range of applications, including evaluating Internet traffic patterns, analyzing business size statistics, 
and modelling income and wealth disparity. First-rate research by Harris (1968) and Atkinson and Harrison (1978) 
shown that the LL distribution is a useful tool for modelling wealth and income distributions. Its use to model business 
size data was further upon by Corbellini et al. (2007). 
 
The LL model has been adopted in research such as by, demonstrating its value in reliability and life testing tests. The 
LL distribution is especially useful for modelling processes where the risk declines with time because of its notable 
hazard rate function (HZRF), which monotonically decreases over time. Additionally, it is thought of as a model that, 
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as Chahkandi and Ganjali (2009) explore, describes residual lifespan at advanced ages. Bryson (1974) noted that the 
LL distribution provides a heavy-tailed modelling technique, in contrast to typical probability distributions like the 
exponential (exp), Weibull (W), and Gamma (Gam) distributions. Researchers like Durbey (1970) have thoroughly 
examined its interaction with other distributions, like the Burr XII and Compound Gamma models, offering greater 
insights into its adaptability and use in a variety of contexts. The continuous random variable � is characterized as 
following the LL (Lomax) model with a single scale parameter cc if its cumulative-distribution-function (CDF) for � > 0  is given by: 
 

����� = 1 − 1
�1� � + 1�2, (1) 

where  � > 0  is the parameter of scale, respectively. The probability density function (PDF) corresponding to (1) can 
be obtained through the following formula 

����� = 2 1
�

1
�1� � + 1�3. (2) 

 
When modelling survival data, financial losses, or durations where the rate of occurrence declines over time, this 
approach is especially helpful in situations where variables have big tails. The distribution's scale and form are 
influenced by the parameter cc, which gives modelling various datasets and phenomena flexibility. Although the LL 
and Lomax (Lox) distributions are parameterized differently, they are related by their cumulative distribution 
functions (also known as CDFs) and have comparable shapes, especially as the Lomax model's shape parameter tends 
to infinity. There is an important theoretical relationship between both distributions that is highlighted by this 
convergence. Conversely, the LL and Burr Type XII distributions have comparable forms and are used in similar 
contexts, particularly when modelling severe events and heavy-tailed data. Their link is not as clear-cut as it is in some 
other pairings of distributions, despite these similarities. Yousof et al. (2018) state that the Marshall-Olkin-generated-
G family (MOG-G) class's cumulative distribution function (PDF) is as follows: 

��,�,���� = 1 − �1 − �������

1 − � �1 − ������� |� ∈ �, 
 
(3) 

where  ����� is the CDF related to the base-line model and  � = �1 − ��.  Then, the new PDF based on (3) is 

derived as 

��,�,���� = �� ����� �1 − �������−�

 1 − � �1 − �������!2 |� ∈ �. 
 
(4) 

The Marshall-Olkin-generated LL (MOGZLL) CDF is given by 

����� = 1 − �1� � + 1�−2�

1 − � �1� � + 1�−2� |� > 0, 
 
 
(5) 

where  " = ��, �, ��. This work is primarily focused on improving the adaptability of the LL distribution by 
combining it with a more versatile family of distributions. The identification problem related to the MOGZLL 
distribution is precisely calculating the model parameters from the data that is observed. This challenge stems from 
the fact that the parameters may affect the distribution's structure in comparable ways, which may result in trade-offs 
or correlations between them. As a result, figuring out each parameter exactly from the distribution of observed data 
becomes difficult. Parameter identification is influenced by a number of factors, including the characteristics of the 
data under analysis. For instance, precise parameter estimate may be hampered by small sample sizes or constrained 
data ranges. Depending on the details of the dataset and the methodology selected, various estimating techniques, such 
as maximum likelihood, method of moments, or Bayesian approaches, may produce variable estimates, each with 
varying levels of identifiability and accuracy. Researchers often confine parameters' values or establish permanent 
relationships between them based on existing knowledge or pragmatic considerations in order to increase 
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identifiability. By using statistical tests to evaluate the MOGZLL distribution's goodness of fit, one can improve 
parameter estimates and validate model assumptions. The behavior of parameter estimators in various scenarios and 
data settings can be investigated through simulation experiments, which provide useful insights into the overall 
identifiability of the Probabilistic MOGZLL model. Additionally, the accuracy of parameter estimation in real-life 
and reliability applications can be improved by using robust estimating approaches that are less susceptible to outliers 
or skewed data distributions. 

The Probabilistic MOGZLL model is driven by multiple primary goals in real-life and reliability implementations: 
I. By adding new parameters or changing the ones that are already there, the Probabilistic MOGZLL model 

gets better at describing the different levels of peakedness or flatness that are seen in probability 
distributions. This increased adaptability makes it possible to match datasets with varying kurtotic 
properties more precisely, increasing the model's usefulness in a variety of contexts. 

II. The model's capacity to add skewness to both symmetrical and asymmetrical distributions is a key 
driving force. The MOGZLL framework offers tools for efficiently controlling skewness, making it 
possible to model datasets with intended or intrinsic asymmetry. In domains like finance, economics, 
and social sciences, where skewed distributions are typical and essential for realistic portrayal, this 
characteristic is very helpful. 

III.  The Probabilistic MOGZLL model excels in constructing heavy-tailed densities that maintain 
computational tractability without excessively long tails. This balance between tail behavior and 
practicality is crucial for accurately modeling real-life and reliability datasets characterized by heavy-
tailed distributions, such as income distributions, extreme event occurrences, and environmental data. 
By realistically depicting tail behavior, the probabilistic MOGZLL model enhances the reliability and 
robustness of statistical analyses. 

IV.  Being better at goodness-of-fit metrics than previous LL extensions is one of the main goals of the 
probabilistic MOGZLL model. The probabilistic MOGZLL model shows its superior capacity to capture 
the underlying structure of varied datasets through comparative studies and empirical validation. This 
capacity not only confirms its effectiveness but also enables practitioners and academics to obtain 
significant insights and make defensible decisions based on trustworthy statistical studies. 
 

Although the probabilistic MOGZLL model provides an adaptable structure for evaluating survival and dependability 
information, it is critical to acknowledge its constraints and investigate opportunities for expansion and improvement. 
Improvements that strengthen the probabilistic MOGZLL model's adaptability, resilience, and suitability for various 
data scenarios lead to a better comprehension and wider application of the model in real-life and reliability statistical 
analysis. Its relevance in tackling modern analytical difficulties is ensured by ongoing study into improving its 
parameters and enhancing its capabilities. Depending on (5), the PDF of the new model is expressed as 

�"��� = 2�� 1
�

�1 + 1� ��−2#−1

$1 − � �1 + 1� ��−2�%2. 
 
 
(6) 

 
Finding the moments of the distribution defined by the provided PDF (mean, variance, skewness, and kurtosis) is the 
first step in performing moment analysis. This would include utilizing integration techniques to derive formulas for 
these moments for the PDF �"��� and investigating their dependence on parameters �, �, �. Gaining knowledge of 

these times helps one understand the distribution's structure, central tendency, and spread. Examine the distribution's 
asymptotic behavior as y approaches 0 and y approaches ∞. Understanding the distribution's tail behavior and 
convergence characteristics under various parameter configurations may be possible with the use of this approach. 
Our new probability model's HZRF can be obtained by dividing �"���/�"���. 

 
We carefully created Figures 1 (right) and 1 (left) in order to examine the adaptability and capabilities of the MOGZLL 
PDF and the associated hazard rate function (HZRF). These graphic depictions offer important insights into the 
features and behavior of the probabilistic MOGZLL model at different parameter values. Several plots showing the 
MOGZLL PDF for carefully selected parameter values are shown in Figure 1 (right). We clarify how variations in the 
form, position, and size characteristics affect the probability distribution by methodically varying these parameters. 
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These visualizations allow a thorough analysis of the adaptability of the MOGZLL PDF, demonstrating how well it 
fits a variety of data patterns and modelling requirements, from skewed to symmetrical distributions. 
This viewpoint is enhanced by Figure 2, which displays relevant MOGZLL HZRF graphs. This function provides 
insights into the dynamic risk associated with the modelled phenomena by showing the rate at which events occur 
over time. Figure 2 provides a thorough grasp of how the model captures temporal patterns in data by examining how 
changes in MOGZLL parameters affect the shape and trajectory of the HZRF. The capacity of the probabilistic 
MOGZLL model to account for a broad variety of hazard rate behaviors, including both monotonic and non-monotonic 
trends, is demonstrated by these figures. Its adaptability makes it more useful for survival modelling and reliability 
analysis. 
 
When combined, Figures 1 (right) and 1 (left) offer a potent means of examining the adaptability and usefulness of 
the probabilistic MOGZLL model in statistical research. These visual aids offer intuitive insights into the MOGZLL 
PDF and related HZRF across different parameter configurations, which facilitates decision-making and model 
selection. Furthermore, fresh research (Alqasem et al., 2024) indicates that the probabilistic MOGZLL model may be 
able to produce novel compound distributions inside the G family. Its usefulness in survival analysis is further 
supported by studies conducted by Loubna et al. (2024), Teghri et al. (204), and Shehata et al. (2024), as well as by 
applications in actuarial risk analysis, value-at-risk modelling, and medicine (see Bhatti et al. 2023; Salem et al., 2023; 
Alizadeh et al., 2023; Alkhayyat et al., 2023; Yousof et al., 2022, 2023a,b; Elbatal et al., 2024; Haskem et al., 2024) 
further underscore its relevance across diverse fields. 
 
 
Numerous univariate probabilistic MOGZLL model extensions are presented in the literature, demonstrating the 
adaptability and versatility of the framework. Innovations on the Weibull LL distribution by Tahir et al. (2015), the 
one-parameter LL system of densities by Cordeiro et al. (2018), the odd LL and Zografos-Balakrishnan LL 
distributions by Altun et al. (2018a), and the Rayleigh and exponential derived LL distributions by Elbiely and Yousof 
(2018) are some of the notable advances. New variants of the Weibull LL distribution have been studied by Nasir et 
al. (2018) and LL inverse Rayleigh distributions have been studied by Goual and Yousof (2020). When taken as a 
whole, this research provides a wide range of distributions to the MOGZLL framework, increasing its usefulness in 
other fields. Furthermore, recent research by Ibrahim and Yousof (2020), Yadav et al. (2020), and Gad et al. (2019) 
has advanced the theoretical framework and applied applications if the LL distribution family. These studies 
demonstrate the capacity of probabilistic MOGZLL models to meet challenging modelling problems in several fields 
and emphasize the models' dynamic evolution and ongoing significance in modern statistical research. 
 
In light of the above descriptions and the traits shown in Figures 1 (left) and 1 (right): 
Regarding the PDF for MOGZLL (Figure 1 (right)): 

I. According to this description, the probability density function shows one noticeable peak, and its tails 
skew more towards the right side of the distribution to the extent that they do. This pattern suggests a 
distribution that is skewed and has a distinct mode. 

II. The probability density function in this instance does not have a clear peak, but it does have asymmetric 
tails that are more prominent on the right side. This points to a distribution with a rightward skew and 
an undefinable apex. 

III.  The new density can also be “symmetric density", this shows a skewness-free distribution with a 
balanced shape. 

 
Regarding the HZRF MOGZLL (Figure 1 (left)): 

I. "J-HZRF": This is probably a reference to a hazard zone rate function with a "J"-like form. This pattern 
indicates a decreasing hazard rate at first, followed by a period of relative stability, and then another 
significant fall. 

II. "Decreasing-constant HZRF": This description points to a hazard zone rate function in which the rate of 
hazard lowers initially, then steadily rises over time. 

III.  "Upside down HZRF": This expression describes a hazard zone rate function that seems to be an upside-
down "U" since it increases and then drops. 

IV.  "Decreasing HZRF": This indicates a hazard zone rate function in which there are no appreciable 
variations, and the hazard rate continuously drops with time. 
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These thorough explanations provide light on the various patterns and traits that the MOGZLL PDF and HZRF 
display. They highlight these functions' relevance in many statistical analyses and modelling situations by 
providing a deeper understanding of how these functions operate under various parameter settings and 
circumstances. 

 

 

Figure 1: Some PDF plots and HZRF plots under some parameter’s values. 
 
 
The Mean of Order P (MOOP) and PORT-VaR approaches are extensively used in the literature in a variety of sectors, 
such as risk analysis, insurance, reinsurance, and medicine. In actual applications, these techniques have evolved into 
essential tools for comprehending and controlling severe occurrences and dangers. Foundational viewpoints on loss 
modelling and extremal occurrences are presented by Klugman et al. (2012) and Embrechts et al. (2013), respectively. 
The foundation for useful applications of MOOP in insurance situations is laid by Klugman et al. (2012), who 
investigate several models for managing and forecasting insurance losses. For the purpose of applying PORT-VaR, 
Embrechts et al. (2013) explore the theory of extremal events and provide critical insights into the behavior of extreme 
values. The occurrence and distribution of extraordinary financial events are examined by Jansen and de Vries (1991) 
and Poon and Rockinger (2003). Their study is especially pertinent to financial contexts for both PORT-VaR and 
MOOP studies. Poon and Rockinger (2003) examine the statistical characteristics of extreme value distributions in 
financial markets, while Jansen and de Vries (1991) look into the distribution of extreme financial returns. These 
studies emphasize how crucial it is to comprehend extreme value behavior in order to quantify and manage risk 
accurately. The works of Beirlant et al. (2004) and McNeil et al. (2015) provide sophisticated approaches and 
applications in extreme value theory and risk management. VaR and associated measurements are just a few of the 
quantitative risk management strategies that are thoroughly covered by McNeil et al. (2015).  
 
The methods for evaluating extreme values and tail risks provided by Beirlant et al. (2004) are crucial for successfully 
implementing MOOP and PORT-VaR in real-life and reliability scenarios. Their contributions, which incorporate 
cutting-edge statistical techniques, improve the resilience of risk management strategies. Hosking and Wallis (1987) 
advance our knowledge of quantile estimation techniques and heavy-tail phenomena. Their work is important for 
reliability engineering and other domains where extreme values are important for evaluating tail risks. They facilitate 
the real-life and reliability implementation of PORT-VaR in diverse risk assessment contexts by offering techniques 
for precisely estimating quantiles in heavy-tailed distributions. 
 
For more recent advancements in statistical modeling and risk analysis see  Rasekhi et al. (2022), Hamed et al. (2022), 
Shrahili et al. (2021), Mohamed et al. (2024), Hashempour et al. (2023), Elbatal et al. (2024), Hamedani et al. (2023). 
Finally, by introducing an extended Gompertz model, the study of Alizadeh et al. (2024) significantly advances the 
fields of reliability engineering and risk analysis. The authors offer a thorough methodology for comprehending and 
handling data on high stresses by combining statistical threshold risk analysis with MOOP assessment. For scholars 
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and practitioners working with extreme value scenarios, the paper's creative approach and useful applications provide 
insightful information. On the basis of these results, future studies could increase the validity and range of applications 
of the model. 
 
The increasing corpus of research on MOOP and PORT-VaR, together with new developments in statistical modelling, 
highlights how risk analysis techniques are changing. Through the integration of novel models and techniques with 
traditional approaches, scholars and practitioners can improve their prediction power and make better-informed 
strategic choices. All of these contributions emphasize how important it is to have strong risk management plans and 
to keep developing new techniques to deal with complicated and extreme risk situations in a variety of industries. 
 

2. Properties 
2.1 Asymptotic and Quantile function (QF) 

As � → ∞ the term �1 + 1
� �� ≈ 1

� �. Thus, the density function can be approximated by 

�"��� = 2�� 1
�

�1� ��−2#−1

$1 − � �1� ��−2�%2. 
For large �, �1

� ��−2#
 becomes very small, so 1 − � �*

+ ��,-� ≈ 1. Thus, we have: 

�"��� = 2�� .1
� �/−2#−1. 

 
This indicates that the density decays polynomial as � → ∞, with a rate proportional to �−2#−1. As � → 0, the term 

1 + *
+ � ≈ 1. Hence �"��� = 2�

� . The QF of  �  can be derived by inverting (5), then 

�0 = 1 $ 1
1 − �0 �1 − 0�%−1� − 1, 

 
(7) 

Equation (7) has many applications, and it can be used for simulating the new model. 
2.2 Combinations 
Let  

2�,���� = 1 − $.1
� � + 1/−1%3�

, 
and 

4�,�,���� = 1 − � − $.1
� � + 1/−1%3�

. 
Then, by expanding the quantity  2�,����  we get  

2�,���� = 1 + 5 �2�6 �
+∞

6=0
�−1�6+1 $1 − .1

� � + 1/−2%6
, 

which can be repressed as 

2�,���� = 5 �6
+∞

6=0
$1 − .1

� � + 1/−2%6
 

 
(8) 

 
where  �0 = 2  and  

�6 = �−1�6+1 �2�6 � |6 ≥ 1. 
Analogously, the quantity  4�,�,����  can be expanded, then we have 
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4�,�,���� = 1 − � − 5 �2�6 �
+∞

6=0
�−1�6 $1 − .1 + 1

� �/−2%6
, 

then 

4�,�,���� = 5 86
+∞

6=0
$1 − .1

� � + 1/−2%6
,  

(9) 

where  � = 89  and  

86 = �1 − �� �2�6 � �−1�6+1. 
Then employing equation (8) and equation (9), the new CDF of the probabilistic MOGZLL model can be simplified 
as  

����� = 5 :6
+∞

6=0
;6,����,  

(10) 

Where function  ;6,���� = ��6���  is the CDF of the well-known exponentiated-LL (exp-LL) model with power 
positive parameter  6  and  

:6 = 1
�0

<�6 − 1
80

5 8=
6

==1
 :6−=? |:0 = �080

 and 6 ≥ 1. 
By differentiating (10), we get  

����� = 5 :6
+∞

6=0
ℎ6+1,����,  

(11) 

where  ℎ6+1,����  is the exp-LL. 
 
2.3 Moments  
The  ABℎ  ordinary moment of  �  is given by 

CA′ = E��A� =   G �A+∞
−∞

�����8�. 
Then, we obtain  

CA′ = 5 5 :6,H�A,6+1�A

H=0

+∞

6=0
4�1 + 6, 1 + H − A�|�1>A�, 

 
(12) 

 
where 

:6,H�A,6+1� = :6�1 + 6��A�−1�H �AH� 

and  

I�1 + :*, 1 + :-� = G �:J
*

9 �1 − ��:K8�. 
Then, 
 

E��� = 5 5 :L,M�*,LN*�*

MO9

NP

LO9
4�1 + 6, H�, 

E��-� = 5 5 :L,M�-,LN*�-

MO9

NP

LO9
4�1 + 6, H − 1�, 

E��Q� = 5 5 :L,M�Q,LN*�Q

MO9

NP

LO9
4�1 + 6, H − 2�, 
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and  

E��R� = 5 5 :L,M�R,LN*�R

MO9

NP

LO9
4�1 + 6, H − 3�, 

where  E��� = C*S   is the mean of  � .  The  ABℎ  incomplete moment, say  TA,��U� , of  �  can be expressed, from 
(11), as  

TA,��U� = G ����U
−∞

�A8� = 5 :6
+∞

6=0
G �AU

−∞
��6+1�,����8� 

then 

TA,��U� = 5 5 :6,H�A,1+6�A

H=0

+∞

6=0
4U�1 + 6, 1 + H − A�|�1>A�, 

where  

4⋅�1 + :1, 1 + :2� = G �:1
⋅

0
�1 − ��:2 8�. 

For  A = 1, we have 

T1,��U� = 5 5 :6,H�6+1,1�1

H=0

+∞

6=0
4U�6 + 1, H�, 

which is the first order of the incomplete moment.  
 

2.4 Moment generating functions (GF) and other functions 
The moment generating function (MGF) can be derived using (8) as  

W��U� = 5 :6
+∞

6=0
W�1+6�,��U�, 

where  W�1+6�,��U�  is the MGF of the expLL model, then  

W��U� = 5 5 :6,H,A�A,6+1�A

H=0

+∞

6,A=0
4�1 + 6, 1 + H − A�|�1>A�, 

where 

:6,H,A�A,6+1� = UA:6,H�A,1+6�/A! 
The first  A  derivatives of  W��U� , with respect to  U  at  U = 0 , yield the first  A  moments about the origin, i.e., 
 

CA′ = E��A� = 8A
8UA W��U�|U = 0 and A = 1,2,3, . . ., 

The cumulant generating functions (CUGF) say  YA , can be obtained from 

YA = 8A
8UA Z[\ ] 5 ⬚

+∞

6,A=0
5 :6,H,A�A,6+1�A

H=0
4�6 + 1,1 + H − A�_ |U = 0, and A = 1,2, . . .. 

The 1st CU is the mean ( 61 = C1′  ), the 2nd CU is the variance, and the ABℎ CU is the same as the third central moment  Y3 = C3 . But fourth and higher order CUs are not equal to central moments, that being said 
 Y1 = C1′ , Y2 = C2′ − C1′2 = C2, 
and Y3 = C3′ − 3C2′ C1′ + 2C1′3 = C3. 
Then, 
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YA|A ≥ 1 = CA′ − 5 CA−`′
A−1

`=0
� A − 1` − 1� 6` . 

  
 
2.5 Reversed residual (RVR) life function 
The  aBℎ  moment of the RVR life, say  

ba,U,��U� = T9U��; d� 1
���U�, 

where  

T9U��|a� = G 8����U
0

�U − ��a. 
Then,  
 

ba,U,��U� = 1
��U� 5 ⬚

+∞

6=0
5 ⬚A

H=0
:6,H�6+1,a��U, ��4U�6 + 1,1 + H − A�|�1>A�, 

where  

:6,H�6+1,a��U, �� = :6�6 + 1��A�−1�H �AH� 5 ⬚
8=0

a �−1�8 �a8� Ua−8. 
 

3. Graphical assessment 
Graphically and through rigorous statistical analysis involving biases and mean squared errors (MSEs), we conducted 
extensive simulation experiments to assess the behavior of maximum likelihood estimators (MAX-LEs) for the 
MOGZLL distribution under varying sample sizes a|�aOe9,*99,*e9…,ge9�. This empirical investigation aimed to provide 
insights into the reliability and precision of parameter estimation in practical scenarios. 
 
The simulation procedure followed a structured approach: 
 
Algorithm I:  
We generated h =1000 samples of size a from the MOGZLL distribution, leveraging the formulation detailed in 
Equation (7).  
 
Algorithm II:  
We calculated the Maximum Likelihood Estimators (MAX-LEs) for the parameters Ψ=b,a, and c for each of these h 
=1000  samples. These estimators are important because they try to find the best values of " = �, �, � so that the 
probabilistic MOGZLL model maximizes the probability of detecting the sampled data. 
 
 
Algorithm III:  
We computed the Standard Errors (SEs) corresponding to the MAX-LEs obtained in Algorithm II in order to assess 
the accuracy of our calculations. Across the h =1000  samples, these SEs gave us a gauge of the variability or 
uncertainty in our parameter estimates. 
 
 
Algorithm IV:  
To quantify the accuracy of the MAX-LEs, we computed biases and mean squared errors (MSEs) under the assumption " = �, �, � across the range of sample sizes a|�aOe9,*99,*e9…,ge9�. Biases, represented as "Bias" indicate the systematic 
deviation of our estimates from the true parameter values, while MSEs reflect the overall variability and precision of 
these estimates. 
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Figure 2 visually presents the outcomes of our simulation study: 

i. The left panels of Figure 2 (first row for �, second row for �, and third row for �) depict how biases 
evolve with increasing sample size a. Generally, biases tend towards zero as a increases, indicating 
improved accuracy in parameter estimation with larger datasets. 

ii. First row for �, second row for �, and third row for � in the right panels of Figure 2 show the trend of 
MSEs over various sample sizes n. MSEs drop with increasing n, indicating improved consistency and 
precision in estimating the three parameters. 
 

These empirical results highlight how well the probabilistic MOGZLL model captures the underlying structure of the 
data at different sample sizes. The accuracy of the Maximum Likelihood estimation in characterizing the MOGZLL 
distribution is validated by the convergence of biases towards zero and the lowering of MSEs towards decreasing 
values. These understandings are essential for academics and practitioners who want to use the probabilistic MOGZLL 
model in practical statistical studies to ensure trustworthy inference and empirical data-based decision-making. 
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Figure 2: (first row) biases and MSEs for the parameter  �, 
(second row) biases and MSEs for the parameter  #,  
(third row) biases and MSEs for the parameter  �. 
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4. Data Analysis 
In this section, we want to demonstrate the probabilistic MOGZLL model's adaptability and practical application by 
analyzing two real datasets. These datasets show how flexible the probabilistic MOGZLL model is in many analytical 
contexts, in addition to providing real-life and reliability instances. We performed a comparative analysis against other 
existing models, as shown in Table 1, in order to fully assess its efficacy. The first dataset analyzed, called dataset I, 
is from a 2004 study by Murthy et al. and is about the failure times of 84 aircraft windscreens.  
 
Our goal in analyzing this dataset is to find out what factors affect the durability and dependability of aircraft 
windscreens. To ensure operating efficiency, this inquiry is essential for improving aviation safety standards and 
optimizing maintenance methods. We now focus on the operational dynamics of aircraft maintenance by examining 
dataset II, which includes the service times of 63 aircraft windscreens from the same study by Murthy et al. By 
examining service durations, we may spot patterns and trends that help us plan maintenance operations more 
effectively, reducing downtime and enhancing aircraft performance. Maintaining aircraft reliability and safety requires 
an understanding of the variables affecting service periods, such as environmental considerations, component wear, 
and maintenance practices. 
 
The analysis of potential outliers in both datasets was facilitated by box plots (BP), as shown in Figure 3. Notably, 
Figure 3 showed a consistent distribution of values with no outliers, lending confidence to the dataset's trustworthiness 
and coherence. To examine the form of the data without imposing parametric assumptions, we used kernel density 
estimation (N-KDE), as shown in Figure 4. This nonparametric technique visualized the distributional features of the 
data, providing insights into its underlying shape and dispersion. To delve deeper into the behavior of the datasets 
over time, we evaluated the Hazard Zone Rate Function (HZRF) with total time in test (TTIT) plots, as shown in 
Figure 5. The analysis of Figure 5 revealed a "monotonically increasing" trend in the HZRF for both datasets, 
indicating a consistent pattern of hazard rates across time. To test the dataset’s normality, Quantile-Quantile plots 
(QQP) were created and analyzed, as shown in Figure 6.  
 
The data points' proximity to the diagonal line in Figure 6 revealed a near approximation to normality, which supported 
the validity of following statistical studies. Figures 7 and 8 provide a detailed study of the two datasets. 

I. The Estimated Probability Density Function (EPDF) visualizes the probability distribution of each 
dataset, revealing the possibility of certain values happening. 

II. The Estimated Cumulative Distribution Function (ECDF) shows the cumulative distribution of data 
values, offering a full perspective of observation distribution across the dataset. 

 
 
These analytical tools and visualizations not only enable a complete examination of the dataset’s statistical features, 
but also serve as a solid platform for deeper insights and informed decision-making in aircraft maintenance 
management and reliability assessment. 
 

Table 1: Competitive models. 
Model Abbreviation 

Lox Lox 
Exponentiated Lox exp-Lox 
Kumaraswamy Lox KumLox 

Macdonald Lox McLox 
Beta Lox BLox 

Gamma Lox GamLox 
Topp-Leone Transmuted Lox TLTLox 

Quasi TLTLox RTLTLox 
Odd LL Lox OLLLox 

Quasi OLLLox Q-ROLLLox 
Quasi Burr-Hatke Lox Q-BHLox 

Special generated mixture Lox SGMLox 
Quasi MOGZLL Q-MOGZLL 

Proportional reversed hazard rate Lox PRHRLox 
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Table 1 is an invaluable resource in the field of statistical modelling, giving critical information for model selection 
and comparison, allowing for more informed decision-making during data analysis and interpretation. We used the 
"L-BFGS-B" optimization approach to estimate the unknown parameters of each model using maximum likelihood 
estimation. We used several statistical criteria to evaluate the goodness of fit of these models, including the Akaike 
Information Criterion (AICR), Bayesian Information Criterion (BICR), Consistent AICR (CAICR), Hannan-Quinn 
Criterion (HQIC), Anderson-Darling statistic (2∗), and Cramér-von Mises statistic (�∗).  In general, smaller values 
of these statistics suggest that the model fits the data better. For computational tasks, we used the "maxLik" and 
"goftest" subroutines in the R software environment. These tools allowed us to execute the rigorous computations and 
statistical testing required for model evaluation. Tables 2 and 3 summarize our findings from analyzing the failure 
time data. Table 2 shows the parameters' Maximum Likelihood Estimates (MAX-LEs) and their related Standard 
Errors. This table gives information about the precision and reliability of parameter estimates produced from the 
probabilistic MOGZLL model for the failure time dataset. 
 
 
Table 3 shows the estimated log-likelihoods and different goodness-of-fit values for the failure time data. These data, 
including AICR, BICR, CAICR, HQIC, 2∗, and �∗, were critical in comparing the probabilistic MOGZLL model to 
other fitted models. The probabilistic MOGZLL model consistently produced the lowest values across these criteria, 
demonstrating a better fit to the failure times dataset than alternative models. Similarly, for the service times data, we 
provided our study findings in Tables 4 and 5. Table 4 summarizes the MAX-LEs and SEs derived from fitting the 
probabilistic MOGZLL model to the service times data, providing a clear picture of parameter estimates and 
uncertainties.  
 
Table 5 shows the estimated log-likelihoods and goodness-of-fit statistics for the service times dataset. The 
probabilistic MOGZLL model was shown to have the best match for the service times dataset based on many criteria, 
including AICR, BICR, CAICR, HQIC, 2∗, and �∗. A detailed inspection of Tables 4 and 6 reveals that the 
probabilistic MOGZLL model routinely beats other models in terms of goodness-of-fit statistics for both failure and 
service time data. Based on these detailed evaluations and statistical comparisons, the probabilistic MOGZLL model 
emerges as the best option and can be firmly considered the best-fitting model for both datasets. This finding validates 
the probabilistic MOGZLL model's versatility and robustness in capturing the underlying distributions of complicated 
real-life and reliability data, bolstering its usefulness in statistical modelling and analysis. 

 
 

Figure 3: The Box plots for data set I  (the right panel) and II  (the left panel). 
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Figure 4: The N-KDEs for data set I  (the right panel) and II  (the left panel). 
 

Figure 5: The TTIT plots for data set I  (the right panel) and II  (the left panel). 
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Figure 6: The QQPs for data set I  (the right panel) and II  (the left panel). 
 

Table 2: MAX-LEs and SEs for data set I . 
         Model Estimates 

MOGZLL ��, �, �� 34.598064 2.06943×106 2.0311×106   
 (0.008343) (0.997033) (0.879842)   

LMOLox��, �, �, #� 39.655392 27.354543 2.9294416 52.996433  

 2.1551326 (2.006155) (1.981246) (1.376435)  
McLox��, �, �, j, k� 2.1827451 119.175164 12.413715 19.924343 75.660625 

 (0.522113) (140.29762) (20.84555) (38.96045) (147.2455) 
TLTLox��, �, �, , j� −0.807534 2.47663235 (15608.25) (38628.34)  

 (0.139642) (0.5412765) (1602.3474) (123.9353)  
KumLox��, �, �, , j� 2.6153021 100.275624 5.2771034 78.677356  

 (0.382233) (120.48652) (9.811665) (186.0037)  
 BLox��, �, �, , j� 3.6036504 33.6387054 4.8307063 118.83725  

 (0.618746) (63.714577) (9.2382027) (428.9257)  
PRHRLox��, �, �� 3.7326×10⁶ 4.70715×10⁻¹ 4.4954×10⁶   

 1.0156×10⁶ (0.0000157) 37.1468434   
RTLTLox��, �, �� -0.8473253 5.5205762 1.15678547   

 (0.100142) (1.1847921) (0.095846)   
 SGMLox��, �, �� -1.0445×10⁻¹ 9.8352×10⁶ 1.1834×10⁷   

   (0.124235) (4843.3444) (501.3047)   
Q-MOGZLL��, �, �� 3.0011673 0.6675324 0.7753213   

 (0.2752135) (0.008766) (0.1165155)   
  OLLLox��, �, �� 2.3263667 (7.1734×10⁵) 2.3455×10⁶)   

 (2.1383×10⁻¹) (1.1945×10⁴) (2.616×10¹)   
GamLox��, �, �� 3.58760444 52004.496 37029.6626   

 (0.5133655) (7955.0053) (81.164429)   
exp-LL��, �, �� 3.6261055 20074.5145 26257.684   

 (0.623665) (2041.8355) (99.741795)   
   Q-ROLLLox��, �� 3.8905647 0.57316564    

 (0.3652464) (0.0194642)    
   Q-BHLox��, �� 10801754.43 51367189    

 (983309.45) (232312.431)    
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Lox��, �� 51425.35604 131789.859    

 (5933.4952) (296.11959)    
LL��� 2.28437536     

 (0.3648298)     
 

Table 3: GOF statistics for data set I . 
Model −ℓ�"r � AIFC CAIFC BIFC HQIFC 2∗ �∗ 

MOGZLL 128.09091 261.21353 262.10544 269.70831 265.13001 0.50111 0.065993 
LMOLox 128.34034 264.68015 265.18651 274.40319 268.58944 0.50915 0.064342 
McLox 129.80221 269.60432 270.36443 281.81743 274.51749 0.66713 0.085721 

Q-MOGZLL 132.19945 270.39845 270.69834 277.69163 273.33071 0.75989 0.077419 
OLLLox 134.42342 274.84733 275.14775 282.13924 277.77892 0.94089 0.100918 
TLTLox 135.57052 279.14045 279.64690 288.86365 283.04858 1.12586 0.127798 
GamLox 138.40445 282.80825 283.10464 290.13697 285.75537 1.36618 0.161865 

BLox 138.71764 285.43545 285.93530 295.20528 289.36535 1.40881 0.168495 
exp-LL 141.39934 288.79966 289.09543 296.12758 291.74068 1.74358 0.219865 

Q-ROLLLox 142.84543 289.69085 289.83854 294.55231 291.64445 1.95674 0.255785 
SGMLox 143.08754 292.17493 292.47442 299.46799 295.10653 1.34657 0.157652 
RTLTLox 153.98494 313.96173 314.26143 321.25453 316.89337 3.75264 0.55955 
PRHRLox 162.87752 331.75452 332.05445 339.04629 334.68588 1.36747 0.160854 

Lox 164.98863 333.97654 334.12346 338.86125 335.94144 1.39478 0.166543 
Q-BHLox 168.60452 341.20913 341.35684 346.06912 343.16264 1.64714 0.206789 

LL 190.91382 383.82753 383.87635 386.25838 384.80347 2.94589 0.417582 
 

Table 4: MAX-LEs and SEs for data set II . 
         Model                                      Estimates 

MOGZLL ��, �, �� 9. 0980213   9.15329×106 7.8183×106  
 (1.901904)       (4.8911092) (28.544322)  

LMOLox��, �, �, j� 10.613244 2.6823536 12.645425 26.289265 

 (6.139236) (4.484249) (21.14253) (53.72264) 
KumLox��, �, �, j� 1.6691425 60.567933 2.556494 65.064325 

 (0.257044) (86.01329) (4.758945) (177.5934) 
BLox��, �, �, j� 1.9218246 31.259449 4.9684365 169.57186 

 (0.3184755) (316.84146) (50.528296) (339.2068) 
TLTLox��, �, �, j� (−0.60756) 1.78578464 2123.39164 4822.7875 

 (0.2137454) (0.415255) (163.96153) (200.08742) 
PRHRLox��, �, �� 1.59343×10⁶ 3.9377×10⁻¹ 1.3014×10⁶  

 2.01553×10³ 0.0042×10⁻¹ 0.9543×10⁶  
RTLTLox��, �, �� −0.671457 2.74496554 1.0123779  

 (0.1874645) (0.669646) (0.1140464)  
 SGMLox��, �, �� −1.0445×10⁻¹ 6.4536×10⁶ 6.3335×10⁶  

 (4.135×10⁻¹⁰) (3.2145×10⁶) (3.8573155)  
Q-MOGZLL��, �, �� 1.92707143 1.34982495 0.4366035  

 (0.2109635) (12.647321) (4.090553)  
OLLLox��, �, �� 1.6641984 6.34315×10⁵ 2.0167×10⁶  

 (1.7925×10⁻¹) (1.683210⁴) 7.2245×10⁶  
GamLox��, �, �� 1.90731243 35842.4236 39197.535  

 (0.3213355) (6945.034) (151.6534)  
exp-LL��, �, �� 1.9145448 22971.1566 32880.935  

 (0.348198) (3209.5374) (162.2336)  
Q-ROLLLox��, �� 2.3723339 0.6910946   

 (0.2682451) (0.04488294)   
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 Q-BHLox��, �� 140555219 53203423.46   

 (422.00537) (28.5232345)   
Lox��, �� 99269.7847 207019.3653   

 (11863.535) (301.236613)   
Lox��� 1.6750435    

 (0.319985)    
 

Table 5: GOF statistics for data set II . 
Model −ℓ�"r � AIFC CAIFC BIFC HQIFC 2∗ �∗ 

MOGZLL 98.218432 203.33322 203.56092 209.72544 205.86557 0.271794 0.042487 
LMOLox 98.918186 205.83622 206.52645 214.40856 209.20852 0.293643 0.046935 
KumLox 100.86771 209.73525 210.42463 218.30743 213.10623 0.739643 0.121944 

Q-MOGZLL 101.83477 209.66964 210.07674 216.09934 212.12984 0.883921 0.145930 
TLTLox 102.44994 212.89980 213.58924 221.47524 216.27219 0.943432 0.155445 
GamLox 102.83314 211.66645 212.07355 218.09637 214.19251 1.112643 0.183606 
SGMLox 102.89444 211.78853 212.19478 218.21793 214.31645 1.113549 0.183944 

BLox 102.96145 213.92250 214.61335 222.49424 217.29333 1.133790 0.187199 
exp-LL 103.54906 213.09943 213.50322 219.52831 215.62862 1.233532 0.203777 
OLLLox 104.90439 215.80854 216.21530 222.23794 218.33622 0.942965 0.154545 

PRHRLox 109.29845 224.59741 225.00443 231.02616 227.12692 1.126321 0.186138 
Lox 109.29833 222.59782 222.79739 226.88293 224.28326 1.126032 0.186169 

Q-ROLLLox 110.72834 225.45788 225.65725 229.74296 227.14346 2.347434 0.390881 
RTLTLox 112.18546 230.37191 230.777437 236.80326 232.89969 2.687986 0.453172 
Q-BHLox 112.60054 229.20110 229.401173 233.48735 230.88649 1.398476 0.231683 

LL 127.32434 256.64875 256.71432 258.79189 257.49156 2.516501 0.424356 
 

 

 

  
Figure 10: the EPDF and ECDF for data set I . 

 



Pak.j.stat.oper.res.  Vol.20  No. 3 2024 pp 489-515  DOI: http://dx.doi.org/10.18187/pjsor.v20i3.4439 

 

  

A Novel Model for Finance and Reliability Applications: Theory, Practices and Financial Peaks Over a Random Threshold Value-at-Risk Analysis 506 

 

 

 

  
Figure 11: the EPDF and ECDF for data set II . 

 
5. PORT-VaR analysis under the Norwegian fire financial claims 
 
The initial dataset used in this study consists of 9181 fire insurance claims with monetary values in thousands of 
Norwegian kroner (TNOK). These claims, obtained from a Norwegian insurance firm, provide insight into the 
financial implications of fire-related damages. A significant aspect of this dataset is the use of a deductible threshold 
of 500 TNOK. This means that only claims over this value were included in the dataset, thereby screening out lesser 
claims and focusing the research on larger losses. This strategy not only helps to focus on the most important claims, 
but it also aligns the dataset with specific insurance policy features and financial criteria relevant to the study. The 
dataset is available through the R package ReIn, which is a specialized tool for working with insurance data. The ReIn 
package is a great resource for researchers and analysts undertaking detailed investigations on insurance loss 
modelling. It improves access to precise data and analytical capabilities, increasing the breadth and precision of study 
in this area. 
 

According to Alizadeh et al. (2024), the PORT-VaR technique is intended to focus on the tail of the loss distribution, 
focussing on extreme values that surpass a predetermined threshold. For fire insurance claims, this means that PORT-
VaR aids in comprehending the financial impact of very big claims, which are frequently the most crucial to insurers. 
Given the dataset's deductible barrier of 500 TNOK, PORT-VaR is best suited to analyzing claims that are significantly 
higher than this threshold, capturing the most severe and possibly financially devastating losses. PORT-VaR allows 
insurers to estimate the potential risk associated with extreme losses above a given threshold. This calculation is 
critical for successful risk management and establishing sufficient financial reserves to handle future significant 
claims.  
 
Accurate evaluation of extreme risk aids insurance firms' strategic financial planning, ensuring that they have enough 
capital to address rare but significant disasters. PORT-VaR is a revised method for modelling the risk associated with 
the higher tail of the loss distribution. This enables more precise forecasts of the frequency and severity of catastrophic 
losses, which is critical when pricing insurance policies and anticipating future financial exposures. By analysing 
peaks that exceed a random threshold, insurers may better estimate the likelihood and extent of major fire claims, 
resulting in more robust and accurate loss forecasts. Many regulatory systems require insurers to assess and report 
their exposure to severe risks. 
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The PORT-VaR contributes to achieving these regulatory criteria by establishing a comprehensive method for 
assessing the possible impact of extreme fire claims. This research promotes transparent reporting methods by 
providing a clear and quantitative measure of severe risk that can be shared with stakeholders, regulators, and 
policyholders. Table 6 presents an in-depth PORT-VaR analysis of Norwegian fire financial claims, organised by 
confidence level (CL). Each row in the table corresponds to a given confidence level and describes the number of 
extreme loss events (PORTs) found. It also contains statistical indicators like the minimum (Min.L), first quartile (1st 
Qu.), median (Median), anticipated value of extreme financial losses (EVL), third quartile (3rd Qu.), and maximum 
(Max.L) values for these events. The table demonstrates that as confidence levels grow, so does the number of extreme 
loss events (PORT), indicating a reduced threshold for detecting substantial deviations or outliers in indemnity losses. 
The statistical measurements provide information on the distribution and severity of these high loss episodes across 
distinct CLs. For example, maximum values (Max.L) indicate the most severe losses identified at each confidence 
level. This study is critical for a full risk assessment, as it allows insurance firms to analyze the impact of high loss 
events at different levels of confidence. This information is critical for optimizing risk management strategies and 
implementing effective risk mitigation actions. Overall, Table 6 is an invaluable resource for risk analysts and 
insurance professionals, assisting them in making educated decisions and managing risks associated with Norwegian 
fire financial claims. The extensive statistical information improves comprehension of risk exposures at various 
confidence levels, hence facilitating comprehensive risk assessment and mitigation actions in the insurance sector.  
 
Figure 9 also depicts the number of extreme loss events (PORT) for each confidence level (CLs ranging from 20% to 
99%), while Figure 10 shows visual graphs of the number of PORT-VaR against the respective confidence levels. 
Figure 12 shows all of the histograms for the PORT VaR results. Figure 13 depicts the density of peaks. 
 
 

Table 6: PORT-VaR analysis for the Norwegian fire financial claims. 
CLs VaR N. of PORT Min.L 1st Qu. Median EVL 3rd Qu. Max.L 

50%  2299 14 2320 3559 3966 4044 4340 6283 
55%  2267.8 15 2278 3483 3932 3926 4325 6283 
60%  2007.6 17 2023 3215 3747 3717 4295 6283 
65%  1817.3 18 1946 2544 3724 3618 4259 6283 
70%  1541 19 1712 2299 3702 3518 4222 6283 
75%  1299.5 21 1320 2266 3511 3318 4150 6283 
80%  1203.2 22 1238 2084 3483 3224 4113 6283 
85%  1065.05 23 1180 1984 3455 3135 4076 6283 
90%  857.9 25 956 1712 3215 2965 4001 6283 
95%  601.7 26 629 1570 2768 2875 3984 6283 
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Figure 12: Histograms for the PORT VaR results. 
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Figure 13: Density of peaks. 
 

Based on the PORT-VaR analysis provided in Table 6, we can draw several conclusions and make financial 
recommendations regarding Norwegian fire financial claims. The table presents VaR at various CLs along with 
statistics on the peaks above each VaR threshold. Here's a detailed breakdown: 

I. As the CL increases, the VaR decreases. This indicates that higher confidence levels are associated with 
lower thresholds for identifying extreme loss events. 

II. The number of peaks above the VaR threshold increases with higher confidence levels, which suggests 
that more extreme loss events are identified as the threshold for "extreme" losses is lowered. 
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III.  The minimum peak value increases as the confidence level increases, showing that extreme losses are 
getting larger. 

IV.  The 1st quartile value of peaks shows an upward trend with higher confidence levels, indicating that a 
higher proportion of extreme losses are larger. 

V. The median value of peaks increases with higher confidence levels, reflecting that the typical size of 
extreme losses is higher when considering more extreme confidence levels 

VI.  The EVL also increases with higher confidence levels, suggesting that the expected size of extreme 
losses grows as the threshold becomes more conservative. 

On the other hand, it is worth mentioning the following financial recommendations can be spotted: 
I. Insurers should tailor their risk management strategies based on their risk appetite. For example, if the 

focus is on more conservative risk management, thresholds corresponding to higher confidence levels 
(e.g., 90% or 95%) should be considered. Consider the increasing size of extreme losses as confidence 
levels rise. This indicates that as the threshold gets more cautious, both the frequency and magnitude of 
extreme losses rise. Financial models should take into consideration these bigger potential losses. 

II. II. Increased confidence levels lead to higher expected values of extreme losses (EVL) and more peaks 
above VaR. Insurers should set aside more cash to cover any losses linked with increased confidence 
levels. Implement stress tests that take into account extreme loss scenarios discovered with greater 
confidence levels to guarantee that the insurer can sustain significant financial shocks. 

III.  III. Premium pricing should consider the possibility of extreme loss events. Insurers may need to raise 
premiums to cover greater-risk losses recognized at higher confidence levels. 

IV.  IV. Ensure reserves are sufficient to cover excessive losses. The data implies that if the thresholds for 
extreme losses become more conservative, the required reserves would rise. 

V. Ensure risk management techniques meet regulatory criteria for capital reserves and risk exposure. 
Regulators may mandate insurers to cover losses at specific confidence levels, which should be factored 
into the VaR analysis. 

VI.  Diversifying the portfolio can help lessen the impact of excessive losses. Extreme loss events detected 
with higher confidence levels may suggest potential risk concentrations that can be handled by 
diversification techniques. 

6. Conclusions 
The Marshall-Olkin generated log-logistic (MOGZLL) distribution is a novel three-parameter probability distribution 
for lifetime data that is introduced and thoroughly investigated in this study. This newly established distribution is 
thoroughly characterized, demonstrating its versatility and application to a wide range of datasets. The density function 
of the MOGZLL distribution is intended to demonstrate both right-skewness and symmetry, making it appropriate for 
modelling datasets with varied asymmetries. Its skewness coefficient supports a wide range of asymmetry 
representations, including negative and positive skewness values. This flexibility is critical for accurately representing 
the form and spread of real-life and reliability data distributions. Furthermore, the hazard rate function for the 
MOGZLL distribution exhibits a variety of characteristics, including monotonic increase, increasing-constant, 
constant, upside-down, and monotonic drop.  This unpredictability allows the MOGZLL distribution to effectively 
reflect varied patterns of risk or failure rates across time, increasing its usefulness in reliability analysis and survival 
modelling. The MOGZLL distribution's parameters are estimated using the maximum likelihood approach, which 
ensures robust and efficient estimation from observed data. A comprehensive simulation analysis is carried out to 
evaluate the finite-sample behavior of maximum likelihood estimators, including biases and mean squared errors 
across different sample sizes and circumstances. This rigorous evaluation reveals insights into the estimators' accuracy 
and dependability under various settings, demonstrating their practical utility in statistical investigations.  
 
Overall, the study highlights the MOGZLL distribution as a powerful statistical modelling tool, providing the 
flexibility, resilience, and accuracy required for analyzing lifetime data in a variety of sectors including finance, 
engineering, epidemiology, and more. Through extensive characterization, methodological extensions, and rigorous 
validation, the MOGZLL distribution emerges as a valuable addition to the repertory of probabilistic models for 
complex data analysis and inference. The research paper's findings on the MOGZLL distribution shed light on its 
practical utility and robustness in statistical models.  
 
Here's a debate that builds on these findings: 
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I. The MOGZLL distribution's ability to combine right-skewness and symmetry in its density function makes 
it very adaptable to diverse datasets. This adaptability is critical in real applications where data can have 
varied degrees of asymmetry. Because the skewness coefficient can take both positive and negative values, 
the MOGZLL distribution can accurately describe the many distributional forms observed in real-life and 
reliability situations. This feature makes it more suitable for modelling data in a variety of domains, including 
finance and healthcare. 

II. The MOGZLL distribution's hazard rate function (HZRF) has various profiles, allowing it to capture 
complicated temporal trends in data. Whether the hazard rate increases monotonically, remains constant, or 
has an upside-down U-shape, the MOGZLL distribution can handle these behaviors. This adaptability is 
especially useful in survival analysis and reliability engineering, where recognizing the changing nature of 
risk over time is crucial for decision-making and resource allocation. 

III.  The use of maximum likelihood estimation (MLE) for parameter estimation ensures reliable and efficient 
inference from observed data. The extensive simulation research used to assess MLE performance under 
numerous circumstances gives empirical evidence of the distribution's reliability. Assessing biases and mean 
squared errors across different sample sizes allows us to assess the accuracy of parameter estimations and 
gain confidence in the MOGZLL distribution's practical applicability. 

IV.  The practical ramifications of using the MOGZLL distribution are enormous. The probabilistic MOGZLL 
model allows for more accurate modelling of complex datasets seen in real-life and reliability contexts 
because it combines flexibility, robustness, and interpretability. This not only improves the precision of 
statistical analysis, but it also allows for more informed decision-making in a variety of sectors, including 
industrial engineering and public health. 

V. According to Hashem et al. (2024), the novel probabilistic MOGZLL model enables the presentation of fresh 
Bayesian results in inference using accelerated models. 

 
To summarize, the MOGZLL distribution provides a substantial improvement in probabilistic modelling, solving 
important issues in data analysis through its diverse properties and methodological characteristics. The results show 
that it is effective at capturing the intricacies of real-life data distributions and has the potential to promote research 
and application in a variety of scientific and industrial fields. Continued research and implementation of the MOGZLL 
distribution are expected to improve its capabilities and broaden its utility in future statistical techniques. For more 
useful distributions for the financial applications and risk analysis see Nofal et al. (2016), Alizadeh et al. (2018a,b), 
El-Morshedy et al. (2021), Korkmaz et al. (2017, 2022), Yousof et al. (2018), Elgohari et al. (2021), Mansour et al. 
(2020a-e), Rasekhi et al. (2020), Hashem et al. (2024), Elsayed and Yousof (2021, 2020, and 2019a, b), Elbiely and 
Yousof (2018) and Elbiely and Yousof (2019a,b), Korkmaz et al. (2019), Teghri et al. (2024), Elgohari and Yousof 
(2020a,b,c), Loubna et al. (2024), and Yousof et al. (2024 and 2016). 
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