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Abstract

In this article, we address the problem of estimating the parameters of Farlie-Gumbel-Morgenstern bivariate Weibull
distribution using ranked set sample (RSS) design. The suggested estimators of the FGMBW distribution parameters
are compared with their counterparts based on simple random sampling (SRS) via Monte Carlo simulations studies.
An example of a real data set consists of times (in days) to the first and second recurrence of infection for 30 kidney
patients is considered for illustration. It turns out that the RSS estimators results in an improvement in efficiency
as compared to the simple random sampling estimators based on the same number of measured units for all cases
considered in this study.
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1. Introduction

Due to its flexibility, the Weibull distribution has received a great deal of attention in the literature in the recent
past. It has been widely studied and applied in several fields including reliability, lifetime data analysis, climatology,
biology, and engineering. (see, for instance, Helu et al.(2010) and the reference therein). This paper deals with the
problem of estimating the parameters of Farlie-Gumbel-Morgenstern bivariate Weibull (FGMBW) distribution, which
was introduced by Almetwally et al.(2020) as a modification of the base Weibull distribution, based on ranked set
sampling (RSS) design.
The primary objectives of this study are multifaceted and encompass the following key aspects:
Firstly, the study aims to address the problem of estimating the parameters of the FGMBW distribution by utilizing
RSS design as a method of estimation. Secondly, the study endeavors to evaluate the performance of the proposed RSS
estimators and their counterparts based on SRS by employing Monte Carlo simulations. These simulations provide a
quantitative framework to assess the efficiency and resilience of the estimators under various scenarios.
Furthermore, to demonstrate the practicality and potential applicability of the proposed estimators in real-world situa-
tions, the study presents an illustrative example using a real dataset. This dataset comprises times (in days) to the first
and second recurrence of infection for 30 kidney patients, providing concrete evidence of the proposed methodology’s
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utility.

Lastly, the study aims to conduct an efficiency improvement analysis, wherein it analyzes and showcases the superior
efficiency achieved by the RSS estimators in comparison to the SRS estimators. By evaluating the efficiency gains
obtained with RSS, the research emphasizes the considerable benefits of adopting this sampling design for parameter
estimation tasks.

A convenient method for describing a multivariate distribution is a copula. One of the most well-known paramet-
ric families of copulas is the Farlie-Gumbel-Morgenstern (FGM) family, which was explored by Gumbel(1960).
El-Sherpieny et al.(2023) considered Bayesian and non-Bayesian estimation for the parameter of bivariate gener-
alized Rayleigh distribution based on clayton copula. Muhammed and Almetwally(2023) proposed Bayesian and
non-Bayesian estimation for the bivariate inverse Weibull distribution. Muhammed et al.(2021) investigated the de-
pendency measures for new bivariate models based on copula function. Blier-Wong et al.(2022) developed some
theoretical properties of FGM copulas.

A random variable X is said to have a univariate Weibull distribution if it has the following cumulative distribution
function (cdf) and probability density function (pdf), respectively, given by

F (x;α, β) = 1− e−( xβ )
α

, (1)

and

f (y;α, β) =
α

β

(
x

β

)α−1
e−( xβ )

α

; x > 0, α, β > 0, (2)

where α, β are the scale and shape parameters, respectively. The cdf of the FGMBW distribution can be expressed as
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)(
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(3)

and the corresponding pdf of the FGMBW distribution is defined as

f (x1, x2) =
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(4)

The Farlie-Gumbel-Morgenstern bivariate Weibull (FGBMW) distribution is a statistical model used to describe the
joint distribution of two random variables, which may have Weibull marginal distributions. It is often employed in
modeling the reliability of systems and lifetime data. Moreover, FGBMW extends the concept of the Farlie-Gumbel-
Morgenstern (FGM) copula to cases where the marginal distributions are Weibull. This copula is utilized to model the
dependency structure between the two variables, accommodating various types of dependence, including positive and
negative associations.

Researchers and analysts can use this distribution to gain insights into the joint behavior of variables in various fields.
Some applications of the FGBMW distribution include: reliability analysis in which it can be used to model the
lifetime of systems with two failure modes. In actuarial science, it can model the joint distribution of two insurance-
related variables, such as the claim amounts for two different types of insurance policies. Also, it can be applied to
model environmental data where two variables are related, such as the joint distribution of temperature and wind speed
for wind energy assessment. In addition, it can be used in finance to model the joint distribution of financial losses
or returns for two different assets or portfolios, allowing for the modeling of their dependence. Furthermore, it can
be applied in medical research to model the joint distribution of two health-related variables or the occurrence of two
medical events. Moreover, it can be used in hydrological studies to describe the joint distribution of two hydrological
variables, such as rainfall and river discharge (Conway(2014)).
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The moment generating function of (X,Y ) is given by

M(x,y) (t1t2) =
∑∞

n=0
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n
1

n!
Γ

(
1+

n

α1

))∑∞

m=0

(
tm2 β

m
2

m!
Γ

(
1+

m

α2

))
×

[
1+θ−2θ

1

2

(
1+ m

a2

)−2θ
1

2

(
1+ n

a1

)+4θ
1

2

(
1+ n

a1

) 1

2

(
1+ m

a2

)
]

Figure 1 presents some pdf plots to the FGMBW distribution for some selected parameters.

(a)α1 = 1.8, β1 = 3.5, α2 = 1.5, β2 = 2.5, θ = −0.75 (b) α1 = 2, β1 = 3, α2 = 3, β2 = 5, θ = −0.75

Figure 1: Plots of the FGMBW distribution pdf for some parameters

Then the reliability and e hazard rate functions of FGMBW distribution is
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For more details about the FGBMW see Almetwally et al.(2020).
To achieve accurate statistical inference without a much cost or time consuming, it is most common to use an efficient
methodology to choose the samples such as RSS. The RSS is a sampling design used to collect data by employing
ranking on observations in a way that provides improvements in parametric estimation. The RSS was first envisaged
by McIntyre(1952) as a cost-efficient procedure alternative to the SRS in the situations where quantifying sampling
units in a study is difficult, time-consuming or expensive but ranking them according to the variable under investigation
is relatively easy and cheap.
As an illustration of the RSS design. Assume that we would like to estimate the average height of trees in a field.
Actual measurement of the sampled trees height may be difficult, however, ranking the height of a small group of
trees can be done easily by eye inspection. In some cases, the visual inspection might not be clear, in such cases, the
ranking based on a concomitant variable that is correlated with the variable of interest can be considered. For instance,
diameters of trees can be used as concomitant variable since it is highly correlated with the heights of trees to estimate
their height.
The RSS design has been an active field in statistical community and recently continues to attract widespread attention
in many ecological and agricultural studies. The fundamental theoretical properties of the RSS are established by
Takahasi and Wakimoto(1968). They proved that mean estimator obtained using RSS procedure is more efficient
compared with the corresponding ones obtained using SRS in estimating population mean. Dell and Clutter(1972)
showed that the mean of RSS is still unbiased whether the ranking is perfect or not, i.e., there are errors in ranking.
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Hanandeh and Al-Saleh(2013) introduced some inferences on Downton’s bivariate exponential distribution based on
moving extreme RSS. Samuh et al.(2020) estimated the new Weibull-Pareto distribution parameters based on RSS.
Pedroso et al.(2021) considered estimation for the two-parameter Birnbaum-Saunders distribution parameters based
on RSS. Zamanzade et al.(2020) discuss efficient cdf estimation and reliability parameter estimation using moving
extreme RSS, highlighting its superior efficiency in the tail of the distribution compared to SRS and RSS. Mahdizadeh
and Zamanzade(2021) investigates the estimation of the area under the receiver operating characteristic (ROC) curve
using Multistage RSS and compares it with SRS. Hanandeh et al.(2022b) proposed new mixed RSS. New double stage
RSS for estimating the population mean is suggested by Hanandeh et al.(2022a).
For recent published researches and detailed discussion on the theory and applications of RSS see for instance Al-
Omari and Bouza(2014) and the references therein.
The RSS procedure can be described as follows:

1. Randomly drawing m2 units from the target population, where m is the set size.

2. Distribute the m2 units randomly into m sets each of size m.

3. The m units within each set are ranked visually or by any cheap way with respect to a variable of interest.

4. Then, the m RSS measurements are chosen by quantifying the ith smallest ranked unit from the ith set. This
completes one cycle of the RSS.

5. The cycle may be repeated r times, if necessary, until the desired sample size n = rm is obtained.

This process can be presented in the following table:

Table 1: Display of m2 quantifications in the rth set cycle sets of size m

Ranked sample units RSS

X(1:1)r X(1:2)r . . . .. X(1:(m−1))r X(1:m)r X(1:1)r

X(2:1)r X(2:2)r . . . .. X(2:(m−1))r X(2:m)r X(2:2)r

X(m:1)r X(m:2)r . . . .. X(m:(m−1))r X(m:m)r X(m:m)r

The resulted n units form a RSS sample denoted by X(1:m),X(2:m), ...,X(m:m). These units are independent but
not identically distributed. Note that, in practice, the set sizem should be small to avoid ranking errors; a larger sample
size can be obtained by iterating the procedure.
The resulted sample is denoted as X(i:m)j , the ith largest ranked unit in a set of size min the jth cycle, where
i = 1, 2, . . . ,m and j = 1, 2, . . . , r. Based on the above steps, the joint pdf of a RSS is given by the following
equation (see Arnold et al.(2008))

fX(i:m)j

(
x(i:m)j

)
=

r∏
j=1

m∏
i=1

m!

(i− 1)! (m− i)!
F i−1X

(
x(i:m)j

) [
1− FX

(
x(i:m)j

)](m−i)
f
X

(x(i:m)j) (5)

To the best of our knowledge, there are no published papers on the estimation of the FGMBW distribution parameters
under the RSS design. The remainder of the paper is organized as follows. In Section 2, the Maximum Likelihood
Estimation (MLE) of the FGMBW parameters based on RSS is presented. Section 3 is devoted to a simulation study
in order to compare the performance of the suggested RSS estimators with SRS estimators. An application of real data
is discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Maximum Likelihood Estimation

In this section, we derived the MLE estimators of the FGMBW distribution parameters using the SRS and RSS
methods.
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2.1. MLE using SRS

Let X1, X2, ..., Xn be a SRS of size n selected from the FGMBW distribution with pdf and cdf defined in Eq. (3) and
Eq. (4), respectively. The likelihood function based on the SRS is

LSRS (x; Φ) =

n∏
i=1

f(xi; Φ) =

n∏
i=1

(
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x1i
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e
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(
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)α1

)(
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β2

(
x2i
β2

)α2−1

e
−
(
x2i
β2

)α2

)
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(
1− 2

(
1− e−

(
x1i
β1

)α1
))(

1− 2

(
1− e−

(
x2i
β2

)α2
))]

.

(6)

where Φ = {α1, α2, β1, β2, θ} . The log of the likelihood function in Eq. (6) is given by:

logLSRS (x; Φ) = nlogα1 + nlogα2 +
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Let Z = logLSRS (x;Φ) , then we have
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and
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The SRS MLEs α̂1MLE−SRS , α̂2MLE−SRS , β̂1MLE−SRS , β̂2MLE−SRS and θ̂MLE−SRS of α1, α2, β1, β2, θ re-
spectively, can be obtained by solving the following equations simultaneously

∂Z
∂α1

= 0, ∂Z
∂α2

= 0, ∂Z
∂β1

= 0, ∂Z∂β2
= 0, and ∂Z

∂θ = 0, where Φ = α1, α2, β1, β2, θ.
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2.2. MLE using RSS

LetX(1: m)1, X(2: m)1 , . . . , X(m: m)1, . . . , X(1: m)r, X(2: m)r, . . . , X(m: m)r be a RSS from FGMBW(α1,α2,β1,β2,θ),
with pdf given in Eq. (4). Let the vector x = (x(1: m)1, x(2: m)1 , . . . , x(m: m)1, . . . , x(1: m)r, x(2: m)r, . . . , x(m: m)r)
be the measurements based on the RSS. Then the likelihood function is

LRSS (x; Φ) =

r∏
j=1

m∏
i=1

m!

(i− 1)! (m− i)!
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×
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e
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e
−
( x2(i:m)j

β2

)α2

)
× [1 + θ (1− 2ψ1) (1− 2ψ2)]

where ψj = 1− e−
( xj(i:m)j

βj

)αj
, j = 1, 2.

This equation can be written as
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(7)

The log likelihood function of Eq. (7) using RSS is given by:

logLRSS (x; Φ) = n (logα1 − logβ1) + n (logα2 − logβ2)−
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log [1 + θ (1− 2ψ1) (1− 2ψ2)]

(8)

Now, the derivatives of the log likelihood function given in Eq. (8) with respect to the FGMBW distribution parameters
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are:
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1 −
[(

x2(i:m)j

β2

)α2

log
(
x2(i:m)j

β2

) [
(ψ1 (1 − ψ2)) +

(
θ (ψ1) (1 − ψ1)

(
(−ψ2 (1 − ψ2)) + (1 − ψ2)2))]]

+

r∑
j=1

m∑
i=1

[
θ (1 − 2ψ1)

(
−2 (1 − ψ2)

(
x2(i:m)j

β2

)α2

log
(
x2(i:m)j

β2

))]
[1 + θ (1 − 2ψ2) (1 − 2ψ1)]

,

dlogLRSS (x; Φ)

dβ1
=

n

β1
− α1

β1

r∑
j=1

m∑
i=1

(
x1(i:m)j

β1

)α1

− (α1 − 1)

β1

+

r∑
j=1

m∑
i=1

(i− 1) [(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]

α1
β1

(
x1(i:m)j

β1

)α1 [
((ψ2) (1 − ψ1)) + θ (ψ2) (1 − ψ2)

{
(− (ψ1) (1 − ψ1)) + (1 − ψ1)2}]

+

r∑
j=1

m∑
i=1

− (m− i)
(
α1
β1

(
x1(i:m)j

β1

)α1
) [

((ψ2) (1 − ψ1)) + θ (ψ2) (1 − ψ2)
{

(− (ψ1) (1 − ψ1)) + (1 − ψ1)2}]
[1 − [(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]]

+

r∑
j=1

m∑
i=1

[
−2θ

(
α1
β1

(
x1(i:m)j

β1

)α1

(1 − ψ1) (1 − 2ψ2)
)]

[1 + θ (1 − 2ψ1) (1 − 2ψ2)]
,
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dlogLRSS (x; Φ)

dβ2
= − n

β2
− α2

β2

r∑
j=1

m∑
i=1

(
x2(i:m)j

β2

)α2

− (α2 − 1)

β2

+

r∑
j=1

m∑
i=1

(i− 1) [(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]

α2
β2

(
x2(i:m)j

β2

)α2 [
((ψ1) (1 − ψ2)) + θ (ψ1) (1 − ψ1)

{
(− (ψ2) (1 − ψ2)) + (1 − ψ2)2}]

+

r∑
j=1

m∑
i=1

− (m− i)
(
α2
β2

(
x2(i:m)j

β2

)α2
) [

((ψ1) (1 − ψ2)) + θ (ψ1) (1 − ψ1)
{

(− (ψ2) (1 − ψ2)) + (1 − ψ2)2}]
[1 − [(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]]

+

r∑
j=1

m∑
i=1

[
−2θ

(
α2
β2

(
x2(i:m)j

β2

)α2

(1 − ψ2) (1 − 2ψ1)
)]

[1 + θ (1 − 2ψ1) (1 − 2ψ2)]
,

dlogLRSS (x; Φ)

dθ
=

r∑
j=1

m∑
i=1

(i− 1) [(ψ1) (ψ2) (1 − ψ1) (1 − ψ2)]

[(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]

+

r∑
j=1

m∑
i=1

(m− i) [− (ψ1) (ψ2) (1 − ψ1) (1 − ψ2)]

[1 − [(ψ1) (ψ2) × [1 + θ (1 − ψ1) (1 − ψ2)]]]

+

r∑
j=1

m∑
i=1

log [1 + θ (1 − 2ψ1) (1 − 2ψ2)]

(1 − 2ψ1) (1 − 2ψ2)
.

The MLEs of the distribution parameters can be solved by letting dlogLRSS(x;Φ)
dΦ

= 0, where Φ = α1, α2, β1, β2, θ. Since these
equations has no closed form, then the MLEs α̂1MLE−RSS , α̂2MLE−RSS , β̂1MLE−RSS , β̂2MLE−RSS and θ̂MLE−RSS of α1,
α2, β1, β2, and θ, respectively can be solved numerically.

3. Simulation Study

In this section, a Monte Carlo simulation of 10000 samples is conducted to compare the performance of SRS and RSS based on the
MLE procedure for estimating the FGMBW distribution parameters by R language in terms of the mean squared errors (MSE) and
bias values. The efficiency of Φ̂RSS with respect to Φ̂SRS is given by:

Eff
(

Φ̂RSS , Φ̂SRS
)

=
MSE

(
Φ̂SRS

)
MSE

(
Φ̂RSS

) ,Φ = α1, α2, β1, β2, θ,

MSE
(

Φ̂k
)

= V ar
(

Φ̂k
)

+Bias
(

Φ̂k
)2

, k = SRS,RSS and Bias
(

Φ̂k
)

= E
(

Φ̂k
)
− Φ.

Different scenarios of the distribution parameters values are considered with sample size n = 30, 45, 90, 120. Also, two situations
of ranking are considered, the first one when the ranking of X is perfect while the ranking of Y with errors and the results are
presented in the (Tables 2-4), respectively, based on (α1 = 3.3, β1 = 2.4, α2 = 1.2, β2 = 0.7, θ = 0.5), (α1 = 0.75, β1 =
0.75, α2 = 0.75, β2 = 0.75, θ = 0.75), (α1 = 2.7, β1 = 2.3, α2 = 1.3, β2 = 1.7, θ = 0.50), and the second case is that
the ranking of Y is perfect while there are errors in the ranking of X with obtained results given in the (Tables 5-7) for the same
parameters values considered to the first case.
Based on Tables 2-4 we can see that the suggested RSS estimators for the FGMBW distribution parameters are more efficient than
their competitors based on SRS for all scenarios considered in this study when the ranking is performed on Y . The same thing can be
conducted based on Tables 5-7 when the ranking is performed on X , except the case of β1 in Tables 5 and 7. Moreover, simulation
studies conducted in this section validate the asymptotic properties of MLEs. The results consistently demonstrate consistency as
the sample size increases, ensuring that the estimates converge to the true parameter values. In addition, they exhibit asymptotic
efficiency when compared to alternative estimators under SRS in almost all cases. This efficiency implies that our estimators have
smaller asymptotic variances, making them statistically more precise and powerful in capturing the underlying parameter.

4. Application

In this section, an analysis of real data is provided to investigate the efficiency of the suggested estimators based on RSS with
respect to the SRS competitors based on the same number of measured units. The dataset presented by [18] contains of times (in
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Table 2: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of Y is with errors and α1 = 3.3, β1 = 2.4, α2= 1.2, β2 = 0.7, θ = 0.5

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 3.4666 2.3949 1.2611 0.7006 0.4542

bias -0.1666 0.0051 -0.0611 -0.0006 0.0458

MSE 0.2979 0.0193 0.0397 0.0124 0.2305

RSS mean 3.4460 2.3791 1.2440 0.6782 0.4839

bias -0.1460 0.0209 -0.0440 0.0218 0.0161

MSE 0.2550 0.0109 0.0349 0.0120 0.2060

Efficiency 1.1681 1.7718 1.1373 1.0317 1.1188
n=45 SRS mean 3.4010 2.3953 1.2431 0.7014 0.4764

bias -0.1010 0.0047 -0.0431 -0.0014 0.0236

MSE 0.1780 0.0129 0.0239 0.0085 0.1622

RSS mean 3.3902 2.3829 1.2307 0.6830 0.4948

bias -0.0902 0.0171 -0.0307 0.0170 0.0052

MSE 0.1462 0.0071 0.0226 0.0083 0.1564

Efficiency 1.2177 1.8089 1.0598 1.0227 1.0368
n=90 SRS mean 3.3553 2.3985 1.2193 0.6995 0.4942

bias -0.0553 0.0015 -0.0193 0.0005 0.0058

MSE 0.0819 0.0065 0.0108 0.0042 0.0879

RSS mean 3.3436 2.3913 1.2150 0.6913 0.5040

bias -0.0436 0.0087 -0.0150 0.0087 -0.0040

MSE 0.0670 0.0035 0.0106 0.0042 0.0875

Efficiency 1.2229 1.8706 1.0197 1.0169 1.0050
n=120 SRS mean 3.3360 2.3973 1.2146 0.6999 0.4973

bias -0.0360 0.0026 -0.0146 0.0001 0.0027

MSE 0.0603 0.0054 0.0097 0.0030 0.0701

RSS mean 3.3305 2.3920 1.2165 0.6937 0.5092

bias -0.0305 0.0080 -0.0165 0.0063 -0.0093

MSE 0.0451 0.0028 0.0096 0.0030 0.0698

Efficiency 1.3370 1.9285 1.0104 1.0138 1.0043

days) to the first and second recurrence of infection, at the point of insertion of the catheter, for 30 kidney patients using a portable
dialysis machine. Recurrence time can be defined as the time from infection until next infection. The first recurrence to infection
is measured when a catheter is inserted, while the second recurrence to infection is measured as time elapsed between the second
insertion of a catheter and the second infection.

Let X refers to first recurrence time and Y to second recurrence time, as following X is (8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7,
141, 96, 149, 536, 17, 185, 292, 22, 15, 152, 402, 13, 39, 12, 113, 132, 34, 2, 130) and Y is (16, 13, 28, 318, 12, 245, 9, 30, 196,
154, 333, 8, 38, 70, 25, 4, 117, 114, 159, 108, 362, 24, 66, 46, 40, 201, 156, 30, 25, 26). Almetwally et al.(2020) showed that the
FGMBW distribution fits this data as compared to other real life time models based on SRS method. The same data is considered by
[18]. In this section, using this data, we considered the sample size n = 9 based on both SRS and RSS methods with set size equal
to 3 for RSS. For evaluating how well the model fits the data, two criteria are considered including Akaike Information Criterion
(AIC) and Bayesian Information criterion (BIC), which are defined as AIC = 2K − 2log(L) and BIC = Klog(n) − 2log(L),
where K is the number of independent variables used and L is the log-likelihood estimate. The method with the smallest values
of AIC and BIC is the preferred one. The results are presented in Table 8. For more about the data, Figure ?? and ?? present the
density, box, histogram and TTT plots of X and Y variables for the data while Figure 4 shows the scatter plot of the data. It can be
seen that the data is skewed to the right.

From Table 8, it turns out that the AIC and BIC values based on RSS are less than their competitor based on SRS regardless of the
error case. Also, the results are more efficient when the ranking is performed on X than when the ranking is based on Y .
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Table 3: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of Y is with errors α1 = 0.75, β1 = 0.75, α2= 0.75, β2 = 0.75, θ = 0.75

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 0.7894 0.7612 0.7897 0.7597 0.6537

bias -0.0394 -0.0112 -0.0397 -0.0097 0.0963

MSE 0.0155 0.0372 0.0156 0.0369 0.1705

RSS mean 0.7888 0.7449 0.7861 0.7359 0.6554

bias -0.0388 0.0051 -0.0361 0.0141 0.0946

MSE 0.0131 0.0191 0.0151 0.0333 0.1663

Efficiency 1.1776 1.9512 1.0324 1.1103 1.0254
n=45 SRS mean 0.7742 0.7558 0.7781 0.7581 0.6875

bias -0.0242 -0.0058 -0.0281 -0.0081 0.0625

MSE 0.0092 0.0245 0.0094 0.0252 0.1157

RSS mean 0.7763 0.7484 0.7743 0.7411 0.6899

bias -0.0263 0.0016 -0.0243 0.0089 0.0601

MSE 0.0078 0.0127 0.0091 0.0230 0.1114

Efficiency 1.1795 1.9250 1.0289 1.0943 1.0382
n=90 SRS mean 0.7633 0.7541 0.7627 0.7522 0.7219

bias -0.0133 -0.0041 -0.0127 -0.0022 0.0281

MSE 0.0042 0.0123 0.0042 0.0124 0.0623

RSS mean 0.7632 0.7502 0.7619 0.7461 0.7215

bias -0.0132 -0.0002 -0.0119 0.0039 0.0285

MSE 0.0035 0.0066 0.0042 0.0117 0.0618

Efficiency 1.2000 1.8608 1.0161 1.0592 1.0091
n=120 SRS mean 0.7597 0.7581 0.7565 0.7502 0.7272

bias -0.0097 -0.0081 -0.0064 -0.0002 0.0228

MSE 0.0034 0.0092 0.0030 0.0093 0.0488

RSS mean 0.7605 0.7487 0.7588 0.7474 0.7334

bias -0.0105 0.0013 -0.0088 0.0026 0.0166

MSE 0.0028 0.0051 0.0029 0.0087 0.0475

Efficiency 1.2143 1.8039 1.0345 1.0690 1.0273

5. Conclusion

In this paper, the RSS method in used to estimate the FGMBW distribution parameters and it is compared with the SRS method
based on the same number of measured units. The maximum likelihood is implemented to estimate the distribution parameters.
Also, an application of real data set is considered for illustration. It is found that the RSS estimators are more efficient than the
SRS counterpart for all scenarios when the ranking is performed on X , while it is more efficient than SRS when the ranking is
performed on Y in most scenarios. The finding in this paper may be modified in future works based on other modifications of RSS.
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Table 4: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of Y is with errors α1 = 2.7, β1 = 2.3, α2= 1.3, β2 = 1.7, θ = 0.50

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 2.8410 2.2952 1.3648 1.7017 0.4466

bias -0.1410 0.0048 -0.0648 -0.0017 0.0534

MSE 0.1985 0.0261 0.0469 0.0647 0.2366

RSS mean 2.8127 2.2751 1.3476 1.6491 0.4856

bias -0.1127 0.0249 -0.0476 0.0509 0.0144

MSE 0.1605 0.0147 0.0432 0.0606 0.2115

Efficiency 1.2368 1.7727 1.0858 1.0671 1.1188
n=45 SRS mean 2.7886 2.2992 1.3415 1.6965 0.4715

bias -0.0886 0.0008 -0.0415 0.0035 0.0285

MSE 0.1197 0.0181 0.0280 0.0413 0.1637

RSS mean 2.7767 2.2828 1.3323 1.6623 0.4978

bias -0.0767 0.0172 -0.0323 0.0377 0.0022

MSE 0.0982 0.0098 0.0264 0.0409 0.1508

Efficiency 1.2185 1.8489 1.0619 1.0116 1.0851
n=90 SRS mean 2.7420 2.2994 1.3190 1.6990 0.4923

bias -0.0420 0.0006 -0.0190 0.0010 0.0077

MSE 0.0530 0.0088 0.0128 0.0209 0.0881

RSS mean 2.7353 2.2914 1.3154 1.6840 0.5065

bias -0.0353 0.0086 -0.0154 0.0160 -0.0065

MSE 0.0448 0.0048 0.0124 0.0209 0.0854

Efficiency 1.1819 1.8261 1.0275 1.0029 1.0312
n=120 SRS mean 2.7376 2.2988 1.3139 1.7089 0.4940

bias -0.0376 0.0012 -0.0139 -0.0090 0.0060

MSE 0.0399 0.0064 0.0092 0.0160 0.0669

RSS mean 2.7271 2.2948 1.3138 1.6849 0.5074

bias -0.0271 0.0052 -0.0138 0.0151 -0.0074

MSE 0.0343 0.0037 0.0094 0.0159 0.0662

Efficiency 1.1633 1.7297 1.0217 1.0063 1.0106
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Table 5: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of X is with errors α1 = 3.3, β1 = 2.4, α2= 1.2, β2 = 0.7, θ = 0.5

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 3.4666 2.3949 1.2611 0.7006 0.4542

bias -0.1666 0.0051 -0.0611 -0.0006 0.0458

MSE 0.2979 0.0193 0.0397 0.0124 0.2305

RSS mean 3.4015 2.3595 1.2527 0.6884 0.4923

bias -0.1015 0.0405 -0.0527 0.0116 0.0077

MSE 0.2712 0.0205 0.0319 0.0064 0.2095

Efficiency 1.0983 0.9378 1.2452 1.9375 1.1000
n=45 SRS mean 3.4010 2.3953 1.2431 0.7014 0.4764

bias -0.1010 0.0047 -0.0431 -0.0014 0.0236

MSE 0.1780 0.0129 0.0239 0.0085 0.1622

RSS mean 3.3662 2.3731 1.2351 0.6926 0.5013

bias -0.0662 0.0269 -0.0351 0.0074 -0.0013

MSE 0.1675 0.0135 0.0196 0.0044 0.1571

Efficiency 1.0625 0.9523 1.2213 1.9132 1.0325
n=90 SRS mean 3.3553 2.3985 1.2193 0.6995 0.4942

bias -0.0553 0.0015 -0.0193 0.0005 0.0058

MSE 0.0819 0.0065 0.0108 0.0042 0.0879

RSS mean 3.3340 2.3854 1.2169 0.6961 0.5073

bias -0.0340 0.0146 -0.0169 0.0039 -0.0073

MSE 0.0785 0.0066 0.0089 0.0023 0.0864

Efficiency 1.0429 0.9801 1.2175 1.8639 1.0180
n=120 SRS mean 3.3360 2.3973 1.2146 0.6999 0.4973

bias -0.0360 0.0026 -0.0146 0.0001 0.0027

MSE 0.0603 0.0054 0.0097 0.0030 0.0701

RSS mean 3.3151 2.3896 1.2120 0.6980 0.5337

bias -0.0151 0.0104 -0.0120 0.0020 -0.0337

MSE 0.0582 0.0046 0.0081 0.0017 0.0699

Efficiency 1.0365 1.1820 1.1975 1.7222 1.0029
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Table 6: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of X is with errors and α1 = 0.75, β1 = 0.75, α2= 0.75, β2 = 0.75, θ = 0.75.

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 0.7894 0.7612 0.7897 0.7597 0.6537

bias -0.0394 -0.0112 -0.0397 -0.0097 0.0963

MSE 0.0155 0.0372 0.0156 0.0369 0.1705

RSS mean 0.7865 0.7370 0.7902 0.7500 0.6558

bias -0.0365 0.0130 -0.0402 0.0000 0.0942

MSE 0.0149 0.0338 0.0129 0.0193 0.1657

Efficiency 1.0380 1.1012 1.2093 1.9119 1.0293
n=45 SRS mean 0.7742 0.7558 0.7781 0.7581 0.6875

bias -0.0242 -0.0058 -0.0281 -0.0081 0.0625

MSE 0.0092 0.0245 0.0094 0.0252 0.1157

RSS mean 0.7751 0.7390 0.7761 0.7486 0.6851

bias -0.0251 0.0110 -0.0261 0.0014 0.0649

MSE 0.0092 0.0228 0.0078 0.0132 0.1146

Efficiency 1.0064 1.0748 1.2052 1.9088 1.0092
n=90 SRS mean 0.7633 0.7541 0.7627 0.7522 0.7219

bias -0.0133 -0.0041 -0.0127 -0.0022 0.0281

MSE 0.0042 0.0123 0.0042 0.0124 0.0623

RSS mean 0.7622 0.7448 0.7637 0.7496 0.7194

bias -0.0122 0.0052 -0.0137 0.0004 0.0306

MSE 0.0041 0.0118 0.0035 0.0065 0.0619

Efficiency 1.0347 1.0431 1.1964 1.9050 1.0066
n=120 SRS mean 0.7597 0.7581 0.7565 0.7502 0.7272

bias -0.0097 -0.0081 -0.0064 -0.0002 0.0228

MSE 0.0034 0.0092 0.0030 0.0093 0.0488

RSS mean 0.7568 0.7445 0.7589 0.7505 0.7352

bias -0.0068 0.0055 -0.0089 -0.0005 0.0148

MSE 0.0030 0.0089 0.0026 0.0050 0.0490

Efficiency 1.1333 1.0334 1.1538 1.8600 1.0041
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Table 7: The efficiency of RSS with respect to SRS in estimating the parameters of the FGMBW distribution
where the ranking of X is with errors and α1 = 2.7, β1 = 2.3, α2= 1.3, β2 = 1.7, θ = 0.50

Sample Set size=3 α1 β1 α2 β2 θ

n=30 SRS mean 2.8410 2.2952 1.3648 1.7017 0.4466

bias -0.1410 0.0048 -0.0648 -0.0017 0.0534

MSE 0.1985 0.0282 0.0469 0.0647 0.2366

RSS mean 2.7867 2.2549 1.3573 1.6731 0.4916

bias -0.0867 0.0451 -0.0573 0.0269 0.0084

MSE 0.1823 0.0277 0.0375 0.0336 0.2096

Efficiency 1.0890 1.0181 1.2504 1.9230 1.1287
n=45 SRS mean 2.7886 2.2992 1.3415 1.6965 0.4715

bias -0.0886 0.0008 -0.0415 0.0035 0.0285

MSE 0.1197 0.0181 0.0280 0.0413 0.1637

RSS mean 2.7567 2.2701 1.3382 1.6829 0.5007

bias -0.0567 0.0299 -0.0382 0.0171 -0.0007

MSE 0.1125 0.0183 0.0230 0.0223 0.1571

Efficiency 1.0640 0.9876 1.2177 1.8551 1.0416
n=90 SRS mean 2.7420 2.2994 1.3190 1.6990 0.4923

bias -0.0420 0.0006 -0.0190 0.0010 0.0077

MSE 0.0530 0.0088 0.0128 0.0209 0.0881

RSS mean 2.7291 2.2838 1.3184 1.6910 0.5070

bias -0.0291 0.0162 -0.0184 0.0090 -0.0070

MSE 0.0527 0.0091 0.0105 0.0114 0.0864

Efficiency 1.0057 0.9655 1.2228 1.8311 1.0192
n=120 SRS mean 2.7376 2.2988 1.3139 1.7089 0.4940

bias -0.0376 0.0012 -0.0139 -0.0090 0.0060

MSE 0.0399 0.0064 0.0092 0.0160 0.0669

RSS mean 2.7295 2.2944 1.3087 1.6937 0.5107

bias -0.0295 0.0056 -0.0087 0.0061 -0.0107

MSE 0.0398 0.0067 0.0075 0.0088 0.0667

Efficiency 1.0025 0.9552 1.2267 1.8181 1.0030

Table 8: The estimated parameters of the FGMBW distribution based on SRS and RSS for the infection data.

Sample Method α̂1 β̂1 α̂2 β̂2 θ̂ −LL AIC BIC

All data (N=30) 0.7496 98.7130 0.9288 95.4257 0.4006 338.9361 687.8723 694.8782

n=9 SRS 0.8232 100.2718 1.0168 96.3273 0.3055 100.7422 211.4843 212.4704

RSS (x) 0.8138 95.53322 0.9778 85.2932 0.3745 90.8646 191.7292 192.7153

RSS (y) 0.7937 87.3678 1.0002 91.4337 0.3645 91.4087 192.8174 193.8035
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Figure 2: The (a) density, (b) box, (c) histogram, and (d) TTT plots for the first recurrence data.
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Figure 3: The (a) density, (b) box, (c) histogram, and (d) TTT plots for the second recurrence data.
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Figure 4: Scatter plot for the data.
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