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Abstract  

 

Researchers from various fields of science encounter phenomena of interest, and they seek to model the 
occurrences scientifically. An important approach of performing modeling is to use probability distributions. 

Probability distributions are probabilistic models that have many applications in different research areas, 

including, but not limited to, environmental and financial studies. In this paper, we study a quartic 

transmuted Weibull distribution from a general quartic transmutation family of distributions as a 

generalization and an alternative to the well-known Weibull distribution. We also investigate the practical 

application of this generalization by modeling climate-related data sets and check the goodness-of-fit of the 

proposed model. The statistical properties of the proposed model, which includes non-central moments, 

generating functions, survival function, and hazard function, are derived. Different estimation methods to 

estimate the parameters of the proposed quartic transmuted distribution: the maximum likelihood estimation 

method, the maximum product of spacings method, two least-squares-based methods, and three goodness-

of-fit-based estimation methods. Numerical illustration and an extensive comparative Monte Carlo 

simulation study is conducted to investigate the performance of the estimators of the considered inferential 
methods. Regarding estimation methods, simulation outcomes indicated that the maximum likelihood 

estimation (MLE), Anderson-Darling estimation (ADE) and right Anderson-Darling (RADE) methods in 

general outperformed the other considered methods in terms of estimation efficiency for large sample size, 

while all considered estimation methods performed almost same in terms of goodness-of-fit regardless the 

values of shape and transmuted parameters. Two real-life data sets are used to demonstrate the suggested 

estimation methods, the applicability and flexibility of the proposed distribution compared to Weibull, 

transmuted Weibull, and cubic transmuted Weibull distributions. Weighted least squares estimation (WLSE) 

and least squares estimation (LSE) methods provided best model fitting estimates of the proposed 

distribution for Wheaton River and rainfall data respectively. The proposed quartic transmuted Weibull 

distribution provided significantly improved fit for the two datasets as compared with competitive 

distributions. 
 

 

Key Words: Weibull Distribution; Quartic Transmuted Family of Distributions; Point Estimation; Simulation &   

                      Modeling 
 

 

 
1  Introduction 
 

Due to the increasing new challenges in climatology, hydrology, sociology, economics, medicine, biology, and other 

fields of science that affect human societies, need more flexible statistical models that can capture the asymmetry 

inherent to specific data (e.g., climate data) has become a necessity. Therefore, numerous generalizations and 

modifications for well-known skew distributions, such as the Weibull distribution, have been proposed and studied 

Pakistan Journal of Statistics and Operation Research 



Pak.j.stat.oper.res.  Vol.19  No. 4 2023 pp 649-669  DOI: http://dx.doi.org/10.18187/pjsor.v19i4.4423 

 

 
Modeling Climate data using the Quartic Transmuted Weibull Distribution and Different Estimation Methods 

 

650 

 

over the last decades. Indeed, statistical literature has been enriched with many flexible models, and we seek to present 

an additional more flexible model for the scientific community. The Weibull distribution (Weibull, 1951)  is a well-

known distribution named after W. Weibull, a Swedish physicist. The Weibull distribution has many applications, 

including, but not limited to, survival analysis, reliability engineering, industrial engineering, climate and weather 

forecasting, hydrology, and other fields. In reliability and survival analyses, the Weibull distribution is considered as 

a lifetime model; however, it cannot be used to model practical failure rates which are typically non-monotonic in 

practice. 
 

The cumulative distribution function (CDF) and probability density function (PDF) of the Weibull distribution with 

shape parameter α and scale parameter β can be defined as 

     G(𝑥) = 1 − 𝑒
−(

𝑥

𝛽
)

𝛼

,       𝑥 > 0;    𝛼, 𝛽 > 0                                                                                                              (1)            

  and 

     𝑔(𝑥) =
𝛼

𝛽
 (

𝑥

𝛽
)

𝛼−1

𝑒
−(

𝑥

𝛽
)

𝛼

,   𝑥 > 0;   𝛼, 𝛽 > 0                                                                                                         (2) 
 

The shape parameter of the distribution can allow to take characteristics of other types of distributions. It is important 

to keep in mind that for 𝛼 < 1, indicates the failure rate declines over time, 𝛼 = 1, shows that the failure rate is stable 

over time and all results go for exponential distribution, and 𝛼 > 1 illustrates the rate of failure increasing overtime. 

As previously mentioned, the Weibull distribution is a well-known lifetime model that describes constant and 

monotonic failure rates which are sometimes impractical to assume. Failure rates in practice might be in the form of 

a bathtub curve or a unimodal curve. Therefore, numerous generalizations and expansions of the Weibull distribution 

are available in literature. Exponentiated Weibull distribution developed by Mudholkar and Srivastava (1993), 

Marshall and Olkin (1997) generated extended Weibull distribution, Xie et al. ( 2002)  suggested modified Weibull 

distribution, beta Weibull distribution presented by Lee et al. (2007), Bebbington et al. (2007) developed a flexible 

Weibull distribution, Kumaraswamy Weibull distribution developed by Cordeiro et al. (2010), Zhang and Xie (2011) 

generated the truncated Weibull distribution, Cordeiro and Silva (2014)  generated a complementary extended Weibull 

power series class of distributions and a Weibull distribution with an alpha logarithmic transformation developed by 

Nassar et al. (2018). 
 

The transmuted Weibull distribution was developed by Aryal and Tsokos (2011) by using the rank transmuted map 

suggested by Shaw and Buckley (2009). The CDF of transmuted Weibull distribution is defined as 

𝐹(𝑥) = [1 − 𝑒
−(

𝑥
𝛽

)
𝛼

] [1 + 𝜆 𝑒
−(

𝑥
𝛽

)
𝛼

] 

The cubic transmuted Weibull distributions were generated by different researchers by using different cubic 

transmuted family of distributions. The CDFs of the cubic transmuted Weibull distributions developed by Granzotto 

et al. (2017), AL-Kadim and Mohammed (2017) and Rahman et al. (2019) are defined respectively as 

  𝐹(𝑥) = 𝜆1 [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

] + 2(𝜆2 − 𝜆1) [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

2

+ 3(1 − 𝜆2) [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

3

 

 𝐹(𝑥) = (1 + 𝜆) [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

] − 2 𝜆 [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

2

+ 𝜆 [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

3

 

 𝐹(𝑥) = (1 + 𝜆1) [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

] + (𝜆2 − 𝜆1) [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

2

− 𝜆2 [1 − 𝑒
−(

𝑥

𝛽
)

𝛼

]

3

   

 

There are some situations where quadratic and cubic transmuted distributions do not fit well to the real-life data 

properly. Different approaches are available in literature to introduce additional parameters to the distributions for 

generating quartic transmuted distributions, which will be more flexible, practicable and able to capture more 

complexity of real-life data. Ali and Athar (2021) suggested a general quartic transmuted family of distributions. The 

CDF of general quartic transmuted family of distributions with transmuted parameters 𝜆1, 𝜆2 and 𝜆3 defined as 

 𝐹(𝑥) = 2 𝜆1𝐺(𝑥) + 3(𝜆2 − 𝜆1)𝐺2(𝑥) + 2(𝜆1 − 2𝜆2 + 𝜆3)𝐺3(𝑥) + (1 − 𝜆1 + 𝜆2 − 2𝜆3)𝐺4(𝑥)                           (3)                                    

and the corresponding PDF of quartic transmuted distribution is obtained as 

 𝑓(𝑥) = 𝑔(𝑥)[2 𝜆1 + 6(𝜆2 − 𝜆1)𝐺(𝑥) + 6(𝜆1 − 2𝜆2 + 𝜆3)𝐺2(𝑥) + 4(1 − 𝜆1 + 𝜆2 − 2𝜆3)𝐺3(𝑥)]                        (4)                                                                                                                       

where, 𝜆1 ∈ [0, 2],  𝜆2 ∈ [0, 2] and 𝜆3 ∈ [0, 2] and 0 < 𝜆1 + 𝜆2 + 𝜆3 < 2 
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In this research, we are interested in proposing a quartic transmuted Weibull distribution by employing Weibull 

distribution as a baseline distribution from above quartic transmuted family. The statistical properties of the proposed 

distribution will be discussed. Different techniques will be applied to estimate the QTW distribution's parameters, and 

a simulation study will be performed to assess how well the estimators for the various techniques work. Real-world 

data sets will be used to test the proposed distribution's applicability and flexibility in comparison to other competitive 

distributions. 
 

The outline for the paper is provided below. In Section 2, the proposed QTW distribution is developed. In Section 3, 

we looked at statistical features of the QTW distribution including moments, moments generating function, 

characteristic function, mode, reliability function,  hazard function, and entropy. The parameter estimation for the 

QTW distribution using various methods is described in Section 4. In Section 5, Monte Carlo simulation study is 

carried out to assess the performance of the estimators. An application of real-life data sets in Section 6. We also 

included some concluded thoughts in Section 7. 
 

2 Quartic Transmuted Weibull Distribution 
 

Here we will derive the CDF and PDF of the quartic transmuted Weibull distribution. The CDF of QTW distribution 

is obtained by using (1) in equation (3) and on simplifying, the CDF becomes as 

 𝐹(𝑥) = 1 − 𝑎1 𝑒
−(

𝑥

𝛽
)

𝛼

− a2 𝑒
−2(

𝑥

𝛽
)

𝛼

− a3 𝑒
−3(

𝑥

𝛽
)

𝛼

−  a4 𝑒
−4(

𝑥

𝛽
)

𝛼

                                                                              (5) 

 where, 𝑎1 = 4 − 2𝜆1 − 2𝜆2 − 2𝜆3, 𝑎2 = −6 + 3𝜆1 + 3𝜆2 + 6𝜆3, 𝑎3 = 4 − 2𝜆1 − 6𝜆3 and 𝑎4 = −1 + 𝜆1 − 𝜆2 +
  2𝜆3 
 

Differentiating above equation with respect to x and simplifying, the PDF of QTW distribution can be obtained as 

 𝑓(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

[4𝑎4 + 3a3 𝑒
(

𝑥

𝛽
)

𝛼

+ 2a2𝑒
2(

𝑥

𝛽
)

𝛼

+ a1𝑒
3(

𝑥

𝛽
)

𝛼

]                                                                     (6)                                                                

It is noted that the quartic transmuted Weibull distribution will be reduced to baseline Weibull distribution when the 

transmuted parameters 𝜆1 = 𝜆2 = 𝜆3 = 0.5. 
 

The potential PDF and CDF shapes for various values of the parameters 𝛼,  𝜆1, 𝜆2 and 𝜆3 with the fixed value of 𝛽 =
2 are shown in Figure 1. 

 

 
 

  Figure 1: The PDFs and CDFs of the QTW for the different values of 𝛼, 𝜆1, 𝜆2, and 𝜆2 with fixed value of 𝛽 = 2 

3 Distributional Properties 
 

In this part, we have covered the QTW distribution's distributional features, including moments, moment generating 

function, characteristic functions, mode, reliability function, hazard rate function, and entropy. 

 

3.1 Moments 
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Moments have a crucial role in characterizing a distribution. The expression for the 𝑟𝑡ℎ raw moments of QTW 

distribution is defined as  

𝐸(𝑋𝑟) =
𝛽𝑟

24
𝑟
𝛼

 Γ (
𝑟+𝛼

𝛼
) [𝑎4 6

𝑟

𝛼 + 𝑎38
𝑟

𝛼 + 𝑎212
𝑟

𝛼 + 𝑎1 24
𝑟

𝛼]                                                                                            (7)                                                                

Using equation (7), the suggested distribution's mean and variance can be calculated as 

Mean = 𝐸(𝑋) =
β

24
1
𝛼

 Γ (
1 + 𝛼

𝛼
) [𝑎4 6

1
𝛼 + 𝑎38

1
𝛼 + 𝑎212

1
𝛼 + 𝑎1 24

1
𝛼] 

Varinace = 𝐸(𝑋2) − {𝐸(𝑋)}2 

                  =
𝛽2

24
2
𝛼

 Γ (
2+𝛼

𝛼
) [𝑎4 6

2

𝛼 + 𝑎38
2

𝛼 + 𝑎212
2

𝛼 + 𝑎1 24
2

𝛼] − {
β

24
1
𝛼

 Γ (
1+𝛼

𝛼
) [𝑎4 6

1

𝛼 + 𝑎38
1

𝛼 + 𝑎212
1

𝛼 + 𝑎1 24
1

𝛼]}
2

  

 

Table 1 displayed the means and variances of QTW distribution for different combinations of parameters. 
 

Table 1: Mean and variance of QTW distribution for different combinations of parameters. 

 

Parameters 
𝜆1 = 0.50 𝜆1 = 1.00 𝜆1 = 0.00 𝜆1 = 1.20 

𝜆2 = 0.50 𝜆2 = 1.00 𝜆2 = 0.00 𝜆2 = 0.50 

𝜆3 = 0.50 𝜆3 = 0.00 𝜆3 = 2.00 𝜆3 = 0.25 

Mean Variance Mean Variance Mean Variance Mean Variance 

 

𝛽 = 1 

𝛼 = 0.50 2.00 20.00 0.319 0.397 1.597 4.360 0.547 3.049 

𝛼 = 1.00 1.00 1.00 0.417 0.146 1.083 0.424 0.483 0.313 

𝛼 = 2.00 0.886 0.215 0.580 0.080 0.996 0.091  0.604 0.118 

 𝛼 = 4.00 0.906 0.065 0.737 0.038 0.986 0.023 0.745 0.049 

 

𝛽 = 2 

𝛼 = 0.50 4.00 80.00 0.639 1.587 3.194 17.439 1.094 12.196 

𝛼 = 1.00 2.00 4.00 0.833 0.583 2.167 1.694 0.967 1.254 

𝛼 = 2.00 1.772 0.858 1.160 0.320 1.992 0.365 1.209 0.472 

 𝛼 = 4.00 1.813 0.259 1.473 0.151 1.972 0.094 1.490 0.197 

 

𝛽 = 3 

𝛼 = 0.50 6.00 180.00   0.958 3.571 4.792 39.238 1.642 27.440 

𝛼 = 1.00 3.00 9.00 1.250 1.312 3.250 3.813 1.450 2.823 

𝛼 = 2.00 2.659 1.931 1.741 0.720 2.988 0.822 1.813 1.062 

 𝛼 = 4.00 2.719 0.582 2.210 0.340 2.958 0.211 2.235 0.444 
 

For the various values of the parameters, Table 2 exhibited the skewness and kurtosis of the QTW distribution. 
 

Table 2: Skewness and kurtosis of QTW distribution for the different values of 𝛼, 𝜆1, 𝜆2, and 𝜆2 with fixed value of 𝛽 = 2. 
 

 

Parameters 
𝜆1 = 0.50 𝜆1 = 1.00 𝜆1 = 0.00 𝜆1 = 1.20 

𝜆2 = 0.50 𝜆2 = 1.00 𝜆2 = 0.00 𝜆2 = 0.50 

𝜆3 = 0.50 𝜆3 = 0.00 𝜆3 = 2.00 𝜆3 = 0.25 

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

𝛼 = 0.50 6.619 87.720 5.548 61.292 3.862 31.556 13.846 426.025 

𝛼 = 1.00 2.000 9.000 1.725 7.367 1.288 5.633 2.980 18.733 

𝛼 = 1.50 1.072 4.390 0.891 3.857 0.685 3.641 1.543 6.862 

𝛼 = 2.00 0.631 3.245 0.481 3.002 0.392 3.146 0.960 4.373 

𝛼 = 2.50 0.359 2.857 0.222 2.747 0.215 2.991 0.627 3.503 

𝛼 = 3.00 0.168 2.729 0.039 2.699 0.094 2.984 0.403 3.138 

𝛼 = 3.50 0.025 2.712 -0.099 2.737 0.006 2.050 0.240 2.981 

𝛼 = 4.00 -0.087 2.748 -0.209 2.813 -0.061 2.970 0.114 2.923 

𝛼 = 5.00 -0.254 2.880 -0.372 3.004 -0.157 3.027 -0.069 2.940 

3.2 Generating Functions  
 

In this part, the moment generating function and characteristic function are discussed. 
 

3.2.1 Moment Generating Functions 
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A moment generating function (MGF) generates moments from a distribution and is useful to characterize the 

distribution. The MGF of the QTW distribution is obtained from the theorem given below. 
 

Theorem 1: Suppose X follows QTW distribution, then the moment generating function 𝑀𝑋(𝑡) is given as 

 𝑀𝑋(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0

𝛽𝑟

24
𝑟
𝛼

 Γ (
𝑟+𝛼

𝛼
) [𝑎4 6

𝑟

𝛼 + 𝑎3 8
𝑟

𝛼 + 𝑎212
𝑟

𝛼 + 𝑎1 24
𝑟

𝛼]                                                                             (8)  

where, 𝑡 ∈ ℝ         
      
Proof: 

The MGF of the distribution of X is defined as  

 𝑀𝑋(𝑡) = 𝐸(𝑒𝑋𝑡)  = ∫ 𝑒𝑥𝑡𝑓(𝑥)𝑑𝑥
∞

0

 

Where, 𝑓(𝑥) is given in (6). Using the series expansion of 𝑒𝑡𝑥, we have  

𝑀𝑋(𝑡) = ∫ ∑
𝑡𝑟

𝑟!
∞
𝑟=0  𝑥𝑟  𝑓(𝑥)𝑑𝑥 = ∑

𝑡𝑟

𝑟!
∞
𝑟=0 ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

0
 = ∑

𝑡𝑟

𝑟!
∞
𝑟=0  𝐸(𝑋𝑟)

∞

0
                                                            (9) 

Using 𝐸(𝑋𝑟) from (7) in (9), we have (8). 

Moments can be obtained by differentiating 𝑀𝑋(𝑡) with respect to t and setting 𝑡 = 0  in (8). 
 

3.2.2 Characteristic Function 
 

Characteristic function (CF) is a function which is always exist and used to completely define probability density 

function. The following theorem states QTW distribution’s the Characteristic function. 
 

Theorem 2: If the random variable X having the QTW distribution, then characteristic function, ∅𝑋 (𝑡)  is obtained as 

∅𝑋 (𝑡) = ∑
(𝑖𝑡)𝑟

𝑟!
∞
𝑟=0

𝛽𝑟

24
𝑟
𝛼

 Γ (
𝑟+𝛼

𝛼
) [𝑎4 6

𝑟

𝛼 + 𝑎3 8
𝑟

𝛼 + 𝑎212
𝑟

𝛼 + 𝑎1 24
𝑟

𝛼]                                                                           (10) 

where, 𝑡 ∈ ℝ and  𝑖 = √−1 is an imaginary number.  
 

Proof: The proof is same as MGF. 
 

3.3 Reliability and Hazard Functions 
 

Reliability and hazard functions are very important for distribution. The reliability function generates the likelihood 

that a device will perform properly for time t without failing. The reliability function is defined as 𝑅(𝑡) = 1 − 𝐹(𝑡) 

and for the QTW distribution it become as 

𝑅(𝑡) = 𝑎1 𝑒
−(

𝑡

𝛽
)

𝛼

+ a2𝑒
−2(

𝑡

𝛽
)

𝛼

+ 𝑎3𝑒
−3(

𝑡

𝛽
)

𝛼

+ 𝑎4𝑒
−4(

𝑡

𝛽
)

𝛼

                                                                                           (11)  

where 𝑡 ∈ ℝ         

The hazard function is defined as ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 and further obtained for QTW distribution as 

ℎ(𝑡) =

𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1
𝑒

−4(
𝑡
𝛽

)
𝛼

[4𝑎4 + 3a3 𝑒
(

𝑡
𝛽

)
𝛼

+ 2a2 𝑒
2(

𝑡
𝛽

)
𝛼

+ a1𝑒
3(

𝑡
𝛽

)
𝛼

]

𝑎1  𝑒
−(

𝑡
𝛽

)
𝛼

+ a2  𝑒
−2(

𝑡
𝛽

)
𝛼

+ 𝑎3  𝑒
−3(

𝑡
𝛽

)
𝛼

+ 𝑎4  𝑒
−4(

𝑡
𝛽

)
𝛼                                                                                                 (12) 

where,  𝑡 ∈ ℝ+         
        
 The reliability functions (left) and hazard rate functions (right) of the QTW distribution are illustrated in Figure 2 for 

several combinations of the model parameters 𝛼,  𝜆1, 𝜆2 and 𝜆3 with the fixed value of  𝛽 = 2. 
 

It is observed from the Figure 2 that reliability and distribution functions acted complementary to each other, and 

hazard rate functions showed upward, constant, and downward shapes. Different directions of the curves of hazard 

rate function indicated the more flexibility and applicability of the proposed distribution. 

 



Pak.j.stat.oper.res.  Vol.19  No. 4 2023 pp 649-669  DOI: http://dx.doi.org/10.18187/pjsor.v19i4.4423 

 

 
Modeling Climate data using the Quartic Transmuted Weibull Distribution and Different Estimation Methods 

 

654 

 

 
Figure 2: The graphs of reliability and hazard functions of QTW for different values of 𝛼, 𝜆1, 𝜆2 and 𝜆3 for fixed value 

of 𝛽 = 2. 

 

3.4 Mode  

The mode or modal value of a random variable X with the PDF 𝑓(𝑥) is the value of x for which 𝑓(𝑥) has maximum 

value. 

We have 𝑓(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

[4𝑎4 + 3a3 𝑒
(

𝑥

𝛽
)

𝛼

+ 2a2𝑒
2(

𝑥

𝛽
)

𝛼

+ a1𝑒
3(

𝑥

𝛽
)

𝛼

]                     

Differentiate 𝑓(𝑥) to get   𝑓 ′(𝑥)    

𝑓 ′(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

  
𝑑

𝑑𝑥
[4𝑎4 + 3a3 𝑒

(
𝑥

𝛽
)

𝛼

+ 2a2𝑒
2(

𝑥

𝛽
)

𝛼

+ a1𝑒
3(

𝑥

𝛽
)

𝛼

] + [4𝑎4 + 3a3 𝑒
(

𝑥

𝛽
)

𝛼

+ 2a2𝑒
2(

𝑥

𝛽
)

𝛼

+

               a1𝑒
3(

𝑥

𝛽
)

𝛼

] 
𝑑

𝑑𝑥
{

𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

}                  

           =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

 [3α a3 𝑒
(

𝑥

𝛽
)

𝛼

(
𝑥

𝛽
)

𝛼−1 1

𝛽
+ 4 𝛼 a2𝑒

2(
𝑥

𝛽
)

𝛼

(
𝑥

𝛽
)

𝛼−1 1

𝛽
+ 3 𝛼 a1𝑒

3(
𝑥

𝛽
)

𝛼

(
𝑥

𝛽
)

𝛼−1 1

𝛽
] +[4𝑎4 +

                3a3 𝑒
(

𝑥

𝛽
)

𝛼

+ 2a2𝑒
2(

𝑥

𝛽
)

𝛼

+ a1𝑒
3(

𝑥

𝛽
)

𝛼

] {
𝛼

𝛽2
(𝛼 − 1)𝑒

−4(
𝑥

𝛽
)

𝛼

(
𝑥

𝛽
)

𝛼−2

− 4
𝛼2

𝛽2 𝑒
−4(

𝑥

𝛽
)

𝛼

(
𝑥

𝛽
)

2𝛼−2

}                                (13) 

Mode of the QTW distribution can be obtained by equating 𝑓 ′(𝑥) = 0 and solving the equation numerically. 

 

3.5 Entropy  
 

Entropy, which is defined for a probability distribution over a finite sample space, or a finite number of outcomes, can 

be thought of as a measure of the probability distribution's uncertainty. 
 

3.5.1 Renyi Entropy 
 

The Rényi entropy is important in statistics as an index of diversity. The Rényi entropy is also important in quantum 

information, where it can be used as a measure of entanglement. If X is a non-negative random variable with PDF 

𝑓(𝑥), then Renyi entropy of order 𝛿 of X is defined as 

    𝐻𝛿(𝑥) =
1

1−𝛿
𝑙𝑜𝑔 ∫ [𝑓(𝑥)]𝛿∞

0
𝑑𝑥, 𝛿 > 0, 𝛿 ≠ 1                                                                                                         (14)                                                                                                   

 

Theorem 3: If X follows the QTW distribution and 𝜆1 ≠ 𝜆2 ≠ 𝜆3, then Renyi entropy of the QTW distribution can be 

obtained as 

  𝐻𝛿(𝑥) =
1

1−𝛿
𝑙𝑜𝑔 [𝛽−𝛿+1𝛼𝛿−1Γ (

𝛿𝛼−𝛿+1

𝛼
) ∑ ∑ ∑ (𝛿

𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟δ
𝑗=0

𝑎4
𝛿−𝑗

𝑎3
𝑗−𝑘

𝑎2
𝑘−𝑟𝑎1

𝑟

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

]     
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Proof: 
The PDF of X is given in equation (6). We would like to calculate the term 

[𝑓(𝑥)]𝛿 =
𝛼𝛿

𝛽𝛼𝛿 𝑥𝛿(𝛼−1)𝑒−4𝑤𝛿[4𝑎4 + 3𝑎3𝑒𝑤 + 2𝑎2𝑒2𝑤 + 𝑎1𝑒3𝑤]𝛿                                                                             (15) 

where (
𝑥

𝛽
)

𝛼

= 𝑤  

By binomial expansion, we have 

[4𝑎4 + 3𝑎3𝑒𝑤 + 2𝑎2𝑒2𝑤 + 𝑎1𝑒3𝑤]𝛿 = ∑ (𝛿
𝑗
) (4𝑎4)𝛿−𝑗[3𝑎3𝑒𝑤 + 2𝑎2𝑒2𝑤 + 𝑎1𝑒3𝑊]𝑗𝛿

𝑗=0   

                                   = ∑ ∑ (𝛿
𝑗
) (𝑗

𝑘
)(4𝑎4)𝛿−𝑗(3𝑎3𝑒𝑤)𝑗−𝑘[2𝑎2𝑒2𝑤 + 𝑎1𝑒3𝑊]𝑘𝑗

𝑘=0
δ
𝑗=0   

                                   = ∑ ∑ ∑ (𝛿
𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)(4𝑎4)𝛿−𝑗(3𝑎3𝑒𝑤)𝑗−𝑘𝑗

𝑘=0
(2𝑎2𝑒2𝑤)𝑘−𝑟(𝑎1𝑒3𝑊)𝑟δ

𝑗=0   

                                       = ∑ ∑ ∑ (𝛿
𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗𝑎4
𝛿−𝑗

3𝑗−𝑘𝑎3
𝑗−𝑘

𝑒𝑤(𝑗−𝑘)∞
𝑗=0 2𝑘−r𝑎2

𝑘−𝑟𝑒2𝑤(𝑘−𝑟)𝑎1
𝑟𝑒3𝑊𝑟  

                                      = ∑ ∑ ∑ (𝛿
𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟𝑎4
𝛿−𝑗δ

𝑗=0 𝑎3
𝑗−𝑘

𝑎1
𝑟  𝑎2

𝑘−𝑟𝑒𝑤(𝑗+𝑘+𝑟)                                (16) 

Now, substitute (16) in (15), to get 

[𝑓(𝑥)]𝛿 =
𝛼𝛿

𝛽𝛼𝛿 𝑥𝛿(𝛼−1) ∑ ∑ ∑ (𝛿
𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)

𝑗
𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟δ

𝑗=0 𝑎4
𝛿−𝑗

𝑎3
𝑗−𝑘

𝑎1
𝑟  𝑎2

𝑘−𝑟𝑒−𝑤(4𝛿−𝑗−𝑘−𝑟)  

We have to find  

∫ [𝑓(𝑥)]𝛿∞

0
𝑑x =

𝛼𝛿

𝛽𝛼𝛿
∑ ∑ ∑ (𝛿

𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟𝑎4
𝛿−𝑗δ

𝑗=0 𝑎3
𝑗−𝑘

𝑎1
𝑟 𝑎2

𝑘−𝑟 ∫ 𝑥𝛿(𝛼−1)𝑒−𝑤(4𝛿−𝑗−𝑘−𝑟)𝑑x
∞

0
     (17) 

 

Now evaluate the integral term ∫ 𝑥𝛿(𝛼−1)𝑒−(4𝛿−𝑗−𝑘−𝑟)𝑤𝑑𝑥
∞

0
  

Let (
𝑥

𝛽
)

𝛼

= 𝑤, then 
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑑𝑥 = 𝑑𝑤 and 0 < 𝑤 < ∞, the integral term becomes as 

∫ 𝑥𝛿(𝛼−1)𝑒
−(4𝛿−𝑘−𝑟)(

𝑥

𝛽
)

𝛼

𝑑𝑥
∞

0
 =

𝛽𝛿𝛼−𝛿+1

𝛼
∫ 𝑤𝛿−

𝛿

𝛼
+

1

𝛼
−1𝑒−(4𝛿−𝑗−𝑘−𝑟)𝑤𝑑𝑤

∞

0
  

                                                      =
𝛽𝛿𝛼−𝛿+1

𝛼

Γ(𝛿−
𝛿

𝛼
+

1

𝛼
)

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

  

                                                     =
𝛽𝛿𝛼−𝛿+1

𝛼

Γ(
𝛿𝛼−𝛿+1

𝛼
)

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

                                                                                            (18) 

Substitute from (18) in (17), we get 

∫ [𝑓(𝑥)]𝛿∞

0
𝑑𝑥 =

𝛼𝛿

𝛽𝛼𝛿
∑ ∑ ∑ (𝛿

𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟𝑎4
𝛿−𝑗δ

𝑗=0 𝑎3
𝑗−𝑘

𝑎1
𝑟 𝑎2

𝑘−𝑟 𝛽𝛿𝛼−𝛿+1

𝛼

Γ(
𝛿𝛼−𝛿+1

𝛼
)

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

  

                         = 𝛽−𝛿+1𝛼𝛿−1Γ (
𝛿𝛼−𝛿+1

𝛼
) ∑ ∑ ∑ (𝛿

𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟δ
𝑗=0

𝑎4
𝛿−𝑗

𝑎3
𝑗−𝑘

 𝑎1
𝑟 𝑎2

𝑘−𝑟

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

                         (19) 

Substitute (19) in (14), the Renyi entropy is finally obtained as 

𝐻𝛿(𝑥) =
1

1−𝛿
𝑙𝑜𝑔 [𝛽−𝛿+1𝛼𝛿−1Γ (

𝛿𝛼−𝛿+1

𝛼
) ∑ ∑ ∑ (𝛿

𝑗
) (𝑗

𝑘
)𝑘

𝑟=0 (𝑘
𝑟
)𝑗

𝑘=0 4𝛿−𝑗3𝑗−𝑘2𝑘−𝑟δ
𝑗=0

𝑎4
𝛿−𝑗

𝑎3
𝑗−𝑘

𝑎1
𝑟 𝑎2

𝑘−𝑟

(4𝛿−𝑗−𝑘−𝑟)
𝛼𝛿−𝛿+1

𝛼

]  

Hence the proof. 

 

3.5.2 Shannon Entropy 
 

Shannon's entropy is the unique measure of uncertainty of a random variable X. Shannon (1948) defined the Shannon 

entropy of a random variable and is obtained for QTW distribution as 

𝐻 = −𝐸[𝑙𝑜𝑔{𝑓(𝑥)}]  

     = −𝐸 [𝑙𝑜𝑔 {
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

[4𝑎4 + 3𝑎3𝑒
(

𝑥

𝛽
)

𝛼

+ 2𝑎2𝑒
2(

𝑥

𝛽
)

𝛼

+ 𝑎1𝑒
3(

𝑥

𝛽
)

𝛼

]}]  

     = −(𝑙1 + 𝑙2)                                                                                                                                                            (20) 

Where, I1 = E [log {
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

𝑒
−4(

𝑥

𝛽
)

𝛼

}] and I2 = 𝐸 [𝑙𝑜𝑔 {4𝑎4 + 3𝑎3𝑒
(

𝑥

𝛽
)

𝛼

+ 2𝑎2𝑒
2(

𝑥

𝛽
)

𝛼

+ 𝑎1𝑒
3(

𝑥

𝛽
)

𝛼

}] 

On simplification and using the expressions of 𝑙1 and 𝑙2 in (20), the Shannon entropy can be computed numerically. 
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4 Estimation of Parameters 
 

There are different methods available in the literature to estimate the parameters of the suggested distribution. Here 

we applied seven different methods to estimate the parameters. 
  

4.1 Maximum Likelihood Estimation Method 
 

The most popular conventional method to estimate parameters is the maximum likelihood estimation (MLE) method. 

Consistency, asymptotic efficiency, and invariance property are only a few of its many appealing qualities. 
 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n so that the likelihood function is given by 

𝐿 = ∏ 𝑓(𝑥𝑖; 𝜽)

𝑛

𝑖=0

 

where, 𝜽 is the parameter space. 
 

The log-likelihood function of the QTW distribution becomes as 

𝑙 = 𝑛 log(𝛼) − 𝑛 𝛼 log(𝛽) + (𝛼 − 1) ∑ log(𝑥𝑖)
𝑛
𝑖=1 − 4 ∑ (

𝑥𝑖

𝛽
)

𝛼
𝑛
𝑖=1 + ∑ 𝑙𝑜𝑔 [4 𝑎4 + 3𝑎3𝑒

(
𝑥𝑖
𝛽

)
𝛼

+  2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑛
𝑖=1

𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

]                                                                                                                                                                     (21)  

The maximum likelihood estimates (MLEs) of  α, β, 𝜆1,  𝜆2 and 𝜆3, maximizes the log-likelihood function and must 

satisfy the following normal equations: 

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
− 𝑛 log(𝛽) + ∑ log(𝑥𝑖)

𝑛
𝑖=1 − 4 ∑ (

𝑥𝑖

𝛽
)

𝛼

𝑙𝑜𝑔 (
𝑥𝑖

𝛽 
)𝑛

𝑖=1 + ∑
3 𝑎3 𝑒

(
𝑥
𝛽

)
𝛼

 (
𝑥𝑖
𝛽

)
𝛼

𝑙𝑜𝑔(
𝑥𝑖
𝛽

)+4 𝑎2 𝑒
2(

𝑥
𝛽

)
𝛼

 (
𝑥𝑖
 𝛽

)
𝛼

 

4 𝑎4+3𝑎3𝑒
(

𝑥𝑖
𝛽

)
𝛼

+ 

𝑛
𝑖=1    

          
𝑙𝑜𝑔(

𝑥𝑖
𝛽

)+6 𝑎1 𝑒
(

𝑥
𝛽

)
𝛼

 (
𝑥𝑖
𝛽

)
𝛼

𝑙𝑜𝑔(
𝑥𝑖
𝛽

)

2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼 = 0  

𝜕𝑙

𝜕𝛽
= −

𝑛 𝛼

𝛽  
+ 4 𝛼 ∑ (

𝑥𝑖

𝛽 
)

𝛼−1 𝑥𝑖

𝛽2
𝑛
𝑖=1 + ∑

−3 𝑎3  𝑒
(

𝑥𝑖
𝛽

)
𝛼

 (
𝑥𝑖
𝛽

)
𝛼−1

 
𝑥𝑖

𝛽2 
−4a2𝑒

2(
𝑥𝑖
𝛽

)
𝛼

 (
𝑥𝑖
𝛽

)
𝛼−1 𝑥𝑖

𝛽2 −6 a1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

 (
𝑥𝑖
𝛽

)
𝛼−1 𝑥𝑖

𝛽2 

4 𝑎4+3𝑎3𝑒
(

𝑥𝑖
𝛽

)
𝛼

+2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

 

𝑛
𝑖=1 = 0     

𝜕𝑙

𝜕𝜆1
=    ∑

4−6𝑒
(

𝑥𝑖
𝛽

)
𝛼

+6𝑒
2(

𝑥𝑖
𝛽

)
𝛼

−2𝑒
3(

𝑥𝑖
𝛽

)
𝛼

4 𝑎4+3𝑎3𝑒
(

𝑥𝑖
𝛽

)
𝛼

+    2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

𝑛
𝑖=1  = 0  

 
𝜕𝑙

𝜕𝜆2
=    ∑

−4+6𝑒
2(

𝑥𝑖
𝛽

)
𝛼

−2𝑒
3(

𝑥𝑖
𝛽

)
𝛼

4 𝑎4+3𝑎3𝑒
(

𝑥𝑖
𝛽

)
𝛼

+    2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

𝑛
𝑖=1  = 0  

 

𝜕𝑙

𝜕𝜆3
=    ∑

8−18𝑒
(

𝑥𝑖
𝛽

)
𝛼

−12𝑒
2(

𝑥𝑖
𝛽

)
𝛼

−2𝑒
3(

𝑥𝑖
𝛽

)
𝛼

4 𝑎4+3𝑎3𝑒
(

𝑥𝑖
𝛽

)
𝛼

+    2𝑎2𝑒
2(

𝑥𝑖
𝛽

)
𝛼

+𝑎1𝑒
3(

𝑥𝑖
𝛽

)
𝛼

𝑛
𝑖=1 = 0  

 

The above-mentioned nonlinear system of equations is solved to obtain the MLE 𝜽̂= (𝛼̂, 𝛽̂, λ̂1,  λ̂2,  λ̂3 ). For 

numerically maximizing the log-likelihood function in equation (21), it is typically more practical to employ nonlinear 

optimization techniques like quasi-Newton or Newton-Raphson. 

 

4.2 Least Squares Estimation Method 
 

 For estimating the beta distribution's parameter values, Swain et al. (1988) suggested the least-squares estimation 

(LSE) approach. Let 𝑥(1),  𝑥(2), . . . ,  𝑥(𝑛) be an ordered sample of size 𝑛 from the proposed distribution given in (6). 

According to Arnold et al. (2008), it is given that  

𝐸[𝐹(𝑥(𝑖))] =
𝑖

𝑛 + 1
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Given that 𝐹(𝑥(1)), 𝐹( 𝑥(2)), . . . , 𝐹( 𝑥(𝑛)) are order statistics, a standard uniform distribution is formed. The least 

squares estimators (LSEs) of the unknown parameters 𝛼, 𝛽, 𝜆1, 𝜆2, and 𝜆3 of the QTW distribution can be attained by 

minimizing the succeeding function 

𝐿𝑆 = ∑ [𝐹(𝑥(𝑖)) −
𝑖

𝑛+1
]

2
𝑛
𝑖=1   

 

4.3 Weighted Least Squares Method 
 

Alongside the LSE method, the weighted least-squares estimation (WLSE) method was used to estimate the beta 

distribution's parameters (Swain et al. (1988); Alam (2022)). Recall that 𝑥(1),  𝑥(2), . . . ,  𝑥(𝑛) is a sample of order 

statistics of size n. Since  𝐹(𝑥(1)), 𝐹( 𝑥(2)), . . . , 𝐹( 𝑥(𝑛))  are order statistics, it creates a standard uniform distribution. 

It is known from Arnold et al. (2008) that 

𝑉𝑎𝑟[𝐹(𝑥(𝑖))] =
𝑖(𝑛 − 𝑖 + 1)

(𝑛 + 1)2(𝑛 + 2)
 

By minimizing the following function, the weighted least squares estimators (WLSEs) of the parameters 

𝛼, 𝛽, 𝜆1, 𝜆2, and 𝜆3 of the QTW distribution can be produced. 

𝑊𝑆 = ∑ 𝑤𝑖 [𝐹(𝑥(𝑖)) −
𝑖

𝑛+1
]

2
𝑛
𝑖=1   

where, 𝑤𝑖 =
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
 is the weight of 𝑥(𝑖). 

 

4.4 Maximum Product of Spacing Estimation Method 
 

Cheng and Amin (1979) and Ranneby (1984) presented the maximum product of spacings (MPS) approach as a 

substitute for the MLE. The MPS method is a member of a class of more versatile estimate techniques that use 

spacings. A sample of order statistics of size n are given as  𝑥(1),  𝑥(2), . . . ,  𝑥(𝑛). The maximum product of spacing 

estimators (MPSEs) of the unknown parameters 𝛼, 𝛽, 𝜆1, 𝜆2, and 𝜆3 of the QTW distribution can be determined by 

maximizing the function given below. 

                                         𝑃𝑆 =
1

𝑛+1
∑ 𝑙𝑜𝑔𝑑𝑖

𝑛+1
𝑖=1 ,     𝑖 = 1, 2, 3, . . . , 𝑛 + 1  

where, 𝑑𝑖 =  𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1)) is the uniform spacings of a random sample from the QTW distribution with 

𝐹(𝑥(0)) = 0 and 𝐹(𝑥(𝑛+1)) = 1. 

 

4.5 Cramer-von Mises Estimation Method 
 

The Cramer-von Mises method belongs to the category of minimal distance techniques. The Cramer-von Mises 

Estimators (CVMEs) of 𝛼, 𝛽, 𝜆1, 𝜆2, and 𝜆3  are found by minimizing the function 

                                               𝐶𝑆 =
1

12𝑛
+ ∑ [𝐹(𝑥(𝑖)) −

2𝑖−1

2𝑛
]

2
𝑛
𝑖=1    

 

4.6 Anderson- Darling Estimation Method 
 

The class of minimum distance approaches also includes the Anderson-Darling estimation method. Based on the 

ordered sample 𝑥(1) < 𝑥(2) <, . . . , <  𝑥(𝑛), the Anderson-Darling estimators (ADEs) can be attained by minimizing 

the below function 

                                                 𝐴𝐷 = −𝑛 −
1

𝑛
∑ (2𝑖 − 1) log 𝑛

𝑖=1 {𝐹(𝑥(𝑛−𝑖+1)) 𝐹(𝑥(𝑖))}   

 

4.7 Right Anderson- Darling Estimation Method 
 

Using an n-piece random sample and the associated observed order sample  𝑥(1) < 𝑥(2) <, . . . , <  𝑥(𝑛), The  Right 

Anderson-Darling Estimators (RADEs) of  𝛼, 𝛽, 𝜆1, 𝜆2, and 𝜆3 are attained by minimizing the function 

𝑅𝐴𝐷 =
𝑛

2
−

1

𝑛
∑ (2𝑖 − 1) log{𝐹(𝑥(𝑛−𝑖+1))}𝑛

𝑖=1 − 2 ∑ 𝐹(𝑥(𝑖))𝑛
𝑖=1   
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5 Simulation 
 

An extensive Monte Carlo simulation study is carried out to numerically investigate and compare the performances 

of the proposed estimators. The simulation findings are divided into two sections: the first looks at estimators’ 

efficiency, and the second emphasize on goodness of fit analysis. For simulation, the sample size is considered as n = 

10(10)100. The values of the parameters were taken as 𝛼 = 0.5, 1.5 , 2.5; 𝜆1 = 1.1, 1.2;  𝜆2 = 0.15, 0. 30;  𝜆3 = 0.15,
0. 30 and the scale parameter keeps fixed at  𝛽 = 1. The simulation study is based on M = 10,000 simulation runs. 

The results of simulation analysis are represented by heat maps.  

 

5.1 Estimation efficiency 
 

The simulated root mean-squared-error (RMSE) is obtained for each estimator as 

𝑅𝑀𝑆𝐸 (𝜃) = √
1

𝑀
∑ (𝜃 − 𝜃)

2𝑀
𝑖=1   

The following is a discussion of the simulation's first section's findings. Overall, the performance of the estimators 

was excellent because, regardless of the parameter values, RMSEs start to decline as sample sizes rise. Figures 3 to 6 

showed the simulation results of the efficiency for all the estimators. 

 

In practice, when increasing the values of the parameters, one should expect an increase in the RMSE. A solution to 

decrease it is by increasing the sample size. It is depicted from the Figure 3 that no matter what the values of the 

transmuted parameters were, all approaches gave the lowest RMSEs at 𝛼 = 0.5. With an increase in the values of the 

shape parameter, the RMSEs of shape for all estimators rise. However, regardless of the shape values and transmuted 

parameter values, the RMSEs of shape for all estimators are dropping as the sample size grows. In comparison to other 

estimators for the high sample size, ADE and MLE offered the smallest RMSEs of shape at 𝛼 = 2.5.  
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Figure 3: The simulated RMSEs of the shape parameter 𝛼. 

 

Figure 4 demonstrated that RADE, MLE and CVME have the smallest amount of RMSE of 𝜆1for the large sample 

size whereas MPSE gives a fixed amount of RMSE of  𝜆1 for the values of shape and transmuted parameters.  
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Figure 4: The simulated RMSEs of the transmuted parameter 𝜆1. 

It can be seen in Figure 5, the RMSEs of 𝜆2 of all the methods except MPSE decline as the sample size increases. 

Regardless of the values of shape and transmuted parameters, MLE provided the least RMSE for large samples. 
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Figure 5: The simulated RMSEs of the transmitted parameter 𝜆2. 

From Figure 6, it is observed that the RMSEs of  𝜆3 for all the methods are increased for the larger value of 𝜆3. On 

the other hand, RMSEs of 𝜆3 for all the estimators decreases with the increase of sample size. RADE provided the 

smallest RMSE for 𝜆3 = 0.15 and for different values of shape parameters. 
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Figure 6: The simulated RMSEs of the transmitted parameter 𝜆3. 

5.2 Goodness-of-fit analysis 
 

In this segment of the simulation results, two simulated goodness of fit criteria, the average absolute difference 

between the actual and estimated CDFs (𝐷𝑎𝑏𝑠) and the maximum absolute difference between the real and estimated 

CDFs (𝐷𝑚𝑎𝑥) are used to compare the estimation approaches. These metrics are defined as 

𝐷𝑎𝑏𝑠 =
1

𝑀×𝑛
∑ ∑ |𝐹(𝑥𝑗 , 𝛼, 𝛽, 𝜆1, 𝜆2, 𝜆3) − 𝐹(𝑥𝑗 , 𝛼̂, 𝛽̂, 𝜆̂1, 𝜆̂2, 𝜆̂3)|𝑛

𝑗=1
𝑀
𝑖=1   

𝐷𝑚𝑎𝑥 =
1

𝑀
∑ max

𝑗=1,2,…,𝑛
|𝐹(𝑥𝑗 , 𝛼, 𝛽, 𝜆1, 𝜆2, 𝜆3) − 𝐹(𝑥𝑗 , 𝛼̂, 𝛽̂, 𝜆̂1, 𝜆̂2, 𝜆̂3)|𝑀

𝑖=   
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Figure 7: The simulated average absolute difference between the true and estimated CDFs 

 

The simulated results of the goodness of fit are depicted in Figure 7 and Figure 8. The values of 𝐷𝑎𝑏𝑠 and 𝐷𝑚𝑎𝑥 are 

decreasing with the increase in the sample size regardless of the values shape and transmuted parameters. The amount 

of 𝐷𝑎𝑏𝑠  is same for all the estimators for whatever the values of shape and transmuted parameters. However, all the 

approaches provided the same amount of  𝐷𝑚𝑎𝑥 irrespective of the values of shape and transmuted parameters.  
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Figure 8: The simulated maximum absolute difference between the true and estimated CDFs 

 

6. Applications 
 

In this section, we provided an application of the quartic transmuted Weibull distribution. Wheaton river data and 

rainfall data sets were used to demonstrate the suggested estimation methods and compare the applicability and 

flexibility of the QTW distribution with some selected distributions.  
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6.1 Wheaton River Flood Data 
 

The data consists of 72 exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory, 

Canada for the years 1958–1984. This data was previously studied by Choulakian and Stephens (2001); Akinsete et 

al. (2008). Summary statistics of the data set are presented in Table 3. 
 

Table 3: Summary statistics for Wheaton River flood data set. 

Minimum Q1 Median Mean Q3 Maximum SD 

0.100 2.125 9.500 12.204 20.125 64.000 12.297 
 

The estimated model parameters employing the seven approaches together with the Kolmogorov-Smirnov (KS) 

distance statistics and p-values are listed in Table 4. From Table 4, we observed that all the estimation methods 

delivered close estimates as well as close RMSEs for all parameters. However, the WLSE offered the best-fitted 

estimates based on the KS test statistic and its p-value for Wheaton River data. 
 

Table 4: Estimates values of the parameters of several methods together with related goodness of fit statistics 

using Wheaton River flood data. 

Methods 𝛼̂ RMSE (𝛼̂) 𝛽̂ RMSE (𝛽̂) 𝜆̂1 RMSE (𝜆̂1) 𝜆̂2 RMSE (𝜆̂2) 

MLE 1.050 4.050 9.988 8.459 0.896 4.124 5.14E-06 4.488 

LSE 1.037 4.167 10.205 8.678 0.926 4.221 4.64E-07 4.581 

WLSE 1.067 4.309 10.560 8.912 0.954 4.356 5.23E-08 4.740 

MPSE 0.964 4.050 9.897 8.333 0.660 4.167 4.43E-06 4.423 

CvME 1.054 4.155 10.203 8.730 0.927 4.210 1.82E-07 4.587 

ADE 1.083 4.330 10.615 9.217 0.960 4.382 2.74E-08 4.766 

RADE 1.047 4.131 10.157 8.761 0.923 4.188 2.12E-07 4.566 

 

Methods 𝜆̂3 RMSE (𝜆̂3) KS P-values 

MLE 1.12E-06 4.485 0.053806 0.709 

LSE 2.85E-08 4.571 0.053309 0.545 

WLSE 1.54E-08 4.747 0.050424 0.739 

MPSE 0.156 4.282 0.111528 0.013 

CvME 1.83E-08 4.573 0.050928 0.606 
ADE 1.01E-06 4.753 0.052845 0.584 

RADE 1.35E-06 4.553 0.051506 0.673 
  
We made a comparison of the proposed (QTW) distribution with the existing Weibull (W) distribution (Weibull, 

1951), transmuted Weibull (TW) distribution (Aryal & Tsokos, 2011) and cubic transmuted Weibull (CTW) 

distribution (Granzotto et al., 2017). Table 5 showed the MLEs of the model parameters and the -log-likelihood (-

logL), Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICc), Schwarz’s Bayesian 

information criterion (BIC), Anderson-Darling statistic (𝐴2), Kolmogorov-Smirnov (KS) distance statistics and its 

corresponding p-values. On the basis of all the model selection criteria (the smaller the better), it is revealed that the 

proposed QTW distribution is the most appropriate model for the Wheaton River data set. 
 

Table 05: MLEs of the parameters and values of the model selection criteria for Wheaton River data. 

Distributions Parameters Estimates -logL AIC AICc BIC 𝐴2 KS P-value 

 

 

QTW 

𝛼 1.050  

 

247.31 

 

 

504.621 

 

 

505.524 

 

 

516.004 

 

 

0.228 

 

 

0.0538 

 

 

0.709 
𝛽 9.988 

𝜆1 0.896 

𝜆2 5.14E-06 

𝜆3 1.12E-06 

 

 

CTW 

𝛼 0.924  

249.93 

 

507.887 

 

508.464 

  

516.933 

 

0.694 

 

0.1159 

 

0.288 𝛽 9.245 

𝜆1 0.999 
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𝜆2 0.108 

 

TW 
𝛼 0.895  

251.50 

 

508.997 

 

511.605 

 

518.082 

 

0.839 

 

0.1056 

 

0.397 𝛽 11.406 

𝜆1 -0.032 

W 𝛼 0.901 251.50 506.997 507.171 516.390 0.844 0.1052 0.403 

𝛽 11.634 
 

The estimated PDF and CDF of the Wheaton River data set are plotted over empirical density and distribution 

functions presented in Figure 9. 
  

 
Figure 9: Estimated PDF and CDF of QTW, CTW, TW and W for Wheaton River dataset. 

 

6.2 Rainfall Data 
 

The rainfall data consists of the annual maximum daily precipitation (unit: mm) at Busan, Korea in the period 1904-

2011. The data set has been previously used by Jeong et al. (2014). It consists of 108 observations because only one 

maximum daily precipitation is used for each year. The summary statistics of the data set are given in Table 6. 
 

Table 6: Summary statistics of rainfall data 

Minimum Q1 Median Mean Q3 Maximum SD 

20.700 101.600 131.600 144.600 165.500 354.700 66.187 
 

Table 7 included the calculated values of the model's parameters obtained using the previously stated approaches 

together with the KS statistics and their accompanying p values. 
 

From the outcomes of Table 7, we observed that estimated values of a parameters of all the estimation methods are 

close to each other. According to the value of KS test statistic and accompanying p-value, the LSE provided the best 

estimates. 
 

Table 7: The estimated values of the parameters with their RMSEs (in parenthesis) and KS statistic and 

corresponding p-values   based on rainfall data. 

Methods 𝛼̂ 
(RMSE) 

𝛽̂ 

(RMSE) 

𝜆̂1 

(RMSE) 

𝜆̂2 

(RMSE) 

𝜆̂3 

(RMSE) 

KS P-values 

MLE 2.310 

(77.652) 

175.994 

(156.302) 

0.243 

(78.480) 

1.414 

(78.450) 

3.74E-07 

(78.545) 

0.0728 0.161 

LSE 2.272 

(77.706) 

175.999 

(156.520) 

0.155 

(78.648) 

1.550 

(78.022) 

1.00E-07 

(78.719) 

0.0655 0.998 

WLSE 2.138 

(78.170) 

176.816 

(155.014) 

0.117 

(78.873) 

1.570 

(78.861) 

2.10E-08 

(78.871) 

0.0722 0.011 

MPSE 2.157 

(77.800) 

176.001 

(156.360) 

0.206 

(78.585) 

1.411 

(78.291) 

1.86E-07 

(78.564) 

0.0819 0.492 
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CVME 2.303 

(77.681) 

175.972 

(156.487) 

0.158 

(78.635) 

1.558 

(78.007) 

1.01E-08 

(78.707) 

0.0680 0.998 

ADE 2.149 

(77.764) 

176.002 

(156.468) 

0.116 

(78.652) 

1.554 

(78.076 

1.12E-08 

(78.690) 

0.0741 0.812 

RADE 2.013 
(77.584) 

175.456 
(156.321) 

0.001 
(78.436) 

1.682 
(78.813) 

1.10E-08 
(78.426) 

0.0717 0.829 

 

The Weibull (W) distribution (Weibull, 1951), transmuted Weibull (TW) distribution (Aryal & Tsokos, 2011) and 

cubic transmuted Weibull (CTW) distribution (Granzotto et al., 2017) have been considered as an alternative to the 

proposed QTW distribution for comparison purposes. Table 8 provided the -log-likelihood (-logL), AIC, AICc, BIC, 

𝐴2 and KS statistics with corresponding p-values for the selected models. From Table 8, it is easily observed that our 

proposed QTW distribution performed better than other selected distributions for rainfall data. 
 

Table 8: MLEs of the parameters and values of the model selection criteria of the selected models for rainfall 

data. 

Distributions Parameter Estimates -logL AIC AICc BIC 𝐴2 KS P-

value 

 

 

QTW 

 

𝛼 2.301  

 

578.50 

 

 

1167.002 

 

 

1167.608 

 

 

1175.272 

 

 

0.504 

 

 

0.0728 

 

 

0.542 
𝛽 175.994 

𝜆1 0.243 

𝜆2 1.414 

𝜆3 3.74E-07 

 

CTW 

 

𝛼 1.777  

583.00 

 

1175.560 

 

1175.907 

 

1186.123 

 

23.405 

 

0.1253 

 

0.074 𝛽 163.667 

𝜆1 0.042 

𝜆2 0.874 

 

TW 

 

𝛼 2.427  

582.30 

 

1170.592 

 

1170.830 

 

1178.554 

 

3.889 

 

0.1116 

 

0.146 𝛽 171.057 

𝜆1 0.622 

W 𝛼 2.319 583.75 1171.507  1171.815 1176.815 1.586 0.1257 0.072 

𝛽 163.421 

 

 
Figure 10: The fitted PDF and CDF of QTW, CTW, TW and W distribution for rainfall data. 

 

The estimated PDF and CDF of the rainfall data set are plotted over empirical density and distribution functions 

presented in Figure 10. From Figure 9 and Figure 10, it is also depicted that the proposed distribution is a good fit to 

both the data sets. 
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7 Conclusion 
 

A new quartic transmuted Weibull distribution is suggested in this article. Distributional properties such as moments, 

generating functions, reliability and hazard rate functions were discussed. Seven methods have been used to estimate 

the parameters of the proposed distribution, and the performance of the estimators has been investigated using 

simulations. With the exception, all the methods performed better with a large sample size. Two real data sets were 

used to compare the estimation methods and to test the applicability of the proposed distribution. WLSE and LSE 

methods provided best model fitting estimates of the proposed distribution for Wheaton River and rainfall data 

respectively. Our proposed distribution provided a better fit compared with Weibull, transmuted Weibull, and cubic 

transmuted Weibull distributions for both the real-life data sets. 
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